
1

Using Petri Nets and Component Software Technologies to Develop a

Distributed Workflow System

Stephen J.H. Yang* and Chyun-Chyi Chen

*Department of Computer and Communication Engineering

*National Kaohsiung First University of Science and Technology, Taiwan

*E-mail: jhyang@ccms.nkfu.edu.tw

Department of Computer Science and Information Engineering

National Central University, Taiwan

E-mail: chyun@selab.csie.ncu.edu.tw

Abstract

The aim of this paper is to present the ability of Petri nets and component software

technologies to face a kind of distributed workflow systems problems. These problems are

characterized by collaborating between intra-originations and inter-origination. First, we will

introduce how to modeling workflow by Petri nets. A Petri net is graphic formal method. We

use Petri nets to modeling workflow that can be analysis workflow properties. Finally, we try

to build a modeling architecture. This modeling architecture cites Petri nets and component

software technology to modeling workflow in every organization. We called component

architecture specification (CAS). The CAS model provides an effectively way to deal with

large and complexity in the application of formal model. We focus on the workflow modeling

by CAS.

Keywords: workflow, Petri Nets, business process, process definition, component software.

1. Introduction

In 1970’s, it was a hard dream for office automation. Companies hope to reduce manpower

and workload, but many other information technology movements did not achieve its promise.

Many researchers make effort in office automation area, it has been advancement. Today’s an

enterprise or organization is facing various challenges and pressures such as market

competition, globalization economics, virtual corporation, distributed sub-companies,

business process reengineering, reduction of cost, and rapid development of new products and

services. They need new information techniques to reduce processing time, allocate resource

2

efficiently, improve performance, and shorten product’s time to market. New information

technologies come with the tide of fashion. We can find an important information technique to

solution this problem that is workflow management technique. The main purpose of a

workflow management system is the support of the definition, management, execution,

coordination, control, and monitor of complex business processes logic [8]. Furthermore,

workflow management system supports large and heterogeneous distributed execution

environments where sets of interrelated tasks can be carried out in an efficient and closely

supervised fashion. Numerous application domains exits today that use workflow

management techniques in their day-to-day activities for controlling their business processes.

These areas include transaction in banking, flexible manufacturing, global logistics, virtual

corporation, health care, enterprise resource planning, finance, electronic commerce, and so

on. We have found workflow techniques become very important for enterprises and

organizations.

In the early years, it is a dream to specify process of workflow into application

programs in order to satisfy certain requirements of office procedures. Today’s business

processes are also subject to frequent changes. The range of products and services inside

organization has increased, also the lifetime of products and services has decreased. With the

evolution of the computer technology, workflow has experienced numbers of shifts in changes.

These are not dream, thanks to the progress of communication, information and

object-oriented technologies, workflow system has been able to support decentralized

organizational units through graphical interfaces and a workflow engine to manage distributed

tasks and resources on different locations [13]. Enterprises or organizations can obtain many

benefits by using workflow technologies. For example, workflow technology improves the

access of information by scattering organizational information among various users. Thus,

workflow technology provides opportunities for process change. Since workflow systems

force organizations to examine and define their business processes, it is the ideal time to

consider business process reengineering. Workflow technology also provides opportunities for

organizational change. Workflow technology can model the entire organization as business

processes and provide manager information regarding organizational changes in order to

operate efficiency in today’s world. These problems are characterized by collaborating

between intra-originations and inter-origination. We present a CAS based component for

modeling systems. A component specification provides a basis for distributed, large, and

complexity system that enables one to develop a reusable and redefined system. And

Workflow has played an important role that provides back-end services to response front-end

requirements in the age of electronic commence. Therefore, more and more venders have

invested in the development of workflow products. These includes ActionWorkflow System

of Action Technologies; IBM's Flow Mark; Visual WorkFlow of FileNet; InConcert produced

3

by Xsoft (a division of Xerox Corp); FormFlow of Delrina; Regatta of Fujitsu (currently

incorporated into ICL's TeamWARE); SAP Business Workflow by SAP; HP’s WorkManager;

OPEN/workflow of WANG and so on [16]. At the same time, there are many research projects

about workflow management systems are undergoing including Exotics of IBM Almaden

