
RAAR: A TCP-friendly Congestion Control Mechanism of Transporting

Multimedia Traffic in Internet

Yan Hu
Network Research Department, Institute of Computing

Technology, Chinese Academy of Sciences
Beijing, P. R. China

huyan@ict.ac.cn

Guangzhao Zhang and Wanqing Tu
Dept. of Electronics & Communication Engineering

Zhongshan University
Guangzhou, P. R. China

isszgz@zsu.edu.cn, tuwanqing@163.net

Abstract—This paper proposes a unicast mechanism of Rate

Adaptation At Receivers called RAAR. It can be used to
transport multimedia traffic. UDP and TCP dominate in current
Internet. Neither TCP nor UDP can be used by multimedia
traffic, because the TCP reduces the sending rate in half in
response to a single packet drop and UDP has no congestion
control mechanism. RAAR ameliorates GAIMD at receivers and
has good smoothness of sending rate and fairness with competing
TCP flows. RAAR is simple to implement. Our simulations show
that the performances of RAAR are better than TFRC obviously.
RAAR is also a promising scheme of development for congestion
control of multicast multimedia traffic, because it is not a per-
packet acknowledgement mechanism and its rate adaptation is
implemented at receivers.

Keywords—TCP-friendly; AIMD; rate adaptation; congestion
control

I.

INTRODUCTION
A great many video and audio flows, also called multi-

media traffic flows or multimedia real-time flows, have been
transmitted in the Internet. It is expected that multimedia
streaming traffic will increase rapidly, and will soon make up
a significant portion of the total Internet bandwidth in the
coming future.

Multimedia flows are characterized by: 1) delay- sensitive:
a transmission session, which has short a delay and a low jitter,
is expected by multimedia traffic; 2) information-huge:
generally, the information in the multimedia files is much
greater than the one in the common data files; 3) high
transmission rate; 4) high tolerance to the code-error: very low
code-error probability is required in data flows, while a higher
code-error probability can be acceptable in multimedia flows,
because it only reduce the playback quality which can be
accepted by the users. However, the current Internet does not
attempt to guarantee an upper bound on end-to-end delay or
lower bound on available bandwidth. As a result, the quality
of delivered service to real-time applications is neither
controllable nor predictable. So in the best-effort network as
the Internet, we can’t guarantee the QoS of the multimedia

This research was done when the first author was at the Department of

Electronics & Communication Engineering, Zhongshan University, Guang-
zhou City, Guangdong Province, P. R. China.

traffic. Lack of support for QoS has not prevented rapid
growth of multimedia traffic and this is expected to continue.

At present, there is no end-to-end congestion control
mechanism in most of real-time multimedia applications, or
those flows are not TCP-friendly. They would go against the
Internet if there were a great deal of such flows transmitted. A
feasible way to address the issue is using the RSVP [21] or
Differentiated Service [4]. Even though those kinds of
services could be spread in the Internet, many users still want
to get cheaper real-time services, and of course, the best-effort
service is the cheapest one. If users are in the same service
level in the networks supporting the Differentiated Service,
the services shared by them are also a kind of best-effort ones.
So we can see it is very significant for us to study the
transmission protocol of real-time multimedia flows in the
best-effort network.

Transmitting multimedia traffic using UDP that has no
congestion control will lead to some serious problems. The
transmission in the best-effort network in despite of
congestion state tends to cause serious packet losses that make
the utilization of the network very low. The more trouble
situation is that: the lost packets, which cannot reach the
destination forever, occupy most of bandwidth, while the
senders send packets repeatedly regardless of the network
congestion. Finally, the network meltdown happens. At the
same time, the goodputs of the multimedia flows are also very
low [3], [8]. In the current Internet, where 95% throughput
belongs to TCP, TCP throughput will be decreased greatly due
to the kind of unfairness. Hence, in order to reduce the UDP
loss and increase the bandwidth utilization, we need provide
the congestion control mechanism for UDP to transmit those
multimedia flows.

TCP is the dominant transmission protocol in the Internet,
and the current stability of the Internet depends on its end-to-
end congestion control that uses an Additive Increase
Multiplicative Decrease (AIMD) algorithm [6]. However, the
TCP congestion control only is appropriate for applications
such as bulk data transfer and not for the transfer of
multimedia traffic, because the behaviors of TCP, which halve
the sending rate in responsible to a single congestion
indication, will cause the intensive jitter of transmission rate
and noticeably reduce the user-perceived quality. As for the
asymmetric network (such as, wireless network, cable
modems, ADSL, and satellite network), it is more serious.

Because of lack of bandwidth on the reverse links in those
networks, TCP that feedbacks ACK packet on receiving each
data packet is not appropriate. In the asymmetric network,
delays and packet losses occurring on the reverse links
severely degrade the performance of existing round trip based
protocol such as TCP. TCP is also ill suited for the multicast
multimedia traffic. In a large-scale multicast involving many
receivers (10K to 1M receivers), frequent feedback sent
directly to the sender causes implosion, at the same time those
senders’ burden becomes greater and greater.

In the shared network such as the Internet, in order to
avoid the congestion and improve the network utilization, all
of the end system (including the real-time one and the non
real-time one) should decrease their transmission rates
whenever there are congestions, and should increase them as
no congestion. So an ideal multimedia transmission scheme
should have such a rate adaptation mechanism, while the inter-
protocol fairness must be considered, i.e., the variant protocol
flows that coexist in the same link can share bandwidth fairly.
Because the dominant traffic in the Internet is based on TCP,
such as e-mail, FTP, and Web etc., in order to meet the
demand of the fairness among the protocols, transmission
protocols of the multimedia flows should make the throughput
of their traffic flows approximately equal to the TCP’s.
However, as we said before, TCP is not suitable for
transmitting multimedia flows, so some improvement on TCP
must be made, and the TCP-friendly idea was proposed. TCP-
friendly is that a real-time multimedia flow should obtain
approximately the same average bandwidth over the timescale
of a session as a TCP flow along the same path under the same
conditions of delay and packet loss [11]. Certainly, it is only
defined in view of fairness. As an excellent multimedia
transmission protocol, it should also consider the
characteristics of the multimedia traffic flows (see the
previous part) at the same time. This kind of TCP-friendly
transmission protocol is an ideal multimedia transmission
scheme, if it satisfies the both requirements.

