
An Automatic Directives-based Parallel Program Generator on PC
Clusters

Chao-Tung Yang and Wen-Yang Chen

High Performance Computing Laboratory
Department of Computer Science and Information Engineering

Tunghai University
Taichung, 407, Taiwan, R.O.C.
ctyang@mail.thu.edu.tw

Abstract. In this paper, we develop a new tool named Automatic Directives-based Parallel
Program Generator (ADPPG) for transformation from sequential C source code to parallel one
using C with MPI. The main effort in the research is on the parallelism of loops for almost all
parallelisms occur in loops. We also introduce loop partitioning into our system. Our system is
very straightforward with the technique of message-passing behavior analyzer which is easy to
understand but effective. The performance is evaluated and the comparison between ADPPG and
hand-rewritten is shown in experimental results. It could be a general-purpose tool to speedup
parallel programming or port current sequential programs to parallel architectures. Especially for
a beginner to parallel programming, it is a recommended tool to learn more about programming
with MPI and more knowledge of loop partitioning.

Key words: PC Clusters, MPI, automatic parallel programming, parallel code generator

1. Introduction

The computation needed in science field is getting more and more heavier. From the top500 report
[1], clustering architecture is believed that it will be the main stream of computation. It is one of the
parallel computer platforms with high scalability, high availability and low cost/performance ratio.
For these characteristics, clusters are easy to get even self-made for many laboratories performing
experiments which taking great part of computation like N-body problem, DNA sequence simulation,
weather prediction, nuclear simulation, high-energy physics, etc.

Roughly speaking, there are three types of parallel architecture: Shared-Memory Multiprocessor
System, Distributed-Memory Multiprocessor System and Clustering System. Within Shared-Memory
Multiprocessor System, “one computer” contains not only one processor and each processor shares
the same memory by system bus. In other words, all processors have the same memory address
space. Sometimes we also call it SMP (Symmetric Multiple Processors). The advantage is all
processors share all data such that the communication between each other is very convenient. But it
causes some problems of memory sharing: when more than one processor requires writing to
memory in the same time, which is first? How many processors can access data in the same memory
address concurrently? All these are very complex. Another problem is its scalability is restricted to
the system bus bandwidth.

Within Distributed-Memory Multiprocessor System, “one computer” contains many processors
but each has its own local memory. We can say this system has many processor modules (processor
plus local memory). It is so called MPP (Massively Parallel Processors). When communication is
needed, they can pass message between each other, of course the network between each module is

system bus. It is not such convenient for a programmer to write parallel programs when compared
with using SMP system. But it has high scalability.

The third type is cluster of PCs/Workstations [2, 3, 4]. Many individual PCs/Workstations, in
general they are the some type of system architecture, are connected by high-speed network as shown
in Fig. 1. As we mentioned, it has high scalability, high availability and low cost/performance ration.
We can use message-passing languages to achieve parallel programming in cluster systems. It is
getting more and more popular for many laboratories for affordable price.

System Bus

Shared
Memory

Network
Device

Storage
Device

I/O Bus

CPU
Cache

CPU
Cache

System Bus

Shared
Memory

Network
Device

Storage
Device

I/O Bus

CPU
Cache

CPU
Cache

System Bus

Shared
Memory

Network
Device

Storage
Device

I/O Bus

CPU
Cache

CPU
Cache

H
ig

h
S

pe
ed

 N
et

w
or

k

System Bus

Shared
Memory

Network
Device

Storage
Device

I/O Bus

CPU
Cache

CPU
Cache

Fig. 1. A typical PC Clusters

In message passing, a programmer can achieve parallel programming by three approaches. First,
using a new parallel programming language. Second, extending an existing sequential language to
handle message passing. Third, using an existing sequential language with a library of external
functions for message passing. The third option is the most popular approach being used with one of
two specific systems, PVM (Parallel Virtual Machine) [5] or MPI (Message Passing Interface) [6].
Our final aim is to build a parallelizing compiler to convert a program written in C into a parallel
program using C with MPI. The first step to our parallelizing compiler is to develop a system that
generates a parallel C program with MPI. It can be a general-purpose tool. Especially, for a beginner
to parallel programming, it is a recommended tool to learn more about programming with MPI and
more knowledge of loop partitioning.

