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Abstract 

A method and apparatus to generate the read/write 

pointer of the stack or the last in first out memory (LIFO) 

is proposed.  We use the linear feedback register (LFSR) 

to replace the traditional counter to generate the 

read/write address for the stack. Its’ advantage is more 

efficient and costs lower circuit area overhead. Besides, 

due to the pseudo random sequence of the LFSR, we 

make encryption to the data written to the stack (PUSH) 

and the burst error can avoid when we read data from the 

stack (POP). 

 

Introduction 
The stack and the LIFO memory are widely use in 

VLSI design and general digital system design. The 

common feature of the stack and the LIFO memory is 

that the last written data will be first read. Therefore, the 

design philosophy of the address generator of the stack is 

simple. When the data is written, the address increases 1. 

On the contrary, when the data is read, the address 

decreases 1. Traditionally, we use the up-down counter 

for the implementation of the read/write address 

generator. But when the size of the memory is getting 

large, the counter will cost large area and the operation 

frequency will be reduced. We know that the N stage 

linear feedback shift register (LFSR) with primitive 

characteristic polynomial can generate 2N-1 patterns (we 

can use one NOR-gate to generate the missing pattern). 

The LFSR costs the lower area overhead than counter. 

However, in order to replace the up-down counter, we 

have to use the LFSR to generate the up-down sequence. 

Therefore, we use the feature that the external-type LFSR 

with the characteristic polynomial generates the opposite 

state sequence to the LFSR with reciprocal polynomial to 

design the LFSR with up-down sequence. We can prove 

it in the following paragraph. 

 

 Mathematically Derivation 
Figure 1 shows the general structure of the normal 

LFSR. The parameters C0~Cn represent the connection 

between the register and external exclusive-or gate. 

According to the characteristic polynomial we can decide 

where has a connection between the register and external 

exclusive-or gate. If there is a connection, the parameter 

Ci is 1. Otherwise, the parameter Ci is 0. The parameters 

D1~Dn-1 represent the output of the register is from Q or 

Q . If it is 0, it means the output of the register is Q. 

Otherwise the output of the register is Q . 

We assume that the value of register out put is 

Q1~Qn. Assume that C0 and Cn are always 1. It means 

that there is always a connection in C0 and Cn. We can 

derive the state equation over GF(2) as follows: 

 

(Q1)i+1 = {C1*(Q1)i + C2*(Q2)i + … + Cn-1*(Qn-1)i + 
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Cn*(Qn)i }*C0+ D1 

(Q2)i+1 = (Q1)i + D2 

(Q3)i+1 = (Q2)i + D3 

 

 

(Qn-1)i+1 = (Qn-2)i + Dn-1 

(Qn)i+1  = (Qn-1)i + Dn 

 

The state “i” means the current state, and the state “i+1” 

means the next state. We can also express the state 

equation in the term of the matrix form. 
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As shown in Figure 2, the structure of the LFSR 

with reciprocal polynomial (inverse-type LFSR) has 

inverse parameters Cn-1 ~ C0 and D1 ~ Dn-1 to the normal 

type. We define the register outputs as Q’1~Q’n. Then, the 

state equation of inverse-type LFSR can be derived with 

the same method in the following: 

 

(Q’1)i+1 = (Q’2)i + D2  

(Q’2)i+1 = (Q’3)i + D3 

(Q’3)i+1 = (Q’4)i + D4 

 

 

(Q’n-1)i+1 = (Q’n)i + Dn 

(Q’n)i+1  ={ Cn * [(Q’1)i + D1] + C1 * [(Q’2)i +D2 ] + C2 * 

[(Q’3)i + D3] + … + Cn-2 * [(Q’n-1)i + Dn-1] + Cn-1 * [(Q’n)i 

+ Dn ] }  

={ Cn * (Q’1)i + C1 * (Q’2)i + C2 * (Q’3)i + … + Cn-2 * 

(Q’n-1)i + Cn-1 * (Q’n)i } + { Cn * D1 + C1 * D2 + … + Cn-2 * 

Dn-1 + Cn-1 * Dn }  

        

We can express the state equation in the term of the 

matrix form in the following: 
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We define the matrix Q’i+1 as [ ]nQQQ ''' 21 L i+1, and 

the matrix Q’i as [ ]nQ'LQQ '' 21
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Therefore, the original state function can be 

expressed as  Q’i+1 = Q’i * C’ + D’  (1.2) 

 



According to the equation 1.1 and 1.2, we consider the 

condition when state Qi = Q’i. : 

 

Q’i+1 = Q’i * C’ + D’ = (Qi-1 * C + D)*C’ + D’ = Qi-1 * C * 

C’ + D*C’ + D’  (1.3) 

 

We calculate the matrix multiplication of C * C’ and 

D*C’ + D’: 

 

C * C’ = 

* =
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In our assumption, Cn is always 1. Therefore, C * C’ = I. 

D*C’  = [ ]   nDDD L21
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Therefore, D*C’ + D’= D’ + D’ = 0 in GF(2). According 

to this calculation, we can reduce the equation 1.3:  

 

Q’i+1 = Qi-1 * C * C’ + D*C’ + D’ = Qi-1 * I + 0 = Qi-1 

(1.31) 

 

Equation 1.31 implies that when there is a certain 

state makes Q’i equal to Qi, the next state of Q’i will be 

equal to the previous state of Qi.  
 