To design a TCP-friendly congestion control protocol,
several elementary targets should be achieved: 1) fairness:
small variations over the sending rates of competing flows
such as TCP flows, 2) smoothness: small sending rate
variations over time for a particular flow in a stationary
environment, 3) responsiveness: fast deceleration of protocol
sending rate when there is a step increase of network
congestion, and 4) aggressiveness: fast acceleration of
protocol sending rate to improve network utilization when
there is a step increase of available bandwidth [24].

The balance of this paper is organized as follows. Some
proposed TCP-friendly schemes in literature are introduced in
Section 2. Our RAAR scheme is described in Section 3. In
Section 4, we give the simulation results in all kinds of
configuration and the metrics to evaluate the performances of
TCP-friendly protocol. Our conclusions and future work are in
Section 5.

II. RELATED WORK
The proposed TCP-friendly congestion schemes in

literature fall into two major categories: AIMD-based [2], [7],

[10], [15], [16], [17], [20], [25] and formula-based [9], [11],
[14], [19].

TCP congestion control algorithms are based on the
window or rate adaptation principle of Addition Increase
Multiplicative Decrease (AIMD) [6], which may be expressed
as:

0 ;: >+←+ ααtRt wwI
10 ;: <<⋅←+ ββδ ttt wwD

where I refers to the increase in window as a result of receipt
of one window of acknowledgements in a RTT and D refers to
the decrease in window on detection of a loss by the sender, wt
the size of the window at t, R the round-trip time of the flow,
and α, β are constants. In [6], [25], the authors discussed the
stability and the fairness of those algorithms. [2] generalized
the AIMD rules, introduced and analyzed a class of nonlinear
control algorithms called binominal algorithms. They
concluded a k + l rule, which represents a fundamental
tradeoff between probing aggressiveness and the
responsiveness of window reduction.

The congestion control mechanism of Rate Adaptation
Protocol (RAP) [15] is implemented at senders. The RAP
source sends data packets with sequence numbers, and a RAP
sink acknowledges each packet, providing the end-to-end
feedback. It is a transmission mechanism of rate-based
congestion control. If no congestion is detected, its source
periodically increases the transmission rate. If congestion is
detected, it immediately decreases the transmission rate. In
order to decrease the oscillation of the transmission rate, RAP
uses a fine gain rate adaptation scheme, which can smooth the
rate to some degree. It is not necessary for multimedia flows
to acknowledge each data packet. It increases workload of the
network and not appropriate for asymmetric networks and
multicast. Although a fine gain rate adaptation scheme is used
in RAP, its transmission rate is still too oscillatory to transport
real-time multimedia flows.

In [16], the authors proposed a protocol called TEAR
(TCP Emulation At Receivers) that shifts most of flow control
mechanisms to receivers. In TEAR, a receiver does not send to
the sender the congestion signals detected in its forward path
but rather processes them immediately to calculate its own
appropriate receiving rate. TEAR doesn’t use the per-packet
acknowledgement scheme like TCP and RAP, so TEAR,
which applies some form of weighted averaging over rate
samples taken over W = 8 epochs in the past to smooth the
transmission rate, can be used for either unicast or multicast of
real-time multimedia traffic in asymmetric networks. However,
the TEAR protocol is complicated to implement.

In recent years, there is a lot of research on modeling TCP
throughput. These models are able to predict TCP throughput
over a wider range of parameters such as loss rates. In [9],
Floyd etc. apply those results to propose a mechanism of
equation-based congestion control for unicast of multimedia
traffic, which is called by TFRC (TCP-friendly Rate Control).
Owing to the fault of those own models, when the packet loss
rate is very high, the performances of TFRC are not
acceptable [16], [24].

III.

A.

POROPOSED RAAR PROTOCOL
sender receiver

round(n)

round(n+1)

round(n+2)

round(n)

round(n+1)

round(n+2)

We propose a novel TCP-friendly approach to flow control
called Rate Adaptation At Receivers (RAAR) for unicast
multimedia streaming and it can also be upgrade to multicast.
Our design goal is to develop a flow control protocol that: 1)
can fairly share the bandwidth with the competing TCP; 2) has
good smoothness of sending rates, which is suitable for
transmitting multimedia traffic; 3) can avoid the feedback
implosion, which is hard to upgrade to multicast; 4) is suitable
for not only the traditional symmetric networks but also the
emerging asymmetric networks, such as satellite
communication networks.

The rate-based adaptation congestion control of RAAR
simulates the one of TCP, so it can be TCP-friendly. Unlike
TEAR and TCP, RAAR is a rate-based control rather than
window-based one. Using some smoothness function of rate,
RAAR can have good smoothness of rate. Our protocol is not
a per-packet acknowledgement mechanism and its rate control
is achieved at receivers, so it can avoid the feedback
implosion and lessen workload of the senders.

Our RAAR protocol mainly derives from General Additive
Increase Multiplicative Decrease (GAIMD) [25] algorithm.
However, RAAR shifts the rate adaptation congestion control
mechanism to the receivers while RAP or GAIMD
implements the mechanism at its senders.

