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Abstract 

Recently, network grows explosively and its scope extends rapidly so tha t the 

interconnection and communication between each type of network are more important. 

This paper presents a technique and its hardware implementation for network layer 

protocol transform between IP and ATM. Experimental results show that the proposed 

architecture can quickly transform the data format between IP and ATM network to 

meet the real-time requirement. 
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1. Introduction 

ATM network communication technology includes the advantage of dynamic 

bandwidth location, low transmission delay, bandwidth and quality of service 

guarantee. It can provide different transmission medium such as optical fiber, twisted 

pair, and coaxial cable, so that it can be applied to LAN (Local Area Networks), MAN 

(Metropolitan Area Network), and WAN (Wide Area Network). By the reason of 

above description, ATM is regarded as one of the most important technology in the 

future network, and it is almost possible to play the role of the backbone of Wide Area 

Network. And Broadband— Integrated Service Digital Networks will also build ATM 

network. 

However, the most important communication protocol in the internet is IP at 

present. It is entirely different from the type of ATM. IP is connectionless; but ATM is 

connection— oriented. Hence it is a very important subject about how to transmit IP 

packet in ATM network. Although ATM has many advantages, the network structure 

advance also must consider existed network device. Therefore, when we want to use 

ATM backbone to connect WAN and traditional LAN, it is necessary to design 

hardware architecture and software system of the edge router. 

The main concern in this paper is the data format transformation between IP and 

ATM. First, we must realize the data format transmitted in IP and ATM network. The 

IP packet length is not fixed, the minimum is 64 bytes and the maximum is 1492 bytes. 

The ATM packet is called a cell, and it has a fixed length of 48 bytes. In addition to 

data length, another object that we must realize is the header because the protocol 

behavior and data relay both depend on the content of the header. The IP and ATM 

headers are shown in Fig. 1 and Fig. 2, respectively. 

 



 

 

 

 

 

 

 

2. System Architecture 

The system architecture of the proposed protocol transformer is shown in Fig. 3. 

The following paragraphs describe its function in detail. 

When it receives the first 4 bytes of an IP packet from the Ethernet Network 

Interface Card, the first work is checking that whether its version is 4 and whether its 

header length is equal to 5 or greater than 5. If one of the two conditions doesn’t 

satisfy, the IP packet must be discarded. If both conditions are satisfied, the remainder 

of the IP packet is received continually and its checksum is calculated at the same 

time. Until the packet header is received completely, if its checksum is wrong, the 

packet must be discarded; otherwise the receiving action continues until the packet 

end is being received.  

It must be decided that whether the IP packet needs to be fragmented into ATM cell. 

If it need not be fragmented, during the receiving process in “IP to IP” block it 

inquires into the output port/next hop from the routing table according its destination 

address, then is transmitted to the IP switch fabric. If it needs to be fragmented, 

waiting for ATM connection during receiving. We suppose that the router or switch 

maintains an IP-ATM connection mapping table, so the VPI、VCI and port obtained 

after connecting completely are part of input signals. When the packet is received 
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completely and enough information is got, the “IP to ATM” block starts to fragment 

and transmit.  

When receiving cells from the ATM UTOPIA interface, it is not necessary to check 

them because error detection has proceeded in Physical Layer. It must also be decided 

that whether the cells need to be reassembled in order to transform into IP packets or 

directly switched to the output port. In the former, “ATM to ATM” block takes the 

VPI in the ATM cell header as the index to inquire VPI mapping table, in order to 

decide output port and new VPI, and transmit the cell to the ATM switch after the rest 

has been received completely. In the  later, instead of providing queue for every VPI to 

reassemble the cells, “ATM to IP” block uses the management memory of VPI 

reassemble information to store reassembling status of individual VPI and the 

memory address link between reassembled cells. This can save memory resource. The 

IP packet that is reassembled completely will be transmitted to corresponding output 

port according to which VPI it is reassembled.  
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3. Implementation 

The main work of Fig. 3. can be classified by function into four parts: packet 

receiving process, cell receiving process, packet transmitting process, and cell 

transmitting process. The modules to perform these processes will be explained in 

detail in the following subsections. 

