
 1

Workshop on Computer Networks

Reaching Fault Detection Agreement

K.Q. Yan S.C. Wang C.F. Cheng

Department of Business
Administration

Department of Information
Management

Department of Information and
Communication of Engineering

kqyan@mail.cyut.edu.tw scwang@cyut.edu.tw s9027601@mail.cyut.edu.tw

Chaoyang University of Technology
168 Gifeng E. Rd., Wufeng,

Taichung County, Taiwan 413, R.O.C.
TEL: 886-4-2332-3000 ext. 3071

Fax: 886-4-2374-2319

ABSTRACT

Siu, Chin and Yang proposed the protocol GPBA to solve the Byzantine Agreement (BA) problem in

the presence of mixed faults on the processors and links in the general network. Subsequently, they proposed

the FDAMIX protocol to solve the Fault Diagnosis Agreement (FDA) with mixed faults on the processors.

However, they could not solve the FDA problem with mixed faults on the links. In this study, we shall

propose a new protocol FDAL to solve the FDA problem with mixed faults on the links. That is, FDAL can

detect/locate the faulty links to reconfigure the unreliable general network into a reliable general network and

increase the performance, making sure of the integrity of the network.

Keywords: Byzantine agreement, fault diagnosis agreement, fault-tolerance, distributed system, mixed fault

model.

 2

I. INTRODUCTION

The reliability of the distributed system has become more and more important nowadays as a result of

the growth of the Internet. The Byzantine Agreement (BA) [2,4,5,6,7,10,11,12,13,14] is one of the most

important problems in designing a fault-tolerance distributed system. Under many circumstances, a fault-free

processor in a distributed system can reach an agreement before performing some unique tasks [1,2,3]. For

example, a well-known form of the problem is the transaction commit problem [3]. The problem is for all the

data manager processors that participate in the processing of a particular transaction to agree on whether to

record the results of transaction in the database or to discard them.

Another related problem is the Fault Diagnosis Agreement (FDA) problem [5,12]. The FDA is used to

make each fault-free processor detect/locate all faulty components in the network. That is, if the FDA can be

achieved, then each fault-free processor can identify all the faulty components in the network and ignore the

influence from faulty components. So, the performance and integrity of a distributed system can be

guaranteed.

In many previous studies [11], the BA problem has been visited in a general network [5,7,10,11] in the

mixed fault model [5,7,10,11] (namely both arbitrary faults and dormant faults are present) on processors and

links. Subsequently, the protocol FDAMIX [5] was proposed to solve the FDA problem with mixed faults on

the processors. However, it cannot solve the FDA problem in the general network with mixed faults on the

links.

The reliability of the connection state of the network is also an important topic in designing the

distributed system because, if the connection state of the network is stable, we can transmit the message

correctly and on time without faulty influences. On the contrary, if the connection state of the network is not

reliable, then the message can possibly be influenced by the faulty links, getting changed and being not able

to arrive on time.

The symptoms of faults on the links can be classified into three categories: crash faults, stuck-at faults,

and arbitrary faults (also called Byzantine faults) [14]. A crash fault takes place when a link is broken. A

stuck-at fault happens when the message received from a certain link is always a constant value. Finally, a

link with the arbitrary fault is one whose behavior is unrestricted and arbitrary, so it causes the worst problem.

A fault-free link can transmit messages on time and correctly, but the message which is transmitted by a

faulty link may be changed or delayed. Fault-free processors can easily detect crash and omission faults if

 3

the protocol appropriately encodes a transmitted message by either the Non-Return-to-Zero code or the

Manchester code [9,14] before transmission, so we call them dormant faults. However, with arbitrary faults,

things can by no accounts be so easy.

In this study, we shall propose two new protocols, the Fault Diagnosis Agreement on Link (DFAL) and

the Virtual Relay Fault-tolerance Channel (VRFC), to solve the FDA problem with mixed faults on the links

if it meets the following constraints:

(Agreement): All the fault-free processors identify the common set of faulty links in the process of

reaching consensus.