Firstly, the sender of RAAR sends data packets at some
initial rate set in advance. The receiver estimates a sending
rate using the GAIMD algorithm, and sends ACK packets to
report the sending rate to the sender if one of following two
conditions are met: 1) the latest sending rate estimated by the
receiver is less than the current sending rate at the sender; 2)
the RTT timer at the receiver expires. We define a round in
RAAR protocol. After the sender receives an ACK packet, it
immediately updates its sending rate using the rate in the ACK
packet and sends those latter data packets at the new rate,
which also means a new round has begin. This round will not
end until the sender receives another new ACK packet. The
next round begins on the last round ending. It is illustrated in
Fig. 1, which shows that there are continuous alternant rounds
in RAAR. RAAR can be divided into two functionalities, i.e.,
sender functionality and receiver functionality. We will
discuss them in detail as follows.

Sender Functionality
A.1 Function of Sending Data Packet at Specified Rate

One of the principles of RAAR is that the sender should be
as simple as possible. Thus, we shift almost all workload to
the receiver to alleviate the burden of the sender.

A timer is needed to control the sending rate at the sender.
Supposing the current sending rate is rate_, and the packet
size is pktSize_. Thus, we can start a timer with a length of
pktSize_/rate_ after a packet has been sent out. The next
packet should be sent as soon as the timer expires. So in this
way, we can guarantee the sender sends the packet at the rate
of rate_.

The difference from TCP [18] or RAP is that RAAR
doesn’t acknowledge each data packet, while only sends an

Figure 1. RAAR protocol

ACK packet when each round ends (see Fig. 1). This
mechanism is well-suited for transmission of multimedia
traffic flows, because multimedia traffic can tolerate error-rate
to some degree as the result of its function to recover error-
code at receivers. The feedback implosion [1], [20] is avoided
in the mechanism, so it, an acknowledging per-round
mechanism, is also a promising avenue of development for
multicast traffic and asymmetric networks.

A.2 Function of Decreasing the Sending Rate for Timeout
In any networks, it is unavoidable for packet losses, so

does the ACK packet of RAAR. Although the loss probability
of the ACK packets is very low in RAAR, the ACK packets
are very important to the rate adaptation of RAAR. Then we
must propose a mechanism how RAAR is responsive to the
ACK packet losses. The sending rate should be decreased
correspondingly as the ACK packets are lost. When there is no
ACK packet loss, the senders should receive an ACK packet
every the time of t RTT2≤ . The sender should decrease the
sending rate if an ACK packet loss occurs. We propose the
detail mechanism as follows. The sender gets the values of
retransmit timeout RTO and rate_ (the both parameters are
estimated by the receiver, see Section 3.B.1 and 3.B.3), and
then sends a data packet at the rate of rate_. If the sender does
not receive an ACK packet after the time of 2RTO, it should
immediately update the sending rate as _rate×β (where β is
the multiplicative decrease factor of GAIMD, see Section
3.B.1)

B. Receiver Functionality
B.1 Implementation of Improved GAIMD Algorithm at

Receivers
The leading goal in RAAR is to implement the GAIMD

algorithm at receivers. Two parameters, i.e. α (α>0) and β
(0<β<1), are defined as: in the congestion avoidance state, the
window size is increased by α per window of packets
acknowledged and it is decreased to β of the current value

whenever there is a triple-duplicate congestion indication. As
for TCP, α is one and β is 0.5. [25] proposed a simple
relationship between α and β for a GAIMD flow to be TCP-
friendly, that is, for the GAIMD flow to have approximately
the same throughput as a TCP flow. The relationship between
α and β to be TCP-friendly is

3
)1(4 2βα −

=
 (1)

Our RAAR modifies the GAIMD algorithm when it is
implemented at receivers. The RAAR protocol consists of two
states: 1) slow-start and 2) congestion-avoidance state. The
slow-start state is a process of detecting the available
bandwidth in the network. The RAAR flows can detect its
available bandwidth using the slow-start algorithm. If RAAR
continues to increase its sending rate after it has utilized the
available bandwidth, there will be packet losses. Thus, RAAR
changes the state to the congestion-avoidance state, a process
of the dynamic balance that the throughput of a RAAR flow
fluctuates about a value of its available bandwidth.

Like TCP, after a RAAR session has been set up and its
first data packet arrives at a receiver, The RAAR enters into
the slow-start state. Hereafter, in order to detect the available
bandwidth in current network congestion state as soon as
possible, the receiver updates the current rate rate_ as

RTTpktSizerate __+ (where pktSize_ refers to the size of
data packets and RTT round trip time) whenever it receives a
data packet. Just as Fig. 1 illustrates, a timer with a length of
RTT starts when a new round begins. Only if the timer expires
or rate_ is less than the current sending rate carried by the
latest data packet, the receiver reports the sender the rate_
immediately, that is, the receiver sends an ACK packet with
the rate_ value to the sender.

The receiver decides whether there is a loss event, when a
data packet arrives at the receiver. We will define the loss
event in Section 3.B.2. RAAR changes into the congestion-
avoidance state, if its receiver detects a loss event. In the state,
RAAR uses the improved GAIMD algorithm.

If a packet arrives at the receiver and there is no a loss
event, the sending rate value rate_ can be updated as follows:

RTT
pktSize

wnd
raterate _

_
__ ×

⋅
+←

δα

 (2)

where wnd_ is the number of data packets received by the
receiver in a round, RTT is the smoothed round-trip time
measured by the receiver, and δ is a factor measured by
experiment. Using simulations, we find that δ can be set as a
value between 1/5 and 1/10. In all of simulations in this paper,
we let δ=1/6. As we have known, at the congestion avoidance
state, the sender of TCP (or GAIMD) increases its congestion
window as follows whenever receiving an ACK packet,

_
_

__ pktSize
cwnd

cwndcwnd ×+←
α

where cwnd_ refers to the size of congestion window. It means
that the sender of TCP increases the sending rate by about