The remainder of the paper is organized as follows. In Section 2, some background knowledge
about parallelization is presented. In Section 3, details about our system will be given. In section 4,
some case studies of experimental results will be shown. The comparison of different methods is also
included. Finally, in section 5, we present the conclusions and indicate where our ongoing effort
concentrates on.

2. Background

2.1. MPI

MPI [6] is a proposed standard. Before MPI, there were many message-passing libraries offered by
different vendors of parallel computing systems. It was a big problem of portability. The user
community determined to address this problem. The first MPI Standard was completed in 1994.

MPI is a message-passing application programmer interface with protocol and semantic
specifications for how its features must behave in any implementation (such as a message buffering
and message delivery progress requirement). MPI includes point-to-point message passing and
collective (global) operations. These are all scoped to a user-specified group of processes. MPI
provides a substantial set of libraries for the writing, debugging, and performance testing of
distributed programs. The implementation of our laboratory is LAM/MPI [4], a portable
implementation of the MPI standard developed cooperatively by Notre Dame University. LAM
(Local Area Multicomputer) [7] is an MPI programming environment and development system and
includes a visualization tool that allows a user to examine the state of the machine allocated to their
job as well as provides a means of studying message flows between nodes.

It defines syntax and semantics of message-passing routines that would be useful to a wide range
of parallel systems. It is a library, not a language. It is a specification, not a particular
implementation. Since all implementations follow MPI Standard, they have high portability.

2.2. Data Dependence

Data dependence1 [8] is said to exist between two statements S1 and S2 if there is an execution path
from S1 to S2, if both statements access the same memory location and if at least one of the two
statements writes the memory location. There are three types of data dependences: True (flow)
dependence occurs when S1 writes a memory location that S2 later reads. Anti-dependence occurs
when S1 reads a memory location that S2 later writes. Output dependence occurs when S1 writes a
memory location that S2 later writes.

If these dependences exist between statements in the same iteration, they are called loop-
independent dependences. If these dependences exist between statements in different iterations, they
are called loop-carried dependences. There are two types of loop parallelism in parallelizing
compilers, DOALL and DOACROSS loops, respectively. A loop can be transformed into a DOALL2
loop validly if it contains no loop-carried dependence (LCD). If there are LCDs between different
iterations, then the loop can be transformed into a DOACROSS loop. All the iterations of a
DOACROSS loop can be executed in parallel like a DOALL loop, but synchronization instructions
are inserted to preserve the dependence relation. Otherwise, if there is a dependence cycle, then the
loop may be executed sequentially, like a DO loop.

In our system, we only present DOALL and it is user’s responsibility to find out data dependence.
If there exists no data dependence between S1 and S2, they can be executed simultaneously and the
user can bracket them with directives predefined for parallelism. Generally speaking, we concentrate
mainly on loop parallelism with no LCDs.

1 Data dependence is normally defined with respect to the set of variables which are used and modified by a statement, denoted by the

In/Out sets.
2 All iterations of a DOALL loop can be executed in parallel to achieve high speedup in multiprocessor systems.

2.3. Loop Partitioning

If a loop can be executed in parallel, we want to break this loop down into a set of tasks on different
processors. As we know, task granularity, which is an important issue in loop partitioning, heavily
influences load balancing. Therefore, a good loop-partitioning algorithm will achieve better load
balancing with only a small overhead. Currently, there are several loop-partitioning methods
available in different loop scheduling algorithms, for example, SS, GSS, CSS, Factoring, and TSS [9,
10, 11, 12, 13, 14].

Assume that the number of processors available is P, the number of iterations of the DOALL loop
is n, and the size of ith partition is Ki. Formulas for calculating Ki in different algorithms are listed in
Table 1, where the CSS/k algorithm partitions the DOALL loop into k equal-sized chunks. Table 2
gives sample partition sizes for SS, CSS(125), CSS/4, GSS, Factoring, and TSS(88, 12) when N =
1000 and P = 4.