 

3.1 Packet Inbound Process  

The first module is IA_trsfm module shown in Fig. 4, including “IP to IP” block 

and “IP to ATM” block in Fig. 3. When this module and Ethernet network interface 

card are both ready, the packet is written to the memory, and the counter that 

generates receiving addresses of the memory starts to count. At the same time, this 

module checks the last byte of the first received 4 bytes of the packet (data width is 4 

bytes). The last 4 bits of the checked byte are IP version, and its value must be 4. The 

first 4 bits of the checked byte are packet header length, and per unit equals to 4 bytes. 

An IP packet header length is at least 20 bytes, so the value of the first 4 bits must be 

equal to or greater than 5. The counter that generates receiving addresses of the 

memory continues counting if the two conditions described above are both satisfied. 

When data is written to the memory, it simultaneously is sent to IP checksum block. 

Until the packet header is received completely, IP checksum block generates the 

check result. If the result is correct, the packet is received continually; otherwise the 

receiving address of the memory returns to the state before receiving.  

 

 

 



 

 

 

 

 

 

 

 

 

Checksum  

Because data width is 32 bits, so we use 32-bit algorithm for checksum. The 

detailed checksum block is shown in Fig. 5. During receiving the packet, IP checksum 

block simultaneously takes 4 bytes in the header as a unit to accumulate the checksum. 

When the header is received completely, the block goes into the next state and then 

checks whether the last accumulative result overflows. If the result overflows, the 

value of the last 32 bits and the first 32 bits in the 64-bit sum will be added. This 

action is repeated until no overflow, then this block goes into the next state. In this 

state, IP checksum block checks whether the value of the last 16 bits in the 32-bits 

result is zero. If the value is not zero, as the previous state, the value of the last 16 bits 

and first 16 bits in the 32-bit result will be added and this action is repeated until the 

value of the last 16 bits is zero. Finally, IP checksum block checks whether the first 16 

bits are 16’hFFFF. If they are 16’hFFFF, the packet is valid; otherwise the receiving 
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address of the memory returns to the state before receiving as the packet is discarded.  

 

 

 

 

 

 

 

Routing Table   

If the IP packet need not be fragmented, it is essential to inquire Routing Table to 

get next output port. Routing Table shown in Fig. 6 includes three memories that has 

256 words (word width is 4 bits). The initial contents of them are all wrote in advance. 

The operation of inquiry is as follows (based on original intention of verification,  this 

block simply uses the first 24 bits of the IP address as the index)： the first 24 bits of 

the IP address are separated into three 8-bit, each of them is the individual 

read-address of the three memories described above. The width of the memory is 4 

bits, the first bit represents that whether the last 3 bits are the final routing result (this 

similarly means the Longest Prefix Match), and the last 3 bits represent the output 

ports. The Next Hop outputted is stored in one queue, and is taken out when this 

packet is transmitted out.  

 

 

Figure 5  Checksum block
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Packet Fragmenting (Controlled by FSM)  

While the packet is received, its length would be stored. And, as the packet is 

transmitted, the length is used for the judgment that whether the packet fragmenting is 

over. Since the packet would be segmented into ATM cells, the finite state machine 

takes 48 bytes as a unit, adds a cell header for each unit, and then transmits them. 

Because the data width is 32 bits, the ATM cell length is a multiple of 4 bytes (52 

bytes or 56 bytes). We adopt the mode of 56 bytes. The first 4 bytes in the header are 

composed of VPI, VCI, PT, and CLP, and the last 4 bytes are UDF (User Define 

Field). Due to the ability of the ATM cell reassembling at end, UDF is used to judge 

that whether it is the last cell in the fragmented IP packet. If UDF is 32’hFFFFFFFF, 

this cell is not the packet end; else if UDF is 32’h00000000, it is the packet end. 