RTTpktSize _⋅α each RTT. RAAR emulates this mechanism
at receivers. One of most critical problem is how to estimate
wnd_ at receivers. At receivers, wnd_ can be estimated as
follows,

for a packet arrival
if the packet is the first packet of
a round

wnd_=dyWnd_
dyWnd_=1

else
dyWnd+=1

If there is a packet loss event at the congestion avoidance
state, the receiver decreases rate_ to _rate×β , where β is a
constant set in advance. Through our simulations, we discover
the reasonable value of β is 0.875. Using equation 1 which is
relationship between α and β, we can conclude α is 0.31

B.2 Decision of Packet Loss Event
The Internet is a shared best-effort network with a high

level of statistical multiplexing. The observed loss pattern has
a near random behavior [5] that is determined by the aggregate
traffic pattern. Thus, it is generally hard for an end system to
predict or control the loss rate by adjusting the sending rate.
The end system can only control the congestion of the network
using AIMD adaptation rate mechanisms. However, the only
way to attain the network congestion information is to detect
the loss event. It takes one round-trip time RTT for end
systems to detect and react to congestion. Thus, an end-system
only needs to react at most once per RTT as long as it reacts
sufficiently. In a RTT, several packet losses are actually
caused by the same network congestion. In order to differ
from the packet loss, we define a packet event as all packet
losses appearing during a RTT. Only the packet loss event can
show the network congestion correctly. That is to say, in a
same RTT only the first packet loss can cause a new packet
loss event, while those following packet losses belong to the
same packet loss event because they are caused by the same
congestion.

It is easy for the receiver to detect packet losses. We can
add a timer T with duration of RTT to the RAAR receivers.
When a first packet loss appears in a RTT, we can consider a
new packet loss event happens, and at the same time, the
receiver starts up the timer T. Before the timer expires, we can
consider succedent packet losses belong to the same packet
loss event and a same congestion causes them. In summary,
RAAR end-systems detect the change of the network
congestion state by the packet loss event, that is, if there isn’t
any packet loss event between the previous data packet
received successfully and the latest one, the sending rate is
increased, whereas, decreased.

B.3 Estimation of RTT And RTO
In RAAR, the round-trip time value RTT and retransmit

timeout value RTO are used to determine the length of round
and timeout of ACK packets (see Section 3.A). They are
measured at receivers.

The way in which RAAR estimates RTT is similar to TCP.
The receiver feedbacks an ACK packet to the sender and
records the sending time t0. When the sender receives the
ACK packet, it begins a new round immediately. Then the
sender sends the first data packet of the new round to the
receiver. The receiver records the time t1 on receiving the data
packet, so t1- t0 is a sample of RTT. The receiver smoothes the
sample of RTT to get a SRTT value using exponentially
weighted moving average. The receiver could derive the
retransmit timeout values RTO using the usual TCP algorithm:

varRTT4SRTTRTO ×+=

where RTTvar is the variance of RTT and SRTT is the
smoothed round-trip time. For the other sections of this paper
RTT refers to SRTT, otherwise, it is explicitly stated.

B.4 Smoothness Function of Rate
In RAAR, the receiver estimates the sending rate values

rate_, and reports the sending rate values to the sender. Before
the receiver sends ACK packets with the sending rate values,
RAAR should smooth the sending rate values. We use the
same way as that used in the TFRC protocol [9]. Using an
array r(i) to record the latest n historic values of rate_, a
weighted average rate value Rate_ is calculated as follows:

∑
∑

=

=
⋅

= n

i

n

i

iw

iriw
Rate

1

1

)(

)()(
_

where w(i) is a weight array, which is defined as: ,

≤≤
+

−
≤≤

=
.2 ,

12/
2/1

,21 ,1
)(

nin/
n

ni-

n/i
iw

The smoothed rate values Rate_ are reported to the sender
by ACK packets. What we should notice is that Rate_ is the
actual sending rate at the sender, while rate_ is the rate
calculated using the GAIMD algorithm at the receiver. Rate_
cannot replace rate_ to be used in the GAIMD rate calculation.
If so, the TCP-friendly performance of RAAR cannot be
guaranteed.

IV.

A.

B. TCP-Friendliness

PERFORMANCE EVALUATION
We have tested RAAR extensively in the ns2 simulator

[12], and compared it with TFRC protocol by simulations. In
this section, we present the major simulation results in detail,
which show that RAAR is remarkably fair when competing
with TCP flows and its sending rate is reasonably smooth
across a wide range of network conditions.

Simulation Configurations
For measuring the steady performance of the RAAR

protocol, we consider the simple well-know single bottleneck
simulation scenario illustrated in Fig. 2. The access links are
sufficiently provisioned to ensure that any packet drops/delays
due to congestion occur only at the bottleneck bandwidth.

In Fig. 2, R1 and R2 are two routers, and the link between
them is the bottleneck. All access links have higher bandwidth
and shorter delay than the bottleneck. In all our following
simulations, the bandwidth of the access links is 100Mbps,
and their delays are random values uniformly distributed
between 0 and 20 milliseconds. The bandwidth of the
bottleneck is shared by m RAAR (or TFRC), n TCP and k
ON-OFF UDP flows. In order to compare fairly, the size of all
kinds of packets, including ON-OFF UDP, TCP, RAAR, and
TFRC packets, is the same value illustrated in Table 1.

We only test the steady performance of RAAR in this
paper. In all following simulations, TCP flows refer to FTP
sessions with infinite amount of data. In order to lessen the
resonation between sources and reduces the duration of the
initial transition phase, all flows are started at uniformly
distributed random times. If no special specifications, the
simulation parameters are set as ones in Table 1. The
throughput for each flow is measured using the number of
delivered packets during the last two thirds of the simulation
time to ignore transient startup behavior.