(Fairness): No faulty link is falsely detected as fault-free by any fault-free processor, and no

fault-free link is falsely detected as faulty by any fault-free processor.

The rest of this paper is organized as follows. Section Ⅱ will provide the detailed descriptions of our

new protocols DFAL and VRFC. Then, in Section Ⅲ, we shall give an example of executing DFAL and

VRFC. Section Ⅳ will serve to analyze the correctness of our protocols. Finally, in Section Ⅴ, we shall

draw our conclusion and discuss our future work.

II. THE PROPOSED PROTOCLS

In this section, the proposed protocols FDAL and VRFC will be introduced to solve the FDA problem

with mixed faults on the links in a general network. The assumptions and parameters of our protocols are

listed as follows:

� The processors of the underlying network are assumed to be fault-free. (This can be achieved by

using protocol FDAMIX [5].)

� Let Þ be the set of all the processors in the general network, and  Þ  =n.

� Each processor in the network can be unique identified.

� Each processor in the general network has the same initial value. (This can be achieved by using

protocol GPBA [11].)

� Let La be the maximum number of arbitrary faulty links in the general network.

� Let Ld be the maximum number of dormant faulty links in the general network.

 4

� Let c be the connectivity of the general network, where c > 2La+ Ld.

� A processor does not know the fault status of the links in the general network, but the dormant

faulty links can be detected [9,14].

DFAL can detect/locate La arbitrary faulty links and Ld dormant faulty links in the general network,

where c > 2La+ Ld. Before executing DFAL, we must execute GPBA and FDAMIX first. Because, after

executing GPBA and FDAMIX, we can ensure that the general network does not have arbitrary faulty

processors and dormant faulty processors, and each fault-free processor in the general network can reach a

common value. The commonly agreed value by GPBA can be used as the initial value of each fault-free

processor in the general network for executing DFAL.

There are four phases in our protocol DFAL, and they are the message exchange phase, the fault

diagnosis phase, the result exchange phase, and the reconfigure phase. The number of rounds of message

exchange needed is only two (one round for transmitting the initial value and the other round for transmitting

the fault diagnosis report). The detailed definition of proposed protocol DFAL is shown in Figure 1.

2.1 The Message Exchange Phase

In the message exchange phase, each processor Pi has the same initial value from GPBA. Then each

processor Pi transmits the initial value vi to all the other processors through links and receives the value vj

from processor Pj, for 1≤ i,j ≤ n, to construct the vector Vi = [v1, v2,…, vj,…, vn]. If no connected link, say il,

can be found, then vl=ϕ. If a dormant faulty link, say ik, is found, then vk = λ. After message exchange in the

message exchange phase, each processor in the general network can receive the partial messages because the

network is not fully connected. As a result, most of the processors cannot get the whole messages from all

the other processors.

2.2 The Fault Diagnosis Phase

In the fault diagnosis phase, each processor Pi searches each value in the vector Vi, where 1≤ i ≤ n. If the

value vk in the vector Vi is λ, then the link between ik is a dormant faulty link, for 1≤ k ≤ n. Therefore, by step

1 in the fault diagnosis phase, we can detect/locate the dormant faulty link. Then, search each value in the

 5

vector Vi, where 1≤ i ≤ n. If the value vk in the vector Vi is not the agreed-upon value from GPBA and not λ

or ϕ either, then the link between ik is an arbitrary faulty link, for 1≤ k ≤ n. By step 2 in the fault diagnosis

phase, we can detect/locate the arbitrary faulty link. Due to the fact that the network is not fully connected,

we need the third phase, namely the result exchange phase, to get the Link Fault Diagnosis Report (LFDR) in

unanimity.

2.3 The Result Exchange Phase

In the result exchange phase, we need to introduce a modified transmitting protocol, our Virtual Relay

Fault-tolerance Channel (VRFC) inspired by the concept of virtual link by F.J. Meyer and D.K. Pradhan [7].

Using VRFC, we can make an un-fully connected network work just like a fully connected network. The

detailed definition of VRFC is shown in Figure 2.