Process described above is illustrated in Fig. 7. 
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                   Figure 7 Packet fragment example 

 

3.2 Cell Inbound Process 

The second module is AI_trsfm module shown in Fig. 8, including “ATM to IP” 

block and “ATM to ATM” block in Fig. 3. Between physical layer and ATM layer is 

UTOPIA interface. If the ATM cell received from this interface need not be 

reassembled, “ATM to ATM” block inquires VPI table and then transmits it to ATM 

switch fabric. 
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Cell Reassembling 

(1) Receiving 

The cell reassembling relies on a memory that manages VPI reassembling information. 

While the cell is received, VPI in the header would be the index to read out its 

reassembling information stored in the memory. The width of the memory of VPI 

management is 17 bits, the MSB represents if this cell is the first reassembling cell. If 

the MSB is 0, this cell is the first cell, and MSB would be changed into 1 and written 

into the memory at next clock to mean that each following cell received with this VPI 

is not the first cell about this VPI. The 8 bits— [15:8] in the memory width represent 

the start address of the first cell of some VPI. So while the first 4 bytes of the first cell 

arrives, these 8 bits read out must be replaced with the value of the counter generating 

receiving addresses of the memory at that time and then written into the memory. This 

value then is maintained until the cell reassembling terminates. The last 8 bits— [7:0] 

in the memory width represent the address next to the address of the last 4 bytes of the 

preceding received cell. If the received data is not the first cell with this VPI, at that 
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time the receiving address generated from the counter should be written into the cell 

memory location that its address is the value of the 8 bits— [7:0] in the width of the 

VPI management memory, for the purpose of being the information of link list. 

While the UDF in the incoming ATM cell header is 32’h00000000, it is the last 

reassembling cell, and the MSB in the width of the memory of VPI reassembling 

information should be changed into 0 to mean that the next received cell with this VPI 

is the first cell of the next IP packet. Process described above is illustrated in Fig. 9. 

 

 

 

 

 

 

 

                       Figure 9(a) Cell receiving 
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        Figure 9(b) Variation of VPI Management Memory and Trans_info queue 

(2) Transmitting 

As some packet is reassembled completely, its start address stored in the VPI 

management memory would be queued, read out in sequence, and then the packet 

starts being transmitted to a FIFO. Why is not the packet directly sent out and first 

delivered to a FIFO instead? Because the transmission between reassembled cells 

need to take one clock time to read out the next cell access address in the link list of 

the former cell end, the direct transmission will cause IP switch received incontinually. 

There is no problem about this if first store the packet in the FIFO and then transmit it. 

Process of transmitting to packet FIFO is illustrated in Fig. 10. 
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         Figure 10 Transmitting a packet that is reassembled completely to FIFO                

VPI Table Block 

  The main work of the “VPI Table” block is to update the VPI. Its major structure is 

a memory with the width of 8 bits. The VPI in the incoming cell header is the 

read-address for this table. The last 4 bits in the content read out are new VPI, and the 

first 4 bits are output port. Fig. 11 shows an example for VPI table. 

 

 

 

 

 

   

Figure 11 VPI table 
3.3 Packet Outbound Process  

  The third module shown in Fig. 12 is “IP Tx” block in Fig. 3. As the packet would 
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be sent to the network, the checksum has to be reset to zero and the TTL (time to live) 

ought to subtract one, then the checksum must be calculated again and put in the 

checksum field. However, if designing this circuit according to the procedure, the 

efficiency of packet delivering will be decreased. So we design another equivalent 

circuit, its action is described as follows: First, calculate the 1’s complement of the  

received checksum, then the sum of the original packet header can be obtained. Next, 

consider that if taking 16 bits as a unit to sum up the header, the action that TTL 

subtracts one means that the header sum subtracts 256. So after the original sum 

subtracts 256, calculate its 1’s complement and the new checksum can be acquired. 