Table 1. Margin specifications

Scheme Formulas
SS Ki=1
CSS(k) Ki=k
CSS/λ Ki=N/λ
GSS Ki=Ri/P,R0=N, Ri+1= Ri- Ki
Factoring Ki=(1/2)┌i/P┐×N/P
TSS(f,l) Ki=f – i ×δ, I=2N/(f+l), δ=(f-l)/(I-1)

Table 2. Simple examples

Scheme N=1000 and P=4
SS 1 1 1 1 1 1 1 1 1 1 1 1 1⋯
CSS(125) 125 125 125 125 125 125 125 125
CSS/4 250 250 250 250
GSS 250 188 141 106 79 59 45 33 25 19 14 11 8 6

4 3 3 2 1 1 1 1
Factoring 125 125 125 125 62 62 62 62 32 32 32 32 16

16 16 16 8 8 8 8 4 4 4 4 2 2 2 2 1 1 1 1
TSS(88,12) 88 84 80 76 72 68 64 60⋯12

What we have mentioned above is dynamic loop partitioning. We must emphasize here that there

are some differences between loop partitioning and loop scheduling. One partition has to be mapped
to a processor; since there is no scheduler, we have to simulate a scheduler in generated programs.
We will leave it as the future work. An alternative is static scheduling. The number of chunks equals
the number of processors. There are two static loop scheduling methods: block and cyclic [15]. It is a
tradeoff between locality and workload distribution. As method of block assigns a block of
continuous iterations to one processor, method of cyclic assigns an amount of cyclic iterations to one
processor. Simple examples are shown in Table 3. ADPPG implemented with static scheduling only,
and the default is block scheduling.

Table 3. Simple examples of block and cyclic scheduling

Scheme N=1000 and P=4
Block Processor 1: 1 2 3 4 5 6 7 ⋯ 250

Processor 2: 251 252 253 ⋯ 500

Processor 3: 501 502 503 ⋯ 750
Processor 4: 751 752 753 ⋯ 1000

Cyclic Processor 1: 1 5 9 13 ⋯ 993 997
Processor 2: 2 6 10 14 ⋯ 994 998
Processor 3: 3 7 11 15 ⋯ 995 999
Processor 4: 4 8 12 16 ⋯ 996
1000

2.4. Communication Model

Communication model analysis is very important in translating sequential codes to parallel. Different
models have different send/receive patterns. In [16], McGarvey et al. classified four categories of
point update methodology: Independent, Nearest Neighbor, Quasi-Global and Global. The most we
care is whether communication occurs among all processors. We simplify the classification into three
types: Independent, Semi-Global, and Global as shown in Fig. 2.

Algorithm

(a) Independent

Algorithm

(c) Global

Algorithm

(b) Semi-Global

Fig. 2. Communication Models

Each node (processor) executes some algorithms and depends on previous data. If the data
required comes from itself, it is Independent. It commonly referred to as “embarrassingly parallel”,
such as calculating the value of PI, Mandelbrot set, and matrix manipulations, etc. If the data comes
from some of others, it is Semi-Global. This kind of communication model complicates the mapping
from sequential to parallel, because we have to parse the semantics more precisely to get more
information about passing messages to which nodes. So far we have few idea but some loop carried
dependence distance directives about it. We will leave it as future efforts. Jacobi Iteration with data
dependence distance vectors (-1, -1), (-1, 1), (1, -1) and (1, 1) belongs to this model. Otherwise, the
data comes from all others and it is Global. One such communication model is all-pairs shortest path
problem.

3. Design Approach

3.1. System Model

ADPPG is an automatic directive-based code generator that translates a sequential source code to
parallel one, as shown in Fig. 3. A source C program with directives, as example source code shown
in Fig. 4, is fed to ADPPG. The directives we define are listed in Table 4. The source C program is
not full version of C but a subset of it. Pointers and indirect array references are excluded for two
reasons. First, it is not easy to parse these data structures. Second, it is difficult to implement sending

messages of these data types. So only subset of C is provided. As mentioned in other papers, it is not
easy to detect data dependence upon these data structures. But this is not our emphasis.