For example, in Figure 3(a), there is a general network with six processors, and the connectivity of the

network is four. The connection state of processor P1 and processor P2 is shown in Figure 3(b). If processor

P1 wants to transmit a message to processor P2, it can match the node-disjoint path as shown in Figure 3(c)

by node-disjoint rule [8] (each intermediate processor on these c paths should not be passed through more

than once). So, each receiver processor can receive four messages from the sender processor. In Figure 3(c),

the link between processor P2 and processor P3 is in arbitrary fault, and the link between processor P2 and

processor P4 is in dormant fault. That is, there are two values that may not be correct, but we can ignore the

faulty influence by the concept of majority if c>2La+Ld. That is, we can make sure that using VRFC to

transmit message can provide reliable communication without any influence from faulty links and thus that

the message can arrive accurately if c>2La+Ld.

Therefore, each processor Pi produces VRFC_Messagei by step 1 and step 2 in the fault diagnosis phase.

The form of VRFC_Message is shown in Figure 1. Then, each processor Pi uses VRFC to transmit

VRFC_Messagei to all the processors in the general network. In the step 2 of the result exchange phase, each

processor constructs T_VRFC_Messages out of VRFC_Messagej sent by each free-fault processor Pj for 1≤ j

≤ n. Finally, T_VRFC_Messages can be used to produce the LFDR. The form of VRFC_Message is shown

in Figure 1.

 6

2.4 The Reconfigure Phase

We can use the LFDR to reconfigure the network. After the reconfiguration, the performance and

integrity of the network can be guaranteed.

Figure 1. The proposed DFAL protocol

Protocol DFAL (For all fault-free processor Pi with the same initial value, 1≤ i ≤ n)
Message Exchange Phase:
 Transmit the agreed-upon value vi from GPBA [11] to all the other processors and

receive the value vj from processor Pj, for 1≤ i,j ≤ n. Then, construct the vector Vi = [v1,
v2,…, vj,…, vn], 1 ≤ j ≤ n. If there is no connected link found, say il, then vl=ϕ. If a
dormant faulty link, say ik, is found, then vk = λ.

Fault Diagnosis Phase:
Step 1: Search each value in the vector Vi, where 1≤ i ≤ n. If the value vk in the vector Vi is λ,

then the link between ik is a link in dormant fault, for 1≤ k ≤ n.
Step 2: Search each value in the vector Vi, where 1≤ i ≤ n. If the value vk in the vector Vi is not

the agreed-upon value from GPBA and not λ or ϕ either, then the link between ik is a
link in arbitrary fault, for 1≤ k ≤ n.

Result Exchange Phase:
Step 1: By step 1 and step 2 in the fault diagnosis phase, each processor Pi can produce the

VRFC_Messagei. Then each processor Pi transmits the VRFC_Messagei by step1 and
step 2 by using VRFC.

Step 2: Each processor constructs the T_VRFC_Messages out of the VRFC_Messagej sent by
each free-fault processor Pj for 1≤ j ≤ n.

Step 3: Use the T_VRFC_Messages to produce the Link Fault Diagnosis Report (LFDR).

Reconfigure Phase:
Step1: According to the LFDR, reconfigure the network.
The form of “VRFC_Message”: {Qa, ALink_ID, Qd, DLink_ID}

Qa: the number of arbitrary faulty links.
Qd: the number of dormant faulty links.
ALink_ID: the arbitrary faulty link identification.
DLink_ID: the dormant faulty link identification.

The form of “LFDR”:

Faulty type Quantity Link_ID

Arbitrary faulty Links

Dormant faulty Links

 7

(a) An example network

(b) The connection state of the sender processor P1 and

that of the receiver processor P2

(c) The node-disjoint paths from sender processor P1 to

receiver processor P2

Figure 3. An example of node-disjoint paths

III. An example of executing VRFC & DFAL

Here is an example of executing our DFAL and VRFC. A general network with fault-free processors by

using FDAMIX is in Figure 4(a). There are six processors in the network, and the connectivity of the

network is four. The arbitrary faulty link is between processor P1 and processor P2. The dormant faulty link is

between processor P2 and processor P5.