The simulation results in this section give us confidence
that RAAR is TCP-friendly when competing with TCP traffic
of different flavors in the same bottleneck. The bandwidth of
the bottleneck is shared by n TCP and n RAAR (or TFRC)
flows. We vary the number of flows in Fig. 3 and 4, and vary
the link rate in Fig. 3. The length of simulation time is 600
seconds. These figures show that the mean throughput over
last 400 seconds of simulation. We normalize the throughput
of RAAR (or TFRC) and TCP in Fig. 3 and 4, so that a value
of one would be a fair share of the link bandwidth. Fig. 5
shows the intra-fairness using the value equality fairness.

Fig. 3 illustrates the fairness of RAAR when competing
with Sack TCP traffic in both Drop-tail and RED queues.
They illustrate that RAAR and TCP co-exist fairly across a
wide range of network conditions, i.e. different link rates, drop
rates (or number of flows) and queuing algorithms.

We have evaluated a representative curve in Fig. 3 in detail.
Fig. 4 shows the 15Mbps data points from Fig. 3. Fig. 4a
shows the simulation results that RAAR flows compete with
the same number of Sack TCP flows in bottleneck, and its Y
axes refers to the normalized throughput of the flows while X
axes is the total number of the flows in the bottleneck. The
results from RAAR and Reno TCP simulation are summarized
in Fig. 4c. In order to compare RAAR with TFRC, we re-
conduct the simulations of Fig. 4a by the way that RAAR is
replaced by TFRC. Their results are summarized in Fig. 4b.

In Fig. 4a and 4c, we exploited the difference among
various TCP flavors to access the impact on RAAR flows. The
various TCP flavors have an impact on the TCP-friendliness

Figure 2. The simulation network topology

Figure 3. RAAR flow sending rate while co-existing with Sack TCP

of RAAR. Those figures reveal RAAR co-exiting with Reno
TCP is more TCP-friendly than with Sack TCP. Because Sack
TCP is or will be the most popular TCP flavor and we would
like to limit the impact of the TCP’s performance problem and
focus on the interaction between RAAR and TCP traffic.
Therefore, we choose Sack TCP as ideal representative for
TCP flows. For the rest of this paper, whenever we refer to
TCP, we mean Sack TCP otherwise it is explicitly stated.

Fig. 4a and 4b reveal the comparative results between
RAAR and TFRC. The simulations parameters in Fig. 4b are
the same as ones in [9], and we utilize the TFRC simulation
codes carried in ns2.1b8 [12]. When the number of competing
flows becomes more, the performance of TCP-friendliness of

TABLE I.THE SIMULATION CONFIGURATION PARAMETERS

Packet Size 1000 Byte TCP/TFRC Overhead 0.002

ACK Size 40 Byte Mean ON Time 1 s

Bottleneck Delay 50 ms Mean OFF Time 2 s

Bottleneck Buffers 150 pkts Rate during ON Time 500 Kbps

TCP Maximum Window 10000 pkts Shape of ON-OFF 1.5

TCP Tick 100 ms RAAR betaAIMD_ 0.875
R1 R2

1

2

m

1

2

n

1

2

k

S1

S2

Sm

S1

S2

Sn

S1

S2

Sk

raar
sources

tcp
sources

on/off
sources

raar
sinks

tcp
sinks

on/off
sinks

bottleneck

RAAR excels that of TFRC. The throughput of TFRC is
higher than that of TCP due to the TCP throughput equation
that can only predict the upper limit of TCP throughput. Thus,
we can find TFRC can occupy more bandwidth on competing
with TCP. From the result of Fig. 4a, we consider the TCP-
friendliness of RAAR is acceptable.

Fig. 5 is the value P of different protocol flows in the
above simulations. The value of F , called equality
fairness, is define as follows:

equalityF
equality

P

2
4

8
16

32
64

128

1
2

4
8

16
32

64
128

0.5

1

1.5

2

2.5

3

Number of flows(RAAR+TCP)

Fairness across the parameter space with RED queuing

Link bandwidth(Mbps)

N
or

m
al

iz
ed

 R
A

A
R

 th
ro

ug
hp

ut

)()(22 ∑∑ ∈∈
×=

Pf fPf f
equality

P RPRF

where Rf refers to the average throughput of flow f, and |P| the
number of flows that utilize the protocol P

In order to perform comparative studies of TFRC and
RAAR, we calculated the values of the protocols in the
above simulations, and the results are summarized in Fig. 5. It
clearly shows that: the intra-protocol fairness of RAAR is
approximately equal to that of TFRC when the number of
competing flows is few; however, RAAR is better than TFRC
when the number of competing flows becomes more. Because
the bandwidth of bottleneck is fixed as 15Mbps, the more
these are flows in the bottleneck, the higher packet loss rates.
Thus, the performance of TFRC is distinctly deteriorated
when the packet loss rate of the bottleneck is high (i.e., when
there are many flows in the bottleneck). In [24], its simulation
results also reveal the same performance problem of TFRC.
However, RAAR can perform fairness when the packet loss
rate is high.

equality
PF

2
4

8
16

32
64

128

1
2

4
8

16
32

64
128

0

0.5

1

1.5

2

2.5

3

Number of flows(TCP+RAAR)

Fairness across the parameter space with Drop Tail queuing

Link rate(Mbps)

N
or

m
al

iz
ed

 R
A

A
R

 th
ro

ug
hp

ut

C. Performance with Long-Duration Background Traffic
In this section, we primarily want to test two performances

of RAAR. First, we wish to compare the average sending rates
(or throughput) of a TCP flow with a RAAR flow
experiencing similar network conditions. Second, we would
like to compare the smoothness of those sending rate. As a
TCP-friendly protocol to transmit multimedia traffic in the
future, we would like for RAAR flows to achieve the same
average throughput as TCP flows, and yet have less variability.
The timescales at which the sending rates are measured affects
the values of these measures. In the simulation of this section,
we measure the equivalence ratio and Coefficient of Variation
(CoV) [9] of RAAR, TFRC and TCP flows at various
timescales.