 

 

 

 

 

 

 

                 Figure 12  “IP Tx” module 

TTL decrease and Checksum Update 

The actions of checksum update and TTL decrease complete during the former 

described process— packet receiving from IP switch. After packet receiving from IP 

switch begins, the third coming data includes checksum and TTL, so at this clock they 

must be changed. Why does the data flow in Figure 6.1 replace the normal process 

that consists of clearing original checksum, decreasing TTL, and then recalculating 
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checksum? We illustrate the reason with normal and improved processes of a standard 

20-byte header in the following example (Note that the header content values are 

presented in hexadecimal):  

 

 

Normal process: 

 

 

 

 

 

 

 

 

Improved process: 

 

 

 

 

 

 

 4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 6 0 3 C 0 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 0 0 0 0
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 0 0 0 0
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3+)

2 0 4 F C 3 9 2 B

0 4 F C 3 9 2 B
0 0 0 0 0 0 0 2+)
0 4 F C 3 9 2 D

3 9 2 D
0 4 F C+)
3 E 2 9

4 5 F F 0 0 8 0
1 1 1 1 0 0 0 A
9 5 0 3 C 1 D 6
8 C 7 4 9 C 4 E
8 C 7 4 9 C 5 3

3 E 2 9

1’s 
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C 1 D 6

TTL-1=95, Checksum cleared=0
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3.4 Cell Transmitting Process 

The fourth module is the “ATM Tx” block in Fig. 3, and it is the simplest module. 

Its task just receives cells from the ATM switch and transmits cells to physical layer. 

Fig. 13 presents the “ATM Tx” module. 

 

 

 

 

 

 

 

                    Figure 13 “ATM Tx” module 

4. Interface and Experiment results 

This section discusses the interfaces between the four modules and other 

components in the system architecture. The IA_trsfm module receives packets 

through the NIC interface, and transmits packets or cells through Virtual Component 

Interface (VCI) to switches. Note that the VCI is an on-chip bus standard for SOC. 

The AI_trsfm module receives cells through UTOPIA interface established by ATM 

Forum and transmits cells or packets through VCI to switches. The “IP Tx” and “ATM 

Tx” modules receive packets or cells from VCI, and transmit them through NIC and 

UTOPIA interface. 

The four modules in section 3 are implemented by using Verilog code. The 

simulation results and design summaries for the four modules are listed in Table 1 to 
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Resource                                    No. of used      Max Available       % used
Number of Slices:                            2,026             12,288                   16%
Number of Slice Flip Flops:             2,294            24,576 9%
Total Number 4 input LUTs:            3,898            24,576                   15%
Number used as LUTs:                     3,896
Number used as a route-thru:                   2
Number of bonded IOBs:           143 404   35%
Number of Block RAMs:              7 32   21%
Number of GCLKs:                   1 4   25%
Number of GCLKIOBs:                1 4   25%
Total equivalent gate count for design:   159,797
Additional JTAG gate count for IOBs:       6,912
device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period:  31.551ns (Maximum frequency:  31.695MHz)
Maximum combinational path delay:  35.685ns
Maximum net delay:  21.633ns

Table1  AI_trsfm block
Resource                                    No. of used      Max Available       % used
Number of Slices:                            2,026             12,288                   16%
Number of Slice Flip Flops:             2,294            24,576 9%
Total Number 4 input LUTs:            3,898            24,576                   15%
Number used as LUTs:                     3,896
Number used as a route-thru:                   2
Number of bonded IOBs:           143 404   35%
Number of Block RAMs:              7 32   21%
Number of GCLKs:                   1 4   25%
Number of GCLKIOBs:                1 4   25%
Total equivalent gate count for design:   159,797
Additional JTAG gate count for IOBs:       6,912
device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period:  31.551ns (Maximum frequency:  31.695MHz)
Maximum combinational path delay:  35.685ns
Maximum net delay:  21.633ns

Table1  AI_trsfm block

 