Pass Two:
Kernel

Pass One:
Directives

Preprocessor

Loop Partition

MPISource

Send/Receive
Patterns

Fig. 3. ADPPG architecture

Fig. 4. A source code example

Table 4. Directives for parallelism

/* DOALL_BEGIN P=XXX */ Indicating ADPPG the following block will be parallelized.
P stands for loop partition option. ADPPG now implements
only static partitioning: BLK for block, CYC for cyclic. For
the future version, CSS, GSS, FSS, TSS are reserved.

/* DOALL_END */ Enclose the block that will be parallelized respective to
DOALL_BEGIN

/* DISTANCE par(X, X…) */ Indicating ADPPG the distance vector of variable par

Our system uses two-pass technology. Pass One parses the semantics and analyzes the
communication models of blocks enclosed with DOALL_BEGIN and DOALL_END directives. Pass
Two mainly concentrates on loop parallelism and it will take loop-partitioning options into
consideration. When parallelizing loops, Pass Two will take communication models analyzed by Pass
One as information to map sequential behavior to send/receive patterns. After all, it will generate
codes using C with MPI. We will discuss detail algorithms more clearly in the following.

3.2. Pass One

Pass One will parse semantics of the program including distinguishing the master and slaves, parsing
loop iterations, detecting message-passing behavior between two blocks and detecting
communication models.

Pass One is block oriented. The source program will be separated into several blocks according to
DOALL loops. In other words, a DOALL loop is a breaking point. Each DOALL loop is a block, and
each segment between two DOALL loops is also a block. Each block is indexed with an integer
number starting with 1. The non-DOALL blocks excluding variable declaration parts only belong to
the master. Other parts of the source program belong to both the master and slaves. The parts of the
master will be enclosed with if (adppg_rank == 0) control flows with an error handling mechanism
that ensures all processes exit at the same time.

Iteration information of DOALL loops will be recorded and later used for loop partitioning. How
many DOALL loops are there? What are the loop iteration variable name, lower bound and upper
bound? All these will be recorded. To reduce synchronization, only the outer loop will be
parallelized. The following structure is introduced to store loop iteration information.

typedef struct{
 char name[128];
 char begin[128];
 char end[128];
 char step[128];
} ForIterator;

If we have a statement: for (i=0; i<N; i=i+1), for example, we will record name=i, begin=0, end=N
and step=1. The goal of recording iteration information is to calculate its space, and according to our
record, the space is “N-0” which will be calculated in compile time (N is a constant) or run time (N is
a variable). If the step is 1, it is block scheduling. Otherwise, it is cyclic scheduling.

A def-use symbol table will be established for analyzing message-passing behavior. Each item in
the table contains three fields: name tuple, def-chain tuple, use-chain tuple. The definition is
described in Table 5.

Table 5. Tuple used in def-use symbol table

tuple name(η, α) def-chain(β, δ) use-chain(β, δ, ρ)

definitio
n

η: variable name

α:

otherwise
arrayanisnif

 ,0
 ,1

β: block index

δ:

 ,0
 ,1

otherwise
blockDOALLinsideif

β: block index

δ:

 ,0
 ,1

otherwise
blockDOALLinsideif

ρ:

otherwise
blocktheinparsedfirstif

 ,0
 ,1

To maintain the def-use symbol table, there are some rules: Given a variable η
1. if η is new to the table, create an item to the table, field of name tuple is (η, α)
2. if η is defined (write to η), add (β, δ) to def-chain field
3. if η is used (read from η) and ((β, δ, ρ) or (β, δ, 0)) not in use-chain field, add (β, δ, 1)

For example, a source code is given and shown in Fig. 5. After parsing S1 to S6, the def-chain
symbol table will be built as shown in Table 6. Iterations will not be added to the table since they are
recorded in another data structure for further loop partitioning.