Research Center; Mentor of University of Saarland, Germany; ObjectFlow of DEC; TriGflow

of University of Linz, Austria; TransCoop of Technical Research Center of Finland; Meteor of

the University of Georgia and so on [16]. There is a problem. These products are incompatible

and no standards to enable these workflow products to cooperation. Until 1993, the Workflow

Management Coalition (WFMC) was established to make efforts in development workflow

standard. WFMC provides a common “Reference Model” of workflow management systems

to identify workflow management system’s characteristics, terminology and components, and

also enables individual specifications to be developed within the context of an overall model

for workflow systems [14]. Thus, all products all workflow products can achieve a level of

interoperability through the use of common standard for various functions.

Most related researches of workflow could be classified into process definition

modeling and analysis, activity coordinating and scheduling, workflow system architecture

and design, and development methodology. Of all the workflow techniques, process definition

is one of the kernel parts of workflow techniques. It defines necessary information related to

business process, such as the information of starting and completing conditions, constituent

tasks, rules for navigating between activities, user tasks to be undertaken, applications that

may be invoked and relevant data that may need to be referenced, and the resulting process

definition will be executed by the workflow management system. Thus, the integrity and

accuracy of process definition will affect the result of execution. In this paper we present a

Petri-nets-based formal framework for modeling workflows. Therefore, a formal specification

provides a basis for formal proofs that enables one to develop a higher confidence in the

correctness of the workflow.

The rest of this paper is organized as follows. We will explain what business process is

in section 2. Section 3 represents how to utilize our Petri-nets-based approach to model

business processes. In section 4, we propose a component architecture specification (CAS) to

model workflow process and a E-commerce example how to use CAS. Section 5 concludes

this paper with our future research.

2. Business Process

In workflow management systems, business process is a set of one or more procedure(s) or

activity(s), which realize business objectives or policy goals such as an insurance claims

process, an order process, or a loan process. In other word, a business process B can be

4

represented as a set of procedure or activity pb1, pb2, …, pbn, together with their order of

invocation and information flow. Even though workflow management techniques are able to

reduce manual efforts and to provide enterprises with automatic environments, but these

techniques may not be suitable for all business processes. Since the concept of workflow is

originally used in solving management problems of business processes, it is adapted for a

business process, whose activities are allocated, scheduled, routed, managed, and executed

automatically. Business processes suitable for workflow management are usually

characterized with properties such as automation, monitoring, repeatability, predictability,

integration, and so on. In contrast, workflow management mechanism will not be suitable for

business process characterized with simple, rarely used, or needs many manual works. Once

we can identify business processes suitable for workflow management techniques, the next

issue is to decide using which method and how to model these business processes. In the

following, we will present our Petri-nets-based approach for representation control flow,

information value, and temporal of business process as following in next section.

3. Defining Business Process Using Petri Nets

We used to transform business processes directly into logical steps, such as Petri Nets,

event flow, state transition diagram, etc [1, 10]. In the following, we will describe how to

modeling business process using our Petri-nets-based approach.

3.1 Classical Petri Nets Representation Control Flow

3.1.1 Introduction to Classical Petri Nets

A Petri net (classical Petri nets) is a particular kind of directed graph [11]. A typical Petri net

has transitions, places, directed arcs, and tokens in which rectangles represent transitions and

circles represent places as shown in Figure 1. A transition tj is said to be enabled if each input

place pi of tj has at least w(pi,tj) tokens, where w(pi,tj) is the weight of arc from pi to tj. A net

is said to be an ordinary net if all of its arcs are weighted as one. In this paper, we assume all

nets are ordinary. An enabled transition may fire any time when it is enabled. The firing of a

transition is instantaneous and will remove one token from each of its input places and put

one token into each of its output places [11]. Due to various system modeling and analysis,

Petri nets have been extended to many variations, such as time Petri nets, temporal Petri nets,

Coloured Petri nets (CP-nets), predicate/transition nets (PrT-Nets), hierarchical Coloured Petri

nets (hierarchical CP-nets), and stochastic Petri nets.