To compare the sending rates of two flows at a given
timescale, the equivalence at time t is defined as follows:

0 16 32 48 64 80 96 112 128 144 160 176 192 208
0

0.2

0.4

0.6

0.8

1

1.2

1.4

a: Number of flows (TCP+RAAR)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

50% RAAR vs 50% Sack TCP, 15Mbps Bottlelink BW

Mean RAAR
Mean TCP/Sack1

0 16 32 48 64 80 96 112 128 144 160 176 192 208
0

0.2

0.4

0.6

0.8

1

1.2

1.4

b: Number of flows (TCP+TFRC)

50% TFRC vs 50% Sack TCP, 15Mbps Bottlelink BW

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Mean TFRC
Mean TCP/Sack1

0 16 32 48 64 80 96 112 128 144 160 176 192 208
0

0.2

0.4

0.6

0.8

1

1.2

1.4

c: Number of flows (TCP+RAAR)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

50% RAAR vs 50% Reno TCP, 15Mbps Bottlelink BW

Mean RAAR
Mean TCP/Reno

Figure 4. The throughput of TCP and RAAR/TFRC (a: RAAR and TCP/Sack1; b: TFRC and TCP/Sack1; c: RAAR and TCP/Reno)

Figure 5. The equality fairness of RAAR/TFRC and TCP

0)(,,0)(

),
)(
)(

,
)(
)(

min()(

,,

,

,

,

,
,,

>>

=

tRortR
tR
tR

tR
tR

te

ba

a

b

b

a
ba

δδ

δ

δ

δ

δ
δ

where Rf,δ(t) refers to the sending rate of a given data flow f at
time t, measured at a timescale δ. Thus, The average values of
the time series, {eδ,a,b(t0+i*δ)}n

i=0, is called the equivalence
ratio of both flows at a timescale δ. The closer it is to one, the
more “equivalent” both flows are.

The coefficient of variation (CoVf, δ) of a given data flow f
at a timescale δ, is define as follows [22]:

f

tT

i
ff

f R

RitR
tT

CoV
∑
−

=

−⋅+
−

=

δ

δ

δ

δ
δ

/)(

1

2
0,

0
,

0

))((
/)(

1

where Rf is average sending rate of a given flow f. The CoVf,δ
can be used as a measure of variability of the sending rate of
the flow f at a timescale δ. A lower value CoVf, δ implies a
smoother flow.

Fig. 6 and 7 reveal the simulation results from a scenario
with a bottleneck of 15Mbps, and 100 packets buffer. The
bottleneck queue runs RED queue with gentle true, a

minthresh of 10 and a maxthresh of 50. There are 16 RAAR or
TFRC protocol flows competing with 16 TCP flows in the
bottleneck. The simulation duration is 600 seconds, and the
results are from the last 400 seconds of the simulations. The
flows are started at random times, uniformly distributed
between 0 and 10 seconds. The other simulation parameters
can be found in Table 1. The values CoV in those figures are
the average values of 16 same protocol flows. The equivalence
ratio values in the figures are the average values of a flow and
one of the 15 other different protocols flows (or the 15 other
same protocol flows). The timescales used in our
measurement is 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0, 10, 15,
and 20 seconds. In the condition, the packet loss rate at the
bottleneck is about 0.1%. 0 16 32 48 64 80 96 112 128 144 160 176 192 208

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

d: Number of flows (TCP+RAAR/TFRC)

Fa
irn

es
s

50% RAAR(or TFRC) vs 50% Sack TCP, 15Mbps Bottlelink BW

RAAR
TFRC
TCP(RAAR)
TCP (TFRC)

Fig. 6 reveals the fairness and the smoothness of RAAR
competing with TCP as a function of the timescales of
measurement. Curves are shown in Fig. 6a for the mean
equivalence ratio between pairs of TCP flows, between pairs
of RAAR flows, and between pairs flows of different types.
The equivalence ratio of RAAR pairs is bigger than 0.76 and
varies little over a broad range of timescales. The equivalence
ratio of RAAR and TCP is between 0.6 and 0.8. Thus, we can
conclude that the intra-protocol fairness of RAAR protocol
excels that of TCP on abroad range of timescales, and the
inter-protocol fairness of RAAR and TCP is acceptable. In Fig.
6b, the CoV of RAAR is all less than 0.16 and its variation is
very small on a broad range of timescales, while the CoV of
TCP depends on the timescales greatly. Especially, the
sending rate of RAAR is smoother than that of TCP over a
broad range of timescales.

In the same simulation condition, we have compared the
fairness and smoothness of RAAR with those of TFRC, that is,
we conduct the simulations using 16 RAAR and 16 TCP flows,
then, repeat the simulations using 16 TFRC and 16 TCP flows.
The results of those simulations are summarized in Fig. 7. The
two upper curves in Fig. 7a reveal the intra-protocol fairness
of RAAR is equivalent to that of TFRC. The two nether
curves show that the inter-protocol fairness of RAAR and
TCP excels that of TFRC and TCP. From Fig. 7b, we can find
that RAAR flows are smoother than TCP over a broad range
of timescales. All comparative simulations in this section
utilize the same simulation parameters as ones in [9] and our
simulation results of TFRC are close to those in [9]. Thus, we

100 101
0

0.2

0.4

0.6

0.8

1

a: Timescale for Rate Measurement(seconds)

E
qu

iv
al

an
ce

 R
at

io

RAAR vs RAAR
RAAR vs TCP
TCP vs TCP

100 101
0

0.1

0.2

0.3

0.4

0.5

0.6

b: Timescale for Rate Measurement(seconds)

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

RAAR
TCP

Figure 6: RAAR and TCP’s fairness and smoothness in all kinds of timescales
(a: Equivalence Ratio; b: Coefficient of Variation.)