Circuit Design 
Figure 3 shows the block diagram of the general 

stack. The function of the stack is very simple. It only 

contains two main functional blocks. One is memory 

module and the other is address generator. The memory 

module can be asynchronous or synchronous. We 

illustrate the asynchronous memory in this example. The 

address generator produces the address for the memory 

module according the read/write enable signal. 

The primary input of the stack is the data bus 

“data_in” and read/write enable. Maybe the read/write 

enable signal is decoded from “PUSH” or “POP” 

instructions. The users needn’t care which address they 

write or read. The operation that users want is to give 

“PUSH” instruction and the data will be written into the 

memory. In the same way, they give “POP” instruction 

to read the latest written data. Therefore, the address 

generator is also responsible for address maintenance. 

Figure 4 shows the general read/write operation of 

the stack. 4(a) shows the write operation of the stack. 

When the “data 5” is written into the stack, it will be 

stored in the “address 5” of the physical memory. 4(b) 

shows the read operation. After the “data 5” is read from 

the stack, the pointer will decrease 1 and point to the 

“address 4”. Therefore, in 4(c), if we want to read stack 

again, the “data 4” store in the “address 4” will be read.  

If we use LFSR to be the address generator, the 

address will not be in order. Figure 5 shows the operation 

of the stack with the new address generator. Although the 

sequence of address is not in order, it still can give up 

(normal) and down (reverse) sequence. The address 



generator is illustrated in Figure 6. The 4-stage LFSR is 

used to generate 16 addresses in this example. The 

characteristic polynomial is X4+X+1 and the reciprocal 

polynomial is X4+X3+1.  

In Figure 6, the example of up-down address 

generator is proposed. We know that N-stage LFSR can 

generate 2N-1 patterns. The NOR-gate is used to generate 

the pattern “0” we lack. Under the proposed architecture, 

we can generate up-down sequence (not in order) we 

want from the register outputs. 

There are several reversible components in this 

architecture. The detailed circuit of the reversible register 

is shown in Figure 7. It uses different direction tri-state 

buffers to construct normal and reverse path. When the 

signal “up_dn” is 0, the tri-state buffers to the right 

direction are asserted. The path begins from the port 

“inout_left” to the port “inout_right”. On the contrary, 

when the signal “up_dn” is 1, the tri-state buffers to the 

left direction are asserted and the tri-state buffers to the 

right direction are de-asserted. The path will begin from 

the port “inout_right” to the port “inout_left”. 

There is the other reversible component – exclusive 

or gate (XOR) in Figure 6. The operation principle is as 

the same as the reversible register. The detailed circuit is 

shown in Figure 8. It has to be mentioned that there is 

something different in the “One-way XOR”. There is 

only one path through exclusive-or gate and another path 

is bypass. Figure 9 shows the “One-way XOR” on the 

left side in Figure 6. When the signal “up_dn” is 0, the 

path will be through the exclusive-or gate. In Figure 10, 

if the path wants to go through the exclusive-or gate, the 

signal “up_dn” should be 1.   

Therefore, we can consider the circuit of the 

up-down sequence LFSR in Figure 6 as two different 

circuit configurations under the different value of the 

signal “up_dn”. When the signal “up_dn” is 0, we can 

consider it as the circuit in Figure 11. It is the normal 

LFSR with the characteristic polynomial X4+X+1. If the 

signal “up_dn” is 1, it can consider as the LFSR with the 

characteristic polynomial X4+X3+1. But as shown in 

Figure 12, the definition of the LSB and MSB of the 

address is opposite to Figure 11. According to the 

mathematical proven previous paragraph, we know that 

these two circuits can generate contrary address sequence 

to each other. The simulation result is shown in Figure 13. 

When the up-down signal changes, the address sequence 

becomes reversed to the original.  

 

Conclusion 
This paper proposes a method that can generate 

read/write address for the stack and LIFO memory by use 

the linear feedback shift register. This circuit costs lower 

area overhead and can make an encryption to the data 

stored in the memory.   
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Figure 1. Scheme of the Mixed Type Linear Feedback Shift Register (MFSR) 
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Figure 2. Scheme of the MFSR with the Reciprocal Polynomial 
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Figure 3. Functional Block Diagram of the Stack 
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Figure 4. The illustration of the general read/write operation of the stack: (a) write one data to the stack (PUSH), (b) 

read one data from the stack (POP), (c) after (b), continue to read data for the stack (POP). 
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Figure 5. The illustration of the modified read/write operation of the stack: (a) write one data to the stack (PUSH), (b) 

read one data from the stack (POP), (c) after (b), continue to read data for the stack (POP). 
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Figure 6. The example of up-down sequence LFSR 
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Figure 8. The illustration of the reversible XOR 
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Figure 9. The illustration of the One-way XOR on the left side in Fig 6 
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Figure 10. The illustration of the One-way XOR on the right side in Fig. 6 
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Figure 11. The architecture of the LFSR when up_dn = 0. 
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Figure 12. The architecture of the LFSR when up_dn = 1 

 

 

Figure 13. The simulation result of the example in Fig. 6 

 