5

Figure 1. An example of Petri nets

Define 3.1. A Petri net is a 4-tuple PN=(P, T, F, M0) where

(1) P is a finite set of places

(2) T is a finite set of transitions

(3) F ⊆ (P×T) ∪ (T×P) is a finite set of arcs

(4) M0 is an initial marking

3.1.2 Workflow Primitives and Routings

In order to eliminate the difference between the business description and the software

specification, unearthing common language understood by users and developers is imperative.

Each symbol and semantic within the language must be defined clearly and intuitive for users.

Petri net is a well-defined formal semantics with graphical natural. Petri net has applied in

various domains, such manufacturing, industry, software engineering, and so on. Petri nets

use friendly visual notations, and translate the requirements of users into software

specifications more precisely. Petri nets even provide much mathematical formalism for

properties analysis to software specifications. Within Petri nets modeling elements, some

extended and tailored notations are suitable to represent the process definition of workflow. In

the following, we will illustrate how to make use of Petri-net-based approach to specify

process definition. Next, we would like to discuss what kinds of business process are suitable

for workflow.

In order to capture the characters of a business process, classical Petri nets are useful to

represent these. A classical Petri net can show the order of each business process behavior.

Within the classical Petri nets model elements, this support to describe the dynamic behavior

of business process. Whereas classical Petri nets emphasize the flow of control from business

process (activity) to business process (activity). A classical Petri nets is very useful in

modeling the process definition of the workflow and in describing the behavior that contains a

lot of parallel processing. Each activity can be followed by another activity. This is essential

for business processes.

WFMC defined six primitives to model business logical steps [14]. In this paper, we

6

adopt classical Petri nets to specify these six primitives because classical Petri nets support

the modeling of workflow activity, transition, condition, synchronization, parallelism,

iteration, etc. We specify workflow activity by means of place notation of classical Petri nets

and workflow transition by means of transition and arc notation of classical Petri nets. This

specifies is difference Aalst’s specify. Our specify look workflow activity trigger as rule.

Figure 2 shows how classical Petri nets are corresponded to the six workflow primitives

defined by WFMC. AND-join primitive expresses that two or more parallel threads meet into

a single thread and the synchronization bar may only be crossed to next workflow activity

when all input workflow activities on the bar have been triggered. AND-split primitive

expresses that a single thread split into two or more threads and the output workflow activities

attached to the synchronization bar are triggered simultaneously. OR-join primitive expresses

that when two or more alternative workflow activities branches re-converge into a single

thread without any synchronization. OR-Split primitive expresses that when a single thread

makes a decision upon which branch to take when encountered with multiple workflow

branches. Branches between activities can be guarded by conditions. If guards validate, the

transitions close to them are triggered to next workflow activities. Iteration primitive

expresses that a workflow activity cycle involves the repetitive execution of workflow

activity until a condition is met. Causality primitive expresses that two or more workflow

activities are executed in a sequential form without any join or split.

Figure 2. Workflow primitives specified by Petri nets

7

With the above six workflow primitives specified by Petri nets as shown in Figure 4, we

can further to define four processes routing, which are sequential, conditional, parallel, and

iterative routing [1, 8]. In workflow process, the four routing can be used to model any

business process workflow and business process workflow can be used to model enterprise

workflow. The results are show in Figure 3. Sequential routing is used to deal with causal

relationships between activities. For example, three activities A, B, and C are executed

sequentially. Figure 3.a shows how to use Causality workflow primitive to model sequential

routing. Parallel routing is used when the ordering of activity execution is not of concern. For

example, three activities A, B, and C are executed and the order of their execution is arbitrary.