Fig. 5. Code segment of Matrix Multiplication

Table 6. Def-use symbol table

 name field

def-use field
(c, 1) (a, 1) (b, 1)

def-chain
(1, 0)
(2, 1)

use-chain
(2, 1, 1)
(3, 0, 1)

(2, 1, 1) (2, 1, 1)

We will check the table for message-passing behavior and further communication models. If in the

same block, there exists a use-chain tuple(β, δ, 1), it uses data in the previous block. In other

words, sending data from previous block to current block is required.
Followed is a detecting communication model. Assume a variable η is inside DOALL, if there

exists no η is an array, the DOALL belongs to Independent. If there exists an array variable η, and

there exists tuples of def-chain and use-chain of the same DOALL block, data exchange inside the
DOALL may occur. Analysis of iteration dimension space should be taken. We do not unroll
iteration space but dimension space ofη. The same technology of iteration space, if two nodes in the

space have no relation between each other, it is message-independent. Otherwise, it is message-
dependent. If there exists no message-independent, the DOALL belongs to Independent
communication model. If some nodes, not all, in one dimension are message-dependent, the DOALL
belongs to Semi-global. If all nodes are message-dependent in at least one dimension, the DOALL
belongs to Global. Of the Global communication model, the message-dependent dimension
determines the amount of message should be exchanged. Data only in the message-dependent
dimension should be exchanged. If the DOALL is a nested-loop, the loop structure should be
reconstructed. The loop controls the message-dependent dimension should be moved to be the outer
loop. This approach is effective though easy to understand.

3.3. Pass Two

Pass Two mainly concentrates on DOALLs. The MPI function calls used in our system is listed in
Table 7. We will take matrix multiplication shown in Fig. 5 as an example. Since there exist use-
chain tuple(β, δ, 1), two arrays (a and b) will be sent to slaves. Following is a loop partitioning

function according to loop partitioning option. After that, we have to change the iteration control
values in the following for statement. Different communications models have different send/receive
patterns. The patterns will be taken into consideration to perform properly send/receive behavior. The
code will be generated is shown in Fig. 6.

Table 7. MPI function calls used

Name Functionality
MPI_Init Start up MPI
MPI_Finalize Shut down MPI
MPI_Comm_rank Return the rank of calling process
MPI_Comm_size Return the size of communicator relative to calling

process
MPI_Send Send data to destination process
MPI_Recv Receive data sent by source process
MPI_Bcast Send data to every process

Fig. 6. Matrix Multiplication after Pass Two

4. Experimental Results

4.1. Our System Environment

Our SMPs cluster is a low cost Beowulf class supercomputer that utilizes a multi-computer
architecture for parallel computations. The Parallel Testbed consists of two PC clusters. One is used
for parallel computing, the other is used for high available application. For parallel computation
portion, the snapshot of our cluster that consists of 8 PC-based symmetric multiprocessors (SMP)
connected by two 24-port 100Mbps Ethernet SuperStackII 3300 XM switches with Fast Ethernet
interface.

There are one server node and fifteen computing nodes. The server node has two Intel Pentium-III
1GHz (FSB 133MHz) processors and 768MBytes of shared local memory. Each Pentium-III has 32K
on-chip instruction and data caches (L1 cache), a 256K on-chip four-way second-level cache with
full speed of CPU. Each P-III-based computing node with two 1G P-III processors has 512MBytes of
shared local memory. We conduct four case studies as our experiments.

4.2. Experiments

Four study cases are considered to measure the correctness and performance. The first three study
cases are: matrix multiplication, prime number detection, and mandelbrot set. They all belong to
“Independent” communication model but behave a few different to each other. Since they are
Independent, they do not have to communicate to each other while doing computation. The last study
case is: all pairs shortest path. It belongs to “Global” communication model. Each processor has to
use data from all other processors to update its own data. For each case, we have three versions of
program: sequential, ADPPG generated, and hand-rewritten. Experiments are applied on various
numbers of iteration with various numbers of processors. Finally the comparison between using our
ADPPG and hand-rewritten is given.

The execution time is shown in Table 9 and Table 10 followed by the speedup shown in Fig. 7.
From the comparison of experimental results, hand-rewritten optimized codes perform more efficient
than ADPPG generated codes. Analyzing codes of these different approaches, there are two main
reasons cause the difference. First, the mechanism of handling errors of blocks belonging to master
reduces the performance. Second, as we all know, collective communications have better
performance than point-to-point ones. But in our ADPPG, it generates codes using point-to-point
behavior. These will be taken into consideration for optimization of future ADPPG version.

4.3. Comparison

As shown in the above experimental results, we can have a comparison of our Automatic Directive-
based Parallel Program Generator (ADPPG) and hand-rewritten optimized approach. The comparison
is summarized in Table 8.

