
Innovational Stack Pointer
Ing-Heng Shih

BENQ Mobile System Inc.
No. 23 Li-Hsin Rd., Science Based Industrial Park, Hsin-Chu, Taiwan

Tel: +886-3-611-8877 ext 6587 Fax: +886-3-612-8188
E-Mail: stoneshih@benqms.com

Abstract

A method and apparatus to generate the read/write

pointer of the stack or the last in first out memory (LIFO)

is proposed. We use the linear feedback register (LFSR)

to replace the traditional counter to generate the

read/write address for the stack. Its’ advantage is more

efficient and costs lower circuit area overhead. Besides,

due to the pseudo random sequence of the LFSR, we

make encryption to the data written to the stack (PUSH)

and the burst error can avoid when we read data from the

stack (POP).

Introduction
The stack and the LIFO memory are widely use in

VLSI design and general digital system design. The

common feature of the stack and the LIFO memory is

that the last written data will be first read. Therefore, the

design philosophy of the address generator of the stack is

simple. When the data is written, the address increases 1.

On the contrary, when the data is read, the address

decreases 1. Traditionally, we use the up-down counter

for the implementation of the read/write address

generator. But when the size of the memory is getting

large, the counter will cost large area and the operation

frequency will be reduced. We know that the N stage

linear feedback shift register (LFSR) with primitive

characteristic polynomial can generate 2N-1 patterns (we

can use one NOR-gate to generate the missing pattern).

The LFSR costs the lower area overhead than counter.

However, in order to replace the up-down counter, we

have to use the LFSR to generate the up-down sequence.

Therefore, we use the feature that the external-type LFSR

with the characteristic polynomial generates the opposite

state sequence to the LFSR with reciprocal polynomial to

design the LFSR with up-down sequence. We can prove

it in the following paragraph.

 Mathematically Derivation
Figure 1 shows the general structure of the normal

LFSR. The parameters C0~Cn represent the connection

between the register and external exclusive-or gate.

According to the characteristic polynomial we can decide

where has a connection between the register and external

exclusive-or gate. If there is a connection, the parameter

Ci is 1. Otherwise, the parameter Ci is 0. The parameters

D1~Dn-1 represent the output of the register is from Q or

Q . If it is 0, it means the output of the register is Q.

Otherwise the output of the register is Q .

We assume that the value of register out put is

Q1~Qn. Assume that C0 and Cn are always 1. It means

that there is always a connection in C0 and Cn. We can

derive the state equation over GF(2) as follows:

(Q1)i+1 = {C1*(Q1)i + C2*(Q2)i + … + Cn-1*(Qn-1)i +

mailto:stoneshih@benqms.com

Cn*(Qn)i }*C0+ D1

(Q2)i+1 = (Q1)i + D2

(Q3)i+1 = (Q2)i + D3

(Qn-1)i+1 = (Qn-2)i + Dn-1

(Qn)i+1 = (Qn-1)i + Dn

The state “i” means the current state, and the state “i+1”

means the next state. We can also express the state

equation in the term of the matrix form.

[]nQQQ L21

000
100

010
001

L

L

MOMM

L

L

i+1 = []nQQQ L21

nDL

i *

 + []

−1

2

1

M

n

n

C
C

C
C

DD 21

We define the matrix Qi+1 as []nQQQ L21

nQ

i+1, and

the matrix Qi as [QQ L21

0
1

0
0

M

]

]i, and the matrix C as

 and the matrix D as

. Therefore, the original state function

can be expressed as Q

−

00
00

10
01

1

2

1

L

L

OMMM

L

L

n

n

C
C

C
C

[nDDD L21

i+1 = Qi * C + D. (1.1)

As shown in Figure 2, the structure of the LFSR

with reciprocal polynomial (inverse-type LFSR) has

inverse parameters Cn-1 ~ C0 and D1 ~ Dn-1 to the normal

type. We define the register outputs as Q’1~Q’n. Then, the

state equation of inverse-type LFSR can be derived with

the same method in the following:

(Q’1)i+1 = (Q’2)i + D2

(Q’2)i+1 = (Q’3)i + D3

(Q’3)i+1 = (Q’4)i + D4

(Q’n-1)i+1 = (Q’n)i + Dn

(Q’n)i+1 ={ Cn * [(Q’1)i + D1] + C1 * [(Q’2)i +D2] + C2 *

[(Q’3)i + D3] + … + Cn-2 * [(Q’n-1)i + Dn-1] + Cn-1 * [(Q’n)i

+ Dn] }

={ Cn * (Q’1)i + C1 * (Q’2)i + C2 * (Q’3)i + … + Cn-2 *

(Q’n-1)i + Cn-1 * (Q’n)i } + { Cn * D1 + C1 * D2 + … + Cn-2 *

Dn-1 + Cn-1 * Dn }

We can express the state equation in the term of the

matrix form in the following:

[] i+1nQQQ ''' 21 L = []nQQQ ''' 21 L i *

 +

−1

2

1

100

010
001
000

n

n

C

C
C
C

L

MMOMM

L

L

L

[])*1 nnn DC −** 211 CDCD +++ K(32 nDDD L

We define the matrix Q’i+1 as []nQQQ ''' 21 L i+1, and

the matrix Q’i as []nQ'LQQ '' 21

−1

2

1

n

n

C

C
C
C

M

i, and the matrix C’

as , and the matrix D’ as

100

010
001
000

L

MOMM

L

L

L

[])2 nDD ** 121 nCDC −++K*(1n DC +3 nDD L .