Figure 3.b shows how use AND-split and AND-join workflow primitives to model parallel

routing. Conditional routing is used when instances need to be considered and those instances

may depend on the workflow attributes. For example, in Figure 3.c one of three activities B,

C and D are executed and one of execution is depend on the workflow attributes whether

satisfy condition X=’1’, X=’2’ and X=’3’. Figure 3.c shows how use OR-split and OR-join

workflow primitives to model conditional routing. Iterative routing is used to deal with

activity which need to execute one or more than one times. Figure 3.d shows how to use

iteration workflow primitive to model iterative routing.

p1
t1 t2

p3p2

t1

p1

p4

p3

p2

Figure 3. Process routing presented by workflow primitives

3.2 Color Petri Nets Representation of Information Value

From information aspect, Color Petri nets are useful to represent information of actors, roles,

organizational units, and relevant data for business processes. These information objects can

be seen as classes with relevant attributes in color token. We user color token which carry

attributes to represent a workflow instances as shown in Figure 4. In Figure 6, there are two

workflow instances in Loan request workflow. The color token attributes include name for

apply loan, amount of loan, annual income. Case 1 of workflow instance represents William

apply loan amount $3000 and William has annual income $70000. Case 2 of workflow

8

instance represents Jennify apply loan amount $5000 and Jennify has annual income $30000.

Figure 4. Workflow instances represented by color Petri Nets

Define 3.2. A color Petri net is a 5-tuple PN=(Σ , P, T, F, M0) where

(1) Σ is a finite set of non-empty types, called color token sets

(2) P is a finite set of places

(3) T is a finite set of transitions

(4) F ⊆ (P×T) ∪ (T×P) is a finite set of arcs

(5) M0 is an initial marking

3.3 Time Petri Nets Representation of Temporal

A workflow is complete or partial automation of a business process, in which participants

involve in a set of activities according to certain procedural rules and constrains. The

successful completion of the process often depends on the correct scheduling of the activities.

Commercial workflow systems are usually rather limited in their ability to specify temporal

conditions for each individual activity or for the global plan [3]. So far we have shown how to

model the control flow and workflow instance using a classical Petri nets and color Petri nets.

In order to timing constrains in a workflow, we need to extend Petri nets. As a simple example

shown in Figure 5, consider activity A must occur within a1 to b1 business time, activity B

must occur within a2 to b2 business time, activity C must occur within a3 to b3 business time,

respectively.

9

Figure 5. Workflow timing constrain represented by time Petri Nets

Define 3.3. A P-time Petri net is a 5-tuple PN=(P, T, F, M0, SI) where

(1) P is a finite set of places

(2) T is a finite set of transitions

(3) F ⊆ (P×T) ∪ (T×P) is a finite set of arcs

(4) M0 is an initial marking

(5) SI: P →Q+×(Q+× ∞)is mapping called static interval

3.4 A Petri-nets-based approach for Business Process Modeling

Nowadays, workflow systems elements of business process including control flow,

information value, and temporal. Therefore, classical Petri nets, color Petri nets, or time Petri

nets not satisfy to representation business process. In order to representation business process,

we extend Petri nets notation that called color-time Petri nets (CTPN). In Figure 6, there are

two workflow instances in Loan request workflow. The color token attributes include name

for apply loan, amount of loan, annual income. Case 1 of workflow instance represents

William apply loan amount $3000 and William has annual income $70000. Case 2 of

workflow instance represents Jennify apply loan amount $5000 and Jennify has annual

income $30000. The Enter banking environment activity occur immediately, Credit Account

Request activity occur within 3 to 9 business time, Credit Card Request activity occur within

2 to 4 business time, Loan Request activity occur within 1 to 4 business time, Bill Request

occur within 2 to 6 business time, Banking environment complete activity occur immediately,

respectively.

10

Figure 6. Business process by color-time Petri nets

Define 3.4. A color-time Petri net is a 6-tuple PN=(Σ , P, T, F, M0, SI) where

(1) Σ is a finite set of non-empty types, called color token sets

(2) P is a finite set of places

(3) T is a finite set of transitions

(4) F ⊆ (P×T) ∪ (T×P) is a finite set of arcs

(5) M0 is an initial marking

(6) SI: P →Q+×(Q+× ∞)is mapping called static interval

4 Component Architecture Specification

In this section, we first give a conceptual of component architecture specification (CAS)

model. Then we formalize the CAS notation. Finally, we give an E-commerce illustration to

how use CAS to model.