The initial value of each fault-free processor is the agreed-upon value (the agreed-upon value is

Protocol VRFC (Virtual Relay Fault-tolerance Channel)

Definition:
� Each processor has the common knowledge of Graphic information G=(E,Þ), where Þ is the set of

processors in the network and E is a set of processor pairs, (Pi,Pj), indicating a link between processor Pi

and processor Pj ,where 1 ≤ i,j ≤ n
� There are c (c>2La+Ld) paths from sender processor to receiver processor.
� These c paths from sender processor to receiver processor are node-disjoint paths.
� Each intermediate processor on these c paths should not be passed through more than once.

Steps:
1. Each sender processor Pi (1≤ i ≤ n) transmits the VRFC_Messagei to each receiver processor Pj (1≤ j ≤

n) through c node-disjoint paths.
2. The receiver processor receives c VRFC_Messagei from the same sender processor.
3. The receiver processor takes the majority message of VRFC_Messagei to construct the

T_VRFC_Messages.

Figure 2. The proposed VRFC protocol

 8

assumed as 1) from GPBA as illustrated in Figure 4(b).

In the messages exchange phase, each processor Pi transmits its initial value vi to all the other processors

through the connected links in the first round, for 1 ≤ i ≤ n. The messages received by processors P1, P2, P3,

P4, P5, P6 and processor P7 in the first round are illustrated in Figure 4(c).

In the fault diagnosis phase, by step 1 and step2, each processor is only able to locate/detect the partial

dormant faulty links and arbitrary links as shown in Figure 4(d) because the network is not fully connected.

In the result exchange phase, each processor Pi uses VRFC to transmit the VRFC_Messagei from the

fault diagnosis phase to all the processors. Then, each processor uses the received messages to create the

T_VRFC_Messages as shown in Figure 4(e). Then, by using the T_VRFC_Messages, each processor

produces the link fault diagnosis report as shown in Figure 4(f). Each processor produces the same LFDR by

using VRFC and DFAL.

In the reconfigure phase, from LFDR, each processor can obtain the facts that the link between

processor P1 and P2 is in arbitrary fault and that the link between processor P2 and P5 is in dormant fault.

Each processor can reconfigure the network by eliminating the link between processor P1 and P2 and the link

between processor P2 and P5. The network after reconfiguration is shown in Figure 4(g).

V1

1

V2 1

V3 1

V4 1

V5 1

V6 1

V7 1

(a) A network with six processors and the connectivity of four. (b) Initial value

Figure 4. An example of executing DFAL and VRFC (Cont’d)

 9

(c) Vectors received after the first round

V1 V2 V3 V4 V5 V6 V7

1 0 1 ϕ 1 ϕ 1

0 1 ϕ 1 λ ϕ 1

1 ϕ 1 1 1 1 ϕ

ϕ 1 1 1 ϕ 1 1

1 λ 1 ϕ 1 1 ϕ

ϕ ϕ 1 1 1 1 1

1 1 ϕ 1 ϕ 1 1

VRFC_P1 {1, Link_1-2, 0, Null}

VRFC_P2 {1, Link_1-2, 1, Link_2-5}

VRFC_P3 {0, Null, 0, Null}

VRFC_P4 {0, Null, 0, Null,}

VRFC_P5 {0, Null, 1, Link_2-5}

VRFC_P6 {0, Null, 0, Null}

VRFC_P7 {0, Null, 0, Null}

(e) The T_VRFC_Messages of each processor Pi by

VRFC

VRFC_P1 {1, Link_1-2, 0, Null}

The VRFC_Message1 sent by P1

VRFC_P2 {1, Link_1-2, 1, Link_2-5}

The VRFC_Message2 sent by P2

VRFC_P3 {0, Null, 0, Null}

The VRFC_Message3 sent by P3

VRFC_P4 {0, Null, 0, Null,}

The VRFC_Message4 sent by P4

VRFC_P5 {0, Null, 1, Link_2-5}

The VRFC_Message5 sent by P5

VRFC_P6 {0, Null, 0, Null}

The VRFC_Message6 sent by P6

VRFC_P7 {0, Null, 0, Null}

The VRFC_Message7 sent by P7

(d) The VRFC_Message sent by each processor

Faulty type Quantity Link_ID

Arbitrary faulty Links 1 Link_1-2

Dormant faulty Links 1 Link_2-5

(f) Using the T_VRFC_Messages to produce the Link Fault Diagnosis Report (LFDR)