Table2 IA_trsfm block
Resource                                    No. of used      Max Available       % used
Number of Slices:                            1,035             12,288                     8%
Number of Slice Flip Flops:               447             24,576 1%
Total Number 4 input LUTs:            1,938            24,576                     7%
Number used as LUTs:                     1933
Number used as a route-thru:                  5
Number of bonded IOBs:           192 404   47%
Number of Block RAMs:              7 32   21%
Number of GCLKs:                   1 4   25%
Number of GCLKIOBs:                1 4   25%
Total equivalent gate count for design:   131146
Additional JTAG gate count for IOBs:       9264
device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period:  74.114ns (Maximum frequency:  13.493MHz)
Maximum net delay:  16.392ns

Table2 IA_trsfm block
Resource                                    No. of used      Max Available       % used
Number of Slices:                            1,035             12,288                     8%
Number of Slice Flip Flops:               447             24,576 1%
Total Number 4 input LUTs:            1,938            24,576                     7%
Number used as LUTs:                     1933
Number used as a route-thru:                  5
Number of bonded IOBs:           192 404   47%
Number of Block RAMs:              7 32   21%
Number of GCLKs:                   1 4   25%
Number of GCLKIOBs:                1 4   25%
Total equivalent gate count for design:   131146
Additional JTAG gate count for IOBs:       9264
device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period:  74.114ns (Maximum frequency:  13.493MHz)
Maximum net delay:  16.392ns  



Resource                                    No. of used      Max Available       % used
Number of Slices:                             1776             12,288                   14%
Number of Slice Flip Flops:             2157             24,576 8%
Total Number 4 input LUTs:            3533             24,576                   14%
Number used as LUTs:                     3532
Number used as a route-thru:                  1
Number of bonded IOBs:           70 404   17%
Number of GCLKs:                   1 4   25%
Number of GCLKIOBs:                1 4   25%
Total equivalent gate count for design:     41280
Additional JTAG gate count for IOBs:       3408

device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period:  33.537ns (Maximum frequency:  29.818MHz)
Maximum combinational path delay:  44.517ns
Maximum net delay:  31.049ns

Table3  IP Tx block
Resource                                    No. of used      Max Available       % used
Number of Slices:                             1776             12,288                   14%
Number of Slice Flip Flops:             2157             24,576 8%
Total Number 4 input LUTs:            3533             24,576                   14%
Number used as LUTs:                     3532
Number used as a route-thru:                  1
Number of bonded IOBs:           70 404   17%
Number of GCLKs:                   1 4   25%
Number of GCLKIOBs:                1 4   25%
Total equivalent gate count for design:     41280
Additional JTAG gate count for IOBs:       3408

device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period:  33.537ns (Maximum frequency:  29.818MHz)
Maximum combinational path delay:  44.517ns
Maximum net delay:  31.049ns

Table3  IP Tx block

 

Resource                                    No. of used      Max Available       % used
Number of Slices:                             2355             12,288                     9%
Number of Slice Flip Flops:             2078             24,576 8%
Total Number 4 input LUTs:            4703             24,576                   19%
Number of bonded IOBs:           71 404   17%
Number of GCLKs:                   1 4   25%
Number of GCLKIOBs:                1 4   25%
Total equivalent gate count for design:     44842
Additional JTAG gate count for IOBs:       3456
device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period:  21.564ns (Maximum frequency:  46.374MHz)
Maximum combinational path delay:  46.579ns
Maximum net delay:  19.611ns

Table4  ATM Tx block
Resource                                    No. of used      Max Available       % used
Number of Slices:                             2355             12,288                     9%
Number of Slice Flip Flops:             2078             24,576 8%
Total Number 4 input LUTs:            4703             24,576                   19%
Number of bonded IOBs:           71 404   17%
Number of GCLKs:                   1 4   25%
Number of GCLKIOBs:                1 4   25%
Total equivalent gate count for design:     44842
Additional JTAG gate count for IOBs:       3456
device xcv1000, package BG560 , speed -4
Design statistics:

Minimum period:  21.564ns (Maximum frequency:  46.374MHz)
Maximum combinational path delay:  46.579ns
Maximum net delay:  19.611ns

Table4  ATM Tx block

 

 

 

 

 

 