Table 8. Comparison of ADPPG and hand-rewrittend approach

Approach Time/Effort Performance Portability applicability

Hand-
rewritten

Extensive code
modifications required
Time consuming and error
prone

Excellent when
implementation is
adjusted to the
problem and
optimized to parallel
environment

Dependent
on
portability
of standards
(eg, MPI,
PVM)

Applicable to any
code

ADPPG

Annotation required
(directives for parallism
and parameters for
scheduling methods for
performance)

Completely dependent
on program
communication
models;
If communication
model is independent,
it is excellent when

ADPPG is
based on
MPI
standard,
portability
is not the
problem

Cannot handle
structure, pointer ,
indirect array
reference and loop
carried dependence

user tunes the code
well

5. Conclusions and Future Work

We provide beginners a good learning tool to parallel programming with MPI. Users can use our
system to generate parallel codes from sequential ones and can look closer to the relation between
sequential and parallel codes. Moreover, they can also learn how to implement loop partitioning.
Since the generated parallel codes’ performance are not much worse than the optimized codes, it is
also a good tool to speedup the solving step or port current applications to parallel architectures with
MPI implementation.

One of our future works is to implement dynamic scheduling into our system, and the users will
have more choices to tune generated codes to adjust their environments (homogeneous or
heterogeneous). Another work is to use SUIF [17] to re-implement our system and using our
technique of message-passing behavior analyzer to improve its loop transformation. Of course, the
code optimization is the most important work in the near future. We will improve send/receive
behavior for different communication models, and use the technology described in [18] to reconstruct
point-to-point interaction to collective communication.

References
[1] http://www.top500.org, TOP500 Supercomputer Sites.
[2] T. L. Sterling, J. Salmon, D. J. Backer, and D. F. Savarese, “How to Build a Beowulf: A Guide

to the Implementation and Application of PC Clusters”, 2nd Printing, MIT Press, Cambridge,
Massachusetts, USA, 1999.

[3] B. Wilkinson and M. Allen, “Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers”, Prentice Hall PTR, NJ, 1999.

[4] R. Buyya, High Performance Cluster Computing: System and Architectures, Vol. 1, Prentice
Hall PTR, NJ, 1999.

[5] http://www.epm.ornl.gov/pvm/, PVM – Parallel Virtual Machine.
[6] http://www-unix.mcs.anl.gov/mpi/, The Message Passing Interface (MPI) standard
[7] http://www.lam-mpi.org, LAM/MPI Parallel Computing.
[8] M. Wolfe, “High-Performance Compilers for Parallel Computing”, Addison-Wesley

Publishing, NY, 1996.
[9] C.T. Yang, S.S. Tseng, Y.W. Fan, T.K. Tsai, M.H. Hsieh, and C.T. Wu, “Using Knowledge-

based Systems for research on portable parallelizing compilers,” Concurrency and
Computation: Practice and Experience, vol. 13, pp. 181-208, 2001.

[10] S. F. Hummel, E. Schonberg and L. E. Flynn, “Factoring: A method for scheduling parallel
loops,” Communication of ACM, Vol. 35, No. 8, 1992, pp. 90-101.

[11] C. P. Kruskal and A. Weiss, “Allocating independent subtasks on parallel processors”, IEEE
Transactions on Software Engineering, Vol. 11, No. 10, 1985, pp. 1001-1016.

[12] C. D. Polychronopoulos and D. J. Kuck, “Guided self-scheduling: A practical self-scheduling
scheme for parallel supercomputers”, IEEE Transactions on Computer, Vol. 36, No. 12, 1987,
pp. 1425-1439.

[13] T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: A practical scheduling scheme for
parallel compilers”, IEEE Transactions on Parallel Distributed Systems, Vol. 4, No. 1, 1993,
pp. 87-98.

[14] P. Tang and P. C. Yew, “Processor self-scheduling for multiple-nested parallel loops”, in
Proceedings of the 1986 International Conference on Parallel Processing 1986, pp. 528-535.

[15] H. Li, S. Tandri, M. Stumm and K. C. Sevcik, “Locality and loop scheduling on NUMA
multiprocessors”, in Proceedings of the 1993 International Conference on Parallel Processing,
Vol. II, 1993, pp. 140-147.