Figure 8. The CoV of RAAR and TCP with ON-OFF as background traffic (a:
the CoV of RAAR; b: the CoV of TCP)

Figure 7. Comparative figure of RAAR and TFRC (a: Equivalence Ratio; b:
Coefficient of Variation.)

Figure 9. Equivalence ratio of RAAR and TCP with ON-OFF as background
traffic

confirm our scripts of the simulations are correct.
From these graphs in this section, we conclude that: 1) on

a broad range of timescales, RAAR flows with long duration
can share bandwidth fairly with TCP competing flows, and
have better rate smoothness; 2) the both performances of
RAAR excel TFRC.

D. Performance with Self-Similar Flows as Background
Traffic

In this section, we have evaluated the performances of
RAAR using a more realistic source model as the Internet

5
95 on-off source
110 on-off source
125 on-off source

100 101 102
0

1

2

3

4

a: Measurement Timescale (seconds)

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
(R

A
A

R
)

140 on-off source

100 101 102
0

1

2

3

4

5

b: Measurement Timescale(seconds)

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n(
TC

P
)

95 on-off source
110 on-off source
125 on-off source
140 on-off source

100 101
0

0.2

0.4

0.6

0.8

1

a: Timescale for Rate Measurement(seconds)

E
qu

iv
al

an
ce

 R
at

io

RAAR vs RAAR
TFRC vs TFRC
RAAR vs TCP
TFRC vs TCP

100 101
0

0.1

0.2

0.3

0.4

b: Timescale of Rate Measurement(seconds)
C

oe
ffi

ci
en

t o
f V

ar
ia

tio
n

RAAR
TFRC

100 101 102
0

0.2

0.4

0.6

0.8

1

Measurement Timescale(seconds)

E
qu

iv
al

an
ce

 R
at

io

95 on-off source
110 on-off source
125 on-off source
140 on-off source

Figure 10. CoV comparison of RAAR and TFRC with ON-OFF as
background traffic, and with different packet loss

background traffic. People have found the Internet traffic
tends to be self-similar in nature [13]. The self-similar traffic
may be created using several ON/OFF UDP sources whose
ON/OFF times are drawn from heavy-tailed distribution such
as the Pareto distribution [23]. Fig. 8 - 10 present results of
simulations in such background. The parameters of ON-OFF
UDP data source can be found in Table 1. The simulation
duration is 5000 second; the bottleneck queue runs RED with
a total buffer of 200 packets, and the other parameters are the
same ones as in Table 1 and as in the previous simulations. To
test the performance when RAAR and TCP coexisting, we
monitor respectively a long-duration RAAR connection and a
long-duration TCP connection whose background traffic is
self-similar one created using different numbers of ON-OFF
UDP flow. The smoothness and fairness of RAAR and TCP
are shows in Fig. 8 and 9. In Fig. 10, we utilize variant
numbers ON-OFF UDP traffic to generate different packet
loss rate in the bottleneck to compare the smoothness of
RAAR with that of TFRC and TCP.

With the ON-OFF background traffic, the packet loss rate
at the bottleneck is between 10% and 40% in Fig. 8 and 9. At
the bottleneck with 95 ON-OFF data sources, we can see that
the equivalence ratio of RAAR and TCP sessions is between
0.4 and 0.6 and the CoV of RAAR is between 0.3 and 0.6 over
a broad range of timescales. Thus, the results of fairness and
smoothness are close to the results in Fig. 6. The two
performances of RAAR connections are deteriorated at higher
loss rates, such as with 140 ON-OFF data sources (38.25%
loss rate). However, on long timescales, even at such high loss
rate, the fairness of RAAR competing with TCP is acceptable.
From the results in Fig. 8, we can conclude that RAAR is
smoother than TCP on a broad range of timescales and at any
loss rates.

The Fig. 10 shows that RAAR is smoother than TFRC at a
broad range of loss rates. Especially, when the loss rate is very
high, the smoothness of TFRC becomes deteriorated, while
RAAR can keep up the smoothness very well. The simulation
duration of Fig. 10 is 2000 second, we adjust the number of
ON-OFF data sources in the bottleneck to create those variant
loss rates of the bottleneck, and make a long-duration RAAR
(or TFRC) and a long-duration TCP to compete such
bottleneck.

The simulation results above present: the fairness and the
smoothness of RAAR are acceptable at a broad range of loss
rates; the smoothness of RAAR excels that of TFRC when the
loss rates of bottleneck are very high.

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

Bottlelink Loss Rate(%)

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
RAAR
TCP(RAAR)
TFRC
TCP(TFRC)

V. CONLUSION AND FUTURE WORK
In this paper, we have proposed a novel TCP-friendly

approach to flow control called Rate Adaptation At Receivers
(RAAR) for unicast streaming and it can be upgrade to
multicast. We have reported preliminary simulations on
verifying performance of the protocol. The simulation results
show that we achieve the design goals.

From the simulation results of comparing RAAR with
TFRC, we found that both protocols possess desirable
performances of fairness and smoothness when their flows
compete with TCP flows. However, the both performances of
RAAR are better than TFRC, especially, when the packet loss
rate is very high. These performance problems of TFRC have
been reported in [16], [24]. We suspect that this might be due
to inaccuracy in TCP equation itself. In fact, it is difficult to
model TCP throughput, so that it’s not easy to address the
performance problems of the formula-based TCP-friendly
protocols. On the other hand, the implementation of RAAR is
simpler than that of TFRC.

Currently, we have only simualted long-lived TCP, RAAR
and TFRC flows, and only studied their steady performance.
Because there are more short-lived flows in current Internet.
Although we have conducted simulations with ON-OFF UDP
background traffic, the background traffic is not enough
accurate to model realistic network traffic. We plan to
implement the RAAR algorithm and conducted extensive
expeiments to explore the performance of RAAR in Internet.