(g) The network without faulty links after reconfiguration

Figure 4. An example of executing DFAL.

 10

IV. THE CORRECTNESS OF PROPOSED PROTOCOLS

The following lemmas and theorems are used to prove the correctness of DFAL. It can detect/locate La

arbitrary faulty links and Ld dormant faulty links in the general network, where c > 2La+ Ld.

Theorem 1: Any fault-free processor Pi can detect dormant faulty links which connected to the

fault-free processor Pi, where 1≤≤≤≤ i ≤≤≤≤ n.

Proof:The fault-free processor can detect dormant faults if the protocol appropriately encodes a transmitted

message by either the Non-Return-to-Zero code or the Manchester code [9,14] before transmission.

Lemma 1: Each fault-free processor’s initial value is the same.

Proof:After executing GPBA [11], each fault-free processor in the general network has the same initial value

well agreed upon.

Lemma 2: If the link between sender processor Pi and receiver processor Pj is fault-free, then the

received value vij is the same as the initial value.

Proof:If the link between sender processor Pi and receiver processor Pj is fault-free, then the message sent

through the link is transmitted correctly. That is, vi is equal to vij.

Theorem 2: Any fault-free processor Pi can detect arbitrary faulty links which connected to the

fault-free processor Pi, where 1≤≤≤≤ i ≤≤≤≤ n.

Proof:If the value vij is not the initial value and not λ or ϕ either, then the link between processors I and j is

in arbitrary fault, By Lemma 1 and Lemma 2, each fault-free receiver processor must receive the

same value from other fault-free processors.

Lemma 3: Any fault-free processor Pi can detect/locate the partial faulty links to processor Pi in the

fault diagnosis phase in a general network.

Proof:Due to the network topology not fully connected, a fault-free processor Pi can only detect/locate the

partial faulty links connected to processor Pi in the fault diagnosis phase.

Lemma 4: Fault-free receiver processor can receive the messages VRFC_Messagei from fault-free

processor Pi, for 1≤≤≤≤ i ≤≤≤≤ n, without being influenced by faulty links, if c>2La+Ld.

Proof:The fault-free processor Pi sends c copies of VRFC_Messagei to the fault-free receiver processor. In

the worst case, the fault-free receiver processor can receive c - Ld messages transmitted by the

 11

fault-free processor Pi because dormant fault components can be detected. Since c - Ld > 2La, the

fault-free receiver processor can decide whether the message was from processor Pi or not by taking

the majority value. Then, construct T_VRFC_Messages by the majority value from VRFC_Messagei.

Theorem 3: After the result exchange phase, the LFDR of each fault-free processor is the same.

Proof:After the result exchange phase, each fault-free processor receives whole messages from all the other

processors. By Lemma 3 and Lemma 4, each fault-free processor can construct the same LFDR in the

general network.

Theorem 4: The DFAL protocol can detect/locate the faulty links in a general network.

Proof:By theorem 1, theorem 2 and theorem 3, DFAL can detect/locate the faulty links in a general network.

V. CONCLUSION

Due to the recent popularity of distributed systems, the reliability of the distributed system has become

a more and more important topic of researches. At the same time, fault diagnosis has also become an

attention-drawing topic. In [11] by Siu et al., they proposed the GPBA protocol to solve the BA problem in

the general network with mixed faults on both processors and links. And then, they also proposed another

protocol, FDAMIX, to solve the FDA problem in the general network with mixed faults on the processors.