Therefore, the original state function can be

expressed as Q’i+1 = Q’i * C’ + D’ (1.2)

According to the equation 1.1 and 1.2, we consider the

condition when state Qi = Q’i. :

Q’i+1 = Q’i * C’ + D’ = (Qi-1 * C + D)*C’ + D’ = Qi-1 * C *

C’ + D*C’ + D’ (1.3)

We calculate the matrix multiplication of C * C’ and

D*C’ + D’:

C * C’ =

* =

−

000
100

010
001

1

2

1

L

L

MOMMM

L

L

n

n

C
C

C
C

−

n

n

C
C

C
C

000
*100

(*010
(*001

1

2

1

L

L

MOMM

L

L

−1

2

1

100

010
001
000

n

n

C

C
C
C

L

MMOMM

L

L

L

+

+
+

n

n

n

n

C
C

C
C

*
)1

)1
)1

M

(

In our assumption, Cn is always 1. Therefore, C * C’ = I.

D*C’ = [] nDDD L21

−1

2

1

100

010
001
000

n

n

C

C
C
C

L

MMOMM

L

L

L

= [])***(121132 nnnn DCDCDCDDD −+++ KL

= D’

Therefore, D*C’ + D’= D’ + D’ = 0 in GF(2). According

to this calculation, we can reduce the equation 1.3:

Q’i+1 = Qi-1 * C * C’ + D*C’ + D’ = Qi-1 * I + 0 = Qi-1

(1.31)

Equation 1.31 implies that when there is a certain

state makes Q’i equal to Qi, the next state of Q’i will be

equal to the previous state of Qi.

Circuit Design
Figure 3 shows the block diagram of the general

stack. The function of the stack is very simple. It only

contains two main functional blocks. One is memory

module and the other is address generator. The memory

module can be asynchronous or synchronous. We

illustrate the asynchronous memory in this example. The

address generator produces the address for the memory

module according the read/write enable signal.

The primary input of the stack is the data bus

“data_in” and read/write enable. Maybe the read/write

enable signal is decoded from “PUSH” or “POP”

instructions. The users needn’t care which address they

write or read. The operation that users want is to give

“PUSH” instruction and the data will be written into the

memory. In the same way, they give “POP” instruction

to read the latest written data. Therefore, the address

generator is also responsible for address maintenance.

Figure 4 shows the general read/write operation of

the stack. 4(a) shows the write operation of the stack.

When the “data 5” is written into the stack, it will be

stored in the “address 5” of the physical memory. 4(b)

shows the read operation. After the “data 5” is read from

the stack, the pointer will decrease 1 and point to the

“address 4”. Therefore, in 4(c), if we want to read stack

again, the “data 4” store in the “address 4” will be read.

If we use LFSR to be the address generator, the

address will not be in order. Figure 5 shows the operation

of the stack with the new address generator. Although the

sequence of address is not in order, it still can give up

(normal) and down (reverse) sequence. The address

generator is illustrated in Figure 6. The 4-stage LFSR is

used to generate 16 addresses in this example. The

characteristic polynomial is X4+X+1 and the reciprocal

polynomial is X4+X3+1.

In Figure 6, the example of up-down address

generator is proposed. We know that N-stage LFSR can

generate 2N-1 patterns. The NOR-gate is used to generate

the pattern “0” we lack. Under the proposed architecture,

we can generate up-down sequence (not in order) we

want from the register outputs.

There are several reversible components in this

architecture. The detailed circuit of the reversible register

is shown in Figure 7. It uses different direction tri-state

buffers to construct normal and reverse path. When the

signal “up_dn” is 0, the tri-state buffers to the right

direction are asserted. The path begins from the port

“inout_left” to the port “inout_right”. On the contrary,

when the signal “up_dn” is 1, the tri-state buffers to the

left direction are asserted and the tri-state buffers to the

right direction are de-asserted. The path will begin from

the port “inout_right” to the port “inout_left”.

There is the other reversible component – exclusive

or gate (XOR) in Figure 6. The operation principle is as

the same as the reversible register. The detailed circuit is

shown in Figure 8. It has to be mentioned that there is

something different in the “One-way XOR”. There is

only one path through exclusive-or gate and another path

is bypass. Figure 9 shows the “One-way XOR” on the

left side in Figure 6. When the signal “up_dn” is 0, the

path will be through the exclusive-or gate. In Figure 10,

if the path wants to go through the exclusive-or gate, the

signal “up_dn” should be 1.