Lastly, we will develop a multicast version of RAAR. In
the unicast version of RAAR, we don’t acknowlegde each data
packet, which can avoid effectly the feedback implosion. The
receivers are charge of almost all workload, which alliviates
the sender’s burden. Those characteristic are appropriate for
multicast.

REFERENCES
[1] C. Albuquerque, B. Vickers and T. Suda. “An End-to-End Source-

Adaptive Multi-Layered Multicast (SAMM) Algorithm,” in Proc. 9th
International Packet Video Workshop, New York, April 1999. Also
published as UCI-ICS Technical Report 98-31, University of California,
Irvine, USA, September 1998.

[2] D. Bansal and H. Balakrishnan. “Binomial Congestion Control
Algorithms,” in Proc. of IEEE INFOCOM2001, Anchorage, AK, April
2001.

[3] B. Braden, D. Clark, J. Crowcroft, etc. “Recommendations on Queue
Management and Congestion Avoidance in the Internet,” IETF
RFC2309, April 1998.

[4] S. Blake et al. “An Architecture for Differentiated Services,” RFC 2475
December 1998.

[5] J. Bolot “Characterizing End-to-End Packet Delay and Loss in the
Internet,” in Proc. of IEEE INFOCOM1993, September 1993.

[6] D. Chiu and R. Jain. “Analysis of the Increase/Decrease Algorithms for
Congestion Avoidance in Computer Networks,” Journal of Computer
Networks and ISDN, Vol. 17, No. 1, June 1989, pp. 1-14.

[7] S. Cen, C. Pu, and J. Walpole. “Flow and Congestion Control for
Internet Media Streaming Applications,” in Proc. of Multimedia
Computing and networking 1998, January 1998.

[8] S. Floyd and K. Fall. “Router Mechanisms to Support End-to-end
Congestion Control,” LBL Technical Report, February 1997.

[9] S. Floyd, M. Handley, J. Padhye, and J. Widmer. “Equation-Based
Congestion Control for Unicast Applications,” in Proc. of ACM
SIGCOMM2000, August 2000.

[10] S. Jacobs and A. Eleftheriadis. “Providing Video Services over
Networks without Quality of Service Guarantees,” in Proc. of
RTMW1996, Sophia Antipolis, France, October 1996.

[11] J. Mahdavi and S. Floyd. “TCP-friendly unicast rate-based flow
control,” Technical note sent to the end2end-interest mailing list,
January 1997.

[12] NS-2 Network Simulator. http://www.isi.edu/nsnam/ns/index.html, 2001.
[13] K. Park, G. Kim, M. Crovella. “On the relationship between file sizes,

transport protocols, and self-similar network traffic,” in Proc. of IEEE
International Conference on Network Protocols, pages 171-180, 1996.

[14] J. Padhye, J. Kurose, D. Towsley, and R. Koodli. “A Model Based TCP-
friendly Rate Control Protocol,” in Proc. of NOSSDAV1999, 1999.

[15] R. Rejaie, M. Handley, and D. Estrin. “RAP: An End-to-end Rate-based
Congestion Control Mechanism for Realtime Streams in the Internet,” in
Proc. of IEEE INFOCOMM1999.

[16] I. Rhee, V. Ozdemir, Y. Yi. “TEAR: TCP Emulation at Receivers - Flow
Control for Multimedia Streaming.”
http://citeseer.nj.nec.com/rhee00tear.html.

[17] D. Sisalem, H. Schulzrinne. “The Loss-Delay Adjustment Algorithm: A
TCP-friendly Adaptation Scheme,” Network and Operating System
Support for Digital Audio and Video (NOSSDAV), Cambridge, UK, July
8-10, 1998.

[18] W. R. Stevens. “TCP/IP Illustrated, Volume 2.” Addison-Welsley,
Reading, MA, November 1994.

[19] Thierry Turletti, Sacha Fosse Parisis, and Jean-Chrysostome Bolot.
“Experiments with a Layered Transmission Scheme over the Internet,”
Research Report No 3296, INRIA

[20] B. Vickers, C. Albuquerque and T. Suda. “Source-adaptive Multi-
layered Multicast Algorithms for Real-time Video Distribution,”
IEEE/ACM Transactions on Networking, December 2000. Also
published as UCI-ICS Technical Report 99-45, University of California,
Irvine, USA, October 1999.

[21] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. “Resource
ReSerVation Protocol (RSVP) - Version 1 Functional Specification.”
IETF RFC2205, September 1997.

[22] J. Widmer. “Equation-Based Congestion Control,” Diploma Thesis,
February 2000. http://www.icsi.berkeley.edu/~widmer/tfrc/thesis.ps.gz

[23] W. Willinger, V. Paxson and M. S. Taqqu. “Self-Similary and Heavy
Tails: Structural Modeling of Network Traffic,” Preprint 1996. Appears
on pages 27-53 in the book: “A Practical Guide To Heavy Tails:
Statistical Techniques and Applications.” Robert Adler, Raise Feldman
and Murad S. Taqqu., editors. Birkhauser, Boston, 1998.

[24] Y. R. Yang, M. S. Kim, S. S. Lam. “Transient Behaviors of TCP-
friendly Congestion Control Protocols,” Networking Research
Laboratory, Department of Computer Sciences, The University of Texas
at Austin. Technical Report TR-2000-14, July 2000.

[25] Y. Richard Yang and Simon S. Lam. “General AIMD Congestion
Control,” Technical Report TR-2000-09, May 9, 2000. Networking
Research Laboratory, Department of Computer Sciences, The University
of Texas at Austin. An abbreviated version to appear in Proceedings
ICNP2000, Osaka, Japan, November 2000.

http://www.isi.edu/nsnam/ns/index.html
http://citeseer.nj.nec.com/rhee00tear.html
http://www.icsi.berkeley.edu/~widmer/tfrc/thesis.ps.gz