[16] B. McGarvey, R. Cicconetti, N. Bushyager,E. Dalton, “Beowulf Cluster Design for Scientific
PDE Models”, http://www.athena-em.atech.edu/Beowulf/index.html

[17] http://suif.stanford.edu, The Stanford SUIF Compiler Group.
[18] Beniamino Di Martinoa, Antonino Mazzeob, Nicola Mazzoccaa,Umberto Villanoc, “Parallel

program analysis and restructuring by detection of point-to-point interaction patterns and their
transformation into collective communication constructs”, Science of Computer Programming,
vol. 40, pp.235-263, 2001.

Table 9. Execution time of Matrix Multiplication and Prime Number Detection

Matrix Multiplication Prime Number Detection

256*256 512*512 1024*1024 1000000 10000000 100000000

sequential 1 1.494 20.819 170.530 1.178 29.566 780.085

2 1.456 13.088 102.410 1.128 15.552 393.220

4 1.382 7.616 55.337 0.845 8.258 202.569

8 1.166 4.989 31.490 0.719 4.407 101.564
ADPPG

16 1.355 6.223 25.161 0.646 2.508 51.096

2 1.515 12.136 101.545 1.128 15.619 393.854

4 1.326 7.265 56.811 0.837 8.273 202.532

8 1.136 4.893 31.352 0.724 4.405 101.579
hand-rewritten

16 1.195 5.596 22.891 0.645 2.508 51.086

Table 10. Execution time of Mandebrot Set and All Pairs Shortest Path

Mandelbrot Set All Pairs Shortest Path

iteration:
1000

 grid:
1024

iteration:
1000

 grid:
2048

iteration:
1000

 grid:
4096

512 1024 2048

sequential 1 4.945 19.764 79.037 5.266 41.422 329.319

2 3.425 11.057 41.152 3.580 24.230 186.800

4 3.728 11.723 42.829 2.649 15.233 107.029

8 3.289 9.919 35.639 2.127 10.676 65.412
ADPPG

16 3.709 6.256 21.720 2.600 10.079 53.090

2 3.070 10.739 43.301 3.584 1.716 187.210

4 3.304 11.500 44.868 2.430 2.866 103.768

8 2.924 10.016 38.153 1.936 4.216 62.204
hand-rewritten

16 2.114 6.588 26.913 2.192 4.684 46.731

domain

problem size

processors

domain

problem size

processors

Fig. 7. Speedup of case studies

(a) matrix size: 256*256

0.0

0.5

1.0

1.5

2 4 8 16

ADPPG Hand-rewritten

(b) matrix size: 512*512

0.0

2.0

4.0

2 4 8 16

ADPPG Hand-rewritten

(c) matrix size: 1024*1024

0.0

2.0

4.0

6.0

8.0

2 4 8 16

ADPPG Hand-rewritten

(a) Matrix Multiplication

(a) data size: 1000000

0.0

0.5

1.0

1.5

2.0

2 4 8 16

ADPPG Hand-rewritten

(b) data size: 10000000

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0

2 4 8 16

ADPPG Hand-rewritten

(c) data size: 100000000

0.0
3.0
6.0
9.0

12.0
15.0

2 4 8 16

ADPPG Hand-rewritten

(b) Prime Number Detection

(a) iteration: 1000 grid: 1024

0.0
0.5
1.0
1.5
2.0
2.5

2 4 8 16

ADPPG Hand-rewritten

(b) iteration: 1000 grid: 2048

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

2 4 8 16

ADPPG Hand-rewritten

(c) iteration: 1000 grid: 4096

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

2 4 8 16

ADPPG Hand-rewritten

(c) Mandelbrot Set

(a) city number: 512

0.0
0.5
1.0
1.5
2.0
2.5
3.0

2 4 8 16

ADPPG Hand-rewritten

(b) city number: 1024

0.0
1.0
2.0
3.0
4.0
5.0

2 4 8 16

ADPPG Hand-rewritten

(c) city number: 2048

0.0

2.0

4.0

6.0

8.0

2 4 8 16

ADPPG Hand-rewritten

(d) All-Pairs Shortest Path