4.1 Conceptual of CAS

Our goal is to develop both a rigorous approach to enhance the integrity of design and an

evolutionary process to control complexity in system modeling and analysis. In recent year,

information systems modeling become large, complexity, and distributed. In order to solve

these problems, object-oriented and component-oriented styles of software development have

addressed. Related to our approach, several structural Petri net models are proposed both to

provide a mechanism for system composition and to manage complexity in modeling. These

11

include PROTOB [4], OBJSA nets [6], the Cooperative Objects Language [5], OPNets [9],

HOOD nets [7], CmTPN [15] and C-net [2].

Our work has its basis from two research areas: color-time Petri nets and component

software architecture. The first provide the formal basis for the notational and semantics

system of CAS; and the second provides CAS with its conceptual basis. It is an emerging

field with promising solutions for dealing with the rapidly changing requirements of

workflow software applications. We use CAS to model a distributed system as a multi-leveled

composition of components and their compositions must satisfy at every design level. We can

redefine components in CAS sub-level. More specifically, a CAS model consists of two basic

elements: components models, and inter-component connections. The component models

describe the behavior and communication interface of the components. The inter-component

connections specify how the components interact with each other. This way, the architecture

can be viewed as a template for system composition, that is, sub-architecture of a component

can be plugged-in the place of the corresponding specification to form an instantiated,

recursively defined multi-level architecture model. We formalize the CAS notation as shown

in Define 4.1.

A simple CAS model is illustrated in Figure 7. The high-level design has four

components A, B, C and D. In a CAS model, a component (e.g. A) specification is described

as a color-time Petri Nets. It consists of two parts: communication ports (denoted graphically

by black rectangle) that describe features provided (input ports, e.g. PORT1) and required

(output ports, e.g. PORT2 and PORT3) by A; a net that describes the time-dependent,

operational behavior of A, that is, it defines the semantics associated with the ports. The

communication between A is solely through the ports. A communication represents a channel

of interaction between components. An interface specification allows any sub-architecture

that conforms to the component specification to be plugged into the place of the specification

to form a multi-level and more detailed or refined system architecture. The component D can

be further refined at the next design level into the composition of components D1, D2, D3 and

D4. This arrangement is critical to achieve the goals of incremental modeling described early.

The component designs can be treated as block-boxes in construction, and understanding of a

system’s architecture. As more detailed system architecture is constructed by decomposing

one of the system’s components. Sub-architecture of component guarantees the satisfaction of

system-wide requirements. Thus, each of these components will be subject to their own

derived constrains.

12

Figure 7. The modeling framework of CAS

4.2 An Overview of CAS Notation

In this section, we present the notation of CAS by the formal notation of color-time

Petri Nets into above framework to form an integrated architecture model.

Define 4.1. A component architecture specification is a 2-tuple CAS=(C, H) where

(1) C is a composition may correspond to a design level or the concept of

sub-architecture, C=(C1, C2, …, Ci) and Cj={Comp, Conn} for j=1, 2, …, i, where

(a) Comp is a set of components. ompomp CC i
∈∀ is defined by CTPN. Let

PORTINC
iomp . ={t|t ,.TC iomp∈ t• ∩ PC iomp . =φ } is called the set of input ports of

component C iomp ;

PORTOUTC
iomp . ={t|t ,.TC iomp∈ •t ∩ PC iomp . =φ } is called the set of output

ports of component C iomp ;

PORTC
iomp . = PORTINC

iomp . ∪ PORTOUTC
iomp . is called the set of ports of

C iomp ;

Moreover, ompompomp CC
jiC ∈∀ , , φ=∩ PCP

ji ompompC .. φ=∩ TCT
ji ompompC .. .

(b) Conn=(P, T, F, M0, SI) is connection, where

∩TConn . [TC
ompiomp

i
CC

omp .U
∈

\ PORTC
iomp .]=φ ;

∩PConn . [PC
ompiomp

i
CC

omp .U
∈

];

In composition Cj,

13

∩TC j . [TC
ompiomp

i
CC

omp .U
∈

]= TConn . ;

∩PC j . [PC
ompiomp

i
CC

omp .U
∈

]= PConn . ;

PORTC j . = PORTC
ompiomp

i
CC

omp .U
∈

;

EXTPORTC
iomp . ={t| PORTCt j .∈ , φφ =∩•∨=∩• PCTPCT jj .. };

(2) H: jomp CC
i

→ , ji ≠ , is a hierarchical mapping function, where CC j ∈∀ and

ompjomp CCC
l

.∈∀ ,

PORTC
lomp . = EXTPORTC j .