However, they have not solved the FDA problem in the general network with mixed faults on the links. In

this study, the proposed protocol FDAL proves to be able to solve the FDA problem with mixed faults on the

links. That is, by using GPBA, FDAMIX, and FDAL together, we can solve the BA problem and FDA

problem with mixed faults on both processors and links in a general network.

After reaching the common agreement and fault diagnosis in a general network, we can reconfigure the

network and eliminate the faulty processors and faulty links to enhance the performance and strengthen the

integrity of the network. This is of special importance to high reliability applications such as a life-critical

distributed system.

In short, the proposed protocols FDAL and VRFC only consume a minimum number of rounds of

message exchange and detect/locate a maximum number of links with mixed faults in a general network.

Although GPBA, FDAMIX, and FDAL are designed to deal with processor failures and link failures in

a general network, they cannot be used in the Multi-Casting Network (MCN), which is a more reliable and

applicable network topology that allows a frame transferring to an individual, a broadcast, or a group address

 12

in a LAN, where the routers help local processors monitor the messages on the Internet. Our future work will

be focused on the network topology of the MCN.

REFERENCES

[1] A. Bar-Noy et al., “Shifting Gears: Changing Algorithms on the Fly To Expedite Byzantine

Agreement,” Proc. Symposium on Principles of Distributed Computing, pp. 42-51, 1987.

[2] M. Barborak, M. Malek, and A. Dahubra, “The Consensus Problem in Fault-Tolerant Computing,”

ACM Computing Surveys, vol. 25, no. 2, pp. 171-220, June 1993.

[3] Skeen, D., and Stonebraker, M. “A Formal Model of Crash Recovery in a Distributed System, “ IEEE

Trans. Software Engineering, vol. 9, no 4, pp. 219-228, May 1983,

[4] M. Fischer and N. Lynch, “A Lower Bound for the Assure Interactive Consistency,” Information

Processing Letters, vol. 14, no. 4, pp. 183-186, June 1982.

[5] H.S. Hsiao, Y.H. Chin, W.P. Yang, “Reaching Fault Diagnosis Agreement under a Hybrid Fault Model,”

IEEE Trans. Computers, vol. 49, no. 9, pp. 980-986, September 2000.

[6] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM Trans. Programming

Language Systems, vol. 4, no. 3, pp. 382-401, July 1982.

[7] F.J. Meyer and D.K. Pradhan, “Consensus with Dual Failure Modes,” IEEE Trans. Parallel and

Distributed Systems, vol. 2, no. 2, pp. 214-222, April 1991.

[8] Deo, Narsingh, Graph Theory with Applications to Engineering and Computer Science, Englewood

Cliffs, N. J.:Prentice-Hall, 1974.

[9] F. Halsall, Data Links, Computer Networks and Open Systems, 4th ed., Addison-Wesley, Reading, MA,

1995.

[10] H.S. Siu, Y.H. Chin, and W.P. Yang, “A Note on Consensus on Dual Failure Modes,” IEEE Trans.

Parallel and Distributed System, vol. 7, no. 3, pp. 225-230, March 1996.

[11] H.S. Siu, Y.H. Chin, and W.P. Yang, “Byzantine Agreement in the Presence of Mixed Faults on

Processors and Links,” IEEE Trans. Parallel and Distributed System, vol. 9, no. 4, pp. 335-345, April

1998.

[12] S.C. Wang, Y.H. Chin, and K.Q. Yan, “Reaching a Fault Detection Agreement,” Proc. Int’l Conf.

Parallel Processing, 1990, pp. 251-258.

 13

[13] S. C. Wang, Y. H. Chin, and K. Q. Yan, “Byzantine Agreement in a Generalized Connected Network

Model,” IEEE Trans. Parallel and Distributed System, 6(4), pp. 420-427, 1995.

[14] K.Q. Yan, S.C. Wang and Y.H. Chin, “Consensus Under Unreliable Transmission,” Information

Processing Letters, vol. 69, pp.243-248, March 1999.