Therefore, we can consider the circuit of the

up-down sequence LFSR in Figure 6 as two different

circuit configurations under the different value of the

signal “up_dn”. When the signal “up_dn” is 0, we can

consider it as the circuit in Figure 11. It is the normal

LFSR with the characteristic polynomial X4+X+1. If the

signal “up_dn” is 1, it can consider as the LFSR with the

characteristic polynomial X4+X3+1. But as shown in

Figure 12, the definition of the LSB and MSB of the

address is opposite to Figure 11. According to the

mathematical proven previous paragraph, we know that

these two circuits can generate contrary address sequence

to each other. The simulation result is shown in Figure 13.

When the up-down signal changes, the address sequence

becomes reversed to the original.

Conclusion
This paper proposes a method that can generate

read/write address for the stack and LIFO memory by use

the linear feedback shift register. This circuit costs lower

area overhead and can make an encryption to the data

stored in the memory.

Reference:
[1] M. Nicolaidis.V. C. Alves. “Trade-Offs In Scan Path

and BIST Implementations for RAMs”, European Test

Conference, page 169-178, 1993.

[2] Miron Abramovici, Melvin A. Breuer, Arthur D.

Friendman. “Digital System Testing and Testable

Design”, IEEE PRESS.

S

R

Q

Q

D S

R

Q

Q

D S

R

Q

Q

D S

R

Q

Q

D

D1 D2 Dn-1

Characteristic Polynomial

Q1 Q2 Qn-1 Qn

Cn-1

Dn

C0 C1 C2 Cn

Figure 1. Scheme of the Mixed Type Linear Feedback Shift Register (MFSR)

S

R

Q

Q

D S

R

Q

Q

D S

R

Q

Q

D S

R

Q

Q

D

D
n

D
n-1

D
2

Reciprocal Polynomial

Q'n Q'
n-1 Q'2 Q'1 D

1

C0 Cn-1 Cn-2 C1 Cn

Figure 2. Scheme of the MFSR with the Reciprocal Polynomial

Memory
Module

Address
Generator

Stack

data_in
read/write

enable

address

data_out

Figure 3. Functional Block Diagram of the Stack

data 0

data 1

data 2

data 3

data 4

data 5address 5

address 4

address 3

address 2

address 1

address 0

write (PUSH)

(a)

pointer

data 0

data 1

data 2

data 3

data 4

data 5address 5

address 4

address 3

address 2

address 1

address 0

read (POP)

(b)

data 0

data 1

data 2

data 3

data 4address 4

address 3

address 2

address 1

address 0

read (POP)

(c)

Figure 4. The illustration of the general read/write operation of the stack: (a) write one data to the stack (PUSH), (b)

read one data from the stack (POP), (c) after (b), continue to read data for the stack (POP).

data 0

data 1

data 2

data 3

data 4

data 5address C

address 9

address 2

address 4

address 8

address 0

write (PUSH)

(a)

pointer

data 0

data 1

data 2

data 3

data 4

data 5address C

address 9

address 2

address 4

address 8

address 0

(b)

read (POP)

data 0

data 1

data 2

data 3

data 4address 9

address 2

address 4

address 8

address 0

read (POP)

(c)

Figure 5. The illustration of the modified read/write operation of the stack: (a) write one data to the stack (PUSH), (b)

read one data from the stack (POP), (c) after (b), continue to read data for the stack (POP).

Reversible
XOR

Polynomial: up_dn=1:X4+X3+1
 up_dn=0:X4+X+1

R
eversible

R
egister

R
eversible

R
egister

R
eversible

R
egister

R
eversible

R
egister

up_dn

clk

One-Way
XOR

One-Way
XOR

addr[3] addr[2] addr[1] addr[0]

Figure 6. The example of up-down sequence LFSR

S

R

Q

Q

Dinout_left

clk

up_dn

reset

inout_right

reg_out
Figure 7. The illustration of the reversible register

inout_left

up_dn

inout_right

input

Figure 8. The illustration of the reversible XOR

inout_left

up_dn

inout_right

input

Figure 9. The illustration of the One-way XOR on the left side in Fig 6

inout_left

up_dn

inout_right
input

Figure 10. The illustration of the One-way XOR on the right side in Fig. 6

Polynomial: X4+X+1

clk

S

R

Q

Q

DS

R

Q

Q

D S

R

Q

Q

D S

R

Q

Q

D

addr[3] addr[2] addr[1] addr[0]

Figure 11. The architecture of the LFSR when up_dn = 0.

Polynomial: X4+X3+1

clk

S

R

Q

Q

DS

R

Q

Q

D S

R

Q

Q

D S

R

Q

Q

D

addr[3]addr[2]addr[1]addr[0]

Figure 12. The architecture of the LFSR when up_dn = 1

Figure 13. The simulation result of the example in Fig. 6