For example, in the CAS model shown in Figure 7, C = (C1, C2),

C1.Comp = {A, B, C, D}, C2.Comp = {D1, D2, D3, D4}, H(C1.Comp.D) = C2,

C1.PORT = {PORT1, PORT2, …, PORT12},

C1.PORTIN = {PORT2, PORT3, PORT5, PORT6, PORT8, PORT11},

C1.PORTOUT = {PORT1, PORT4, PORT7, PORT9, PORT12},

C1.Comp.A.PORT = {PORT1, PORT2, PORT3},

C1.Comp.A.PORTIN = {PORT2, PORT3},

C1.Comp.A.PORTOUT = {PORT1}

…. …. ….

C1.Comp.D.PORT = {PORT10, PORT11, PORT12},

C1.Comp.D.PORTIN = {PORT11},

C1.Comp.D.PORTOUT = {PORT12, PORT13}

C2.PORT = {PORT10, PORT11, …, PORT18},

C2.PORTIN = {PORT11, PORT14, PORT16, PORT18},

C2.PORTOUT = {PORT10, PORT12, PORT13, PORT15, PORT17},

C2.EXTPORT = {PORT10, PORT11, PORT12} = C1. Comp.D.PORT,

C1.Comp.D1.PORT = {PORT10, PORT18},

C1.Comp.D1.PORTIN = {PORT18},

C1.Comp.D1.PORTOUT = {PORT10},

…. …. ….

C1.Comp.D4.PORT = {PORT12, PORT16, PORT17},

C1.Comp.D4.PORTIN = {PORT16},

C1.Comp.D4.PORTOUT = {PORT12, PORT17}

4.3 E-commerce illustration for CAS

14

We consider a workflow Scenario which involves four business partners: a customer, a

producer and two suppliers. The customer orders a produce by sending an order for produce a

to the producer. To produce the ordered product, the producer orders the products needed for

production (b and c). Then the customer is informed that the order has been accepted.

Supplier 1 produces products of type b, Supplier 2 produces products of type c. After both

products have been delivered, they are assembled into a product of type a which is delivered

to the customer. After delivery an invoice is sent which is then paid by the customer. Figure 8

models the interaction between the four business partners.

Figure 8. The interaction of E-commerce example

According above describe E-commerce, we use CAS model to construct this. Every

partner in E-commerce example has its own private workflow, there is no need to agree upon

one common process. Using CAS model to capture the profile of the operational model of

E-commerce, we first present its CAS architecture in Figure 9, where every partner process

represent a component. There are four business partners including a customer, a producer, and

two suppliers. Therefore, top-level of CAS model is including four components for example

of E-commerce. Between the four business partners have interaction. Between a customer

partner and a producer partner have five interactions, such as order_a, notification, delivery_a,

invoice, and payment. Between a producer partner and a supplier_1 partner have two

interactions, such as order_b, and delivery_b. Between a producer partner and a supplier_2

partner have two interactions, such as order_c, and delivery_c. Therefore, between each

component has communication connected. We model those interactions as communication

linkages in CAS model. In this step, we have been modeled abstract view of E-commerce

example by CAS model.

15

Figure 9. CAS architecture of the E-commerce example

We have been modeled E-commerce environment, but this model level not defined

every partner operational behavior. In next step, we use Petri Nets to define the operational

behavior of each component. Using the Petri net design methodologies, we use Petri Net

model for a component based on its operations relationship among these operations. Figure

10 shows operational behavior of component Supplier_1. We further decompose the

specification of Supplier_1 partner into a more detailed sub-architecture shown below. The

supplier_1 partner will be processed following workflow processes. First, supplier_1 partner

create a require task in Supplier_1_require process and receive order_b from producer partner,

then supplier_1 partner transfer task into produce task in produce_b process. The supplier_1

partner must be check produce in check_produce_b workflow after produce_b process. If

produce is enough that will transfer process into produce_b_OK process, other will transfer

process into produce_b_NOK process. The supplier_1 partner will send delivery in

send_del_b process after produce_b_OK process. Other partners can also decompose the

specification into a more detailed sub-architecture. Figure 11 shows detail describe of

E-commerce example by CAS.

Figure 10. The operational model of the Supplier_1

16

Figure 11. Detail describe of E-commerce example By CAS

5. Conclusions and Future Research

In this paper, we have presented a Petri nets approach to model business processes. Based on

the requirement of the modeling and design of workflow process, we have presented a

CAS-based incremental approach to architectural modeling, and illustrated the use of the

approach to incrementally model a given E-commerce. We also proposed a deployment

diagram to represent physical configuration of distributed activities. We will continue to

develop workflow management system in our future research

References

[1] W.M.P van der Aalst, “Three Good Reasons for Using a Petri-net-based Workflow

Management System,“ Proc. Of the International Working Conference on Information

and Process Integration in Enterprises (IPIC’96). Eds. S. Navathe and T. Wakayama,

Camebridge, Massachusetts, pp. 179-201, Nov. 1996.

[2] W.M.P. van der Aalst, K.M. van Hee and R.A. van der Toorn, “Component-Based

Software Architectures: A Framework Based on Inheritance of Behavior,” Science of

Computer Programming, vol. 42, no. 2-3, pp. 129-171, 2002.

[3] G. Alonso, D. Agrawal, A.E. Abbadi and C. Mohan, “Functionalities and Limitations of

Current Workflow Management Systems,” Research Report, IBM Almaden Research

Center, 1997.

[4] M. Baldasssri and G. Bruno, “PROTOB: An Object Methodology for Developing Discrete

Event Dynamic System,” High-Level Petri Nets: Theory and Application, 1991.

[5] R. Bastide, C. Blanc and P. Palanque, “Cooperative Objects: A Concurrent Petri-net Based,

17

Objected-oriented Language,” Proc. of IEEE Int. Conf. on System, Man and Cybernetics,

vol. 3, pp. 286-291, 1993.

[6] E. Battiston, F. Cindio and G. Mauri, “OBJSA Nets: A Class of High-Level Nets having

Objects as Domains,” Advances in Petri Nets, Lecture Notes on Computer Science, CS

340, 1988.

[7] R.D. Giovani, “Petri Nets and Software Engineering: HOOD Nets,” Proc. of the 11th Int.

Conf. on Application and Theory of Petri Nets, pp. 123-138, June 1990.

[8] P. Lawrence, Workflow Management Coalition, “Workflow Handbook 1997,” Wiley and

Sons Ltd, New York, 1997.

[9] Y. Lee and S. Park, “OPNets: An Objects-Oriented High-Level Petri Net Model for

Real-Time Systems,” The Journal of Systems and Software, vol. 20, no. 1, pp. 69-86,

1993.

[10] Y. Lei and M.P. Singh, “A Comparison of Workflow Metamodels,”

http://osm7.cs.byu.edu/ER97/workshop4/ls.html, 1997.

[11] T. Murata, “Petri Nets: Properties, analysis and applications,“ in Proceeding of The IEEE,

vol. 77, no. 4, pp. 541-580, 1989.

[12] Rational, and UML partners, “UML Summary version 1.1,”

http://www.rational.com/uml/resources/documentation/summary/index.jtmpl, 1997.

[13] J. Veijalanen, A. Lehtola, and O. Pihlajamaa, “Research Issues in Workflow Systems,”

October 2,1995.

[14] Workflow Management Coalition, “Workflow Management Coalition The Workflow

Reference Model,” Nov 1994.

[15] G. Bucci and E. Vicario, “Compositional Validation of Time-Critical Systems Using

Communicating Time Petri Nets,” IEEE Trans. on Software Engineering, vol. 21, no. 12,

Dec 1995.

[16] S.J.H. Yang and Chyun-Chyi Chen, “A Petri-Nets-Based Approach for Workflow and
Process Automation,” International Journal on Artificial Intelligence Tools, vol. 8, no. 2,
pp. 193-205, 1999.�

