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ABSTRACT 

The multi-constrained path (MCP) selection problem occurs when the quality of services (QoS) 

are supported for point-to-point connections in the distributed multimedia applications deployed on 

the Internet. This NP-complete problem is concerned about how to determine a feasible path 

between two given end-points, so that a set of QoS path constraints can be satisfied simultaneously. 

Based on the branch-and-bound technique and tabu-searching strategy, an optimal algorithm and a 

tabu-search based heuristic algorithm are developed in this paper for solving the MCP problem with 

multiple constraints. The experimental results show that our tabu-search based heuristic algorithm 

not only outperforms the previous published method in [4], but also demonstrates that it is indeed a 

highly efficient method for solving the MCP problem in large-scale networks.  
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1. INTRODUCTION 

For real-time multimedia applications deployed on the broadband integrated services networks, 

various QoS requirements, such as bandwidth, delay, cost, delay jitter, packet loss rate, etc., must be 

supported in order to provide appropriate service quality [8,9,11]. To provide such QoS-based 

services, a routing problem concerning how to select a feasible path from a source node to a 

destination node, so that all the given QoS constraints can be satisfied simultaneously. This QoS 

routing problem is often referred as a multi-constrained path selection problem (MCP) [1,2,3,4]. 

The MCP problem is known to be NP-complete [1,12]. To cope with the NP-complete, a 

number of heuristics were developed for the MCP problem in the past [1,2,3,4,6]. In [1,2,6,10], the 

MCP problem with only two independent additive QoS constraints was studied, and 

polynomial-time heuristic algorithms were proposed. For the MCP problem with multiple additive 

QoS constrains, two heuristic methods have been published in [3,4]. A limited path heuristic 

modified from extended Bellman-Ford algorithm [5] was developed in [3], where the simulation 

results show that this method works well for a small mesh of 64 nodes. However, since it requires 

 space in each node to store all the legal partial paths, the required running space 

could be enormous for networks with a large amount of nodes. Hence, this approach is not suitable 

for the MCP problem in large-scale networks. In [4], a randomized heuristic algorithm with  

time complexity and  storage complexity was proposed for the MCP problem with multiple 

constraints. Although this heuristic algorithm can efficiently solve small-size MCP problems, its 

performance degrades very fast as the distance between two given end-points is increased. A 

simulation study of this algorithm is presented in section 5. 
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In this paper, an optimal algorithm and a heuristic algorithm are presented for solving the MCP 

problems with multiple constraints. The optimal algorithm is developed based on the 

branch-and-bound technique, and its performance is much more efficient than the extended 

Bellman-Ford based optimal algorithm proposed in [5,13]. As for the heuristic algorithm, it was 

developed based on the tabu searching strategy and the branch-and-bound based optimal algorithm. 
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A number of simulations are presented in section 5. The experimental results show that our 

tabu-search based heuristic method not just performs very well on a number of different network 

topologies, but also demonstrates that it is indeed a highly efficient method for solving the 

large-scale MCP problems.  

 

2. THE MCP PROBLEM 

Consider a network that is modeled by a directed graph , where  is a set of nodes 

and 

),( EVG V

E  is a set of links. Each link Evu ∈),(  is associated with K  positive additive QoS 

parameters: )1(,....,1,0),,( −= Kivuwi . For non-additive QoS parameters like bandwidth, a 

pre-processing procedure can be invoked to remove links with bandwidth less than requirement. 

Hence, only positive additive QoS parameters are considered in this study.   

For any link e  from node  to node , the following notation: 

, represents 

u v

))(),......,),(()(),( 10 eweewewvuw K−== (1w K  QoS parameters assigned on link . In 

addition, for a path 

e

P  and a QoS parameter , the path weight  is defined as the 

summation of  on every link  along the path 

i )(Pwi

)(ewi e P . 

Given K  constraints , iC )1(0 −≤≤ Ki

)1(0

, and a pair of nodes S and T representing a source 

node and a destination node respectively, the goal of the MCP problem is to find a path P from S to 

T such that , where iCP ≤)(iw −≤≤ Ki . A path that can simultaneously satisfy all the QoS 

constraints is called a feasible path. 

 

3. THE OPTIMAL ALGORITHM  

In this section, we present an optimal algorithm for the MCP problem. The algorithm is 

developed based on the branch-and-bound technique and given in Figure 3. A heuristic procedure 

modified from the optimal algorithm is used as a kernel function in our tabu-search based heuristic 

algorithm, which is represented in section 4. 

3.1. The branch-and-bound algorithm 
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In order to solve the MCP problem optimally, a data structure called state-space tree is 

generated from a given network  to record all the feasible paths. Based on the state-space tree, a 

branch-and-bound based algorithm is applied to search for a feasible path. The state-space tree is 

constructed in the following ways.  

G

Let the source node of network  be the root of the state-space tree. As shown in Figure 2, 

for each state node  in the state-space tree, two labels mark it: one is the node number  in the 

original network  and another one is an attribute vector. Let  denote the attribute vector of 

state node . Let 

G

jS j

G jY

jS K  denotes the number of QoS constraints, and  can then be defined as 

follows: 

jY

(1) , where ),.....,,_( ,1, Kjjjj wwvalueobj=Υ ∑=
∈Pvu

ijij vuww
),(

,, ),( , Ki ≤≤1 .  

(2) In Figure 3,  in the attribute vector Y  is computed based on the following 

equation: 

jvalueobj _ j

∑ −>−= =
K
i iij Cjswvalueobj 1 ])([_ , …………………………………………………….. (1) 

where = a positive integer, if jvalueobj _ 0])([ >−>− ii Cjsw , for any QoS parameter . i

In the above equation, we use  representing the summation of  on every link  

along the path from source node 

)( jswi >− )(ewi e

s  to node . j

For any state node with node-label u , a new state node  is created for each 

down-stream node , if the link  is in the network . In addition, these new state nodes are 

made to be children of S , and they are at the same level in the state-space tree. For any 

intermediate state node with node-label , down-stream nodes of node  cannot be added in 

the state-space tree if the , where  is a given constraint and 

uS

u

ijw ,

vS

v ),( vu

iC

G

jS j

C

j

i> i K≤≤1 . Since one of 

QoS constraints is violated, the path from root to state node  is not a feasible path for the MCP 

problem. As a result, the state node  becomes a leaf node in the state-space tree.  

jS

jS

By applying the above branching process recursively, the entire state-space tree is then obtained 

for the MCP problem. The destination node must appear at some of the leaf nodes of the state-space 
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tree. Since the goal of our problem is to find a feasible path that satisfies all the path constraints, we 

may speed up this searching process by giving priorities to the state nodes that are eligible for 

branching. That is, the state node j with the smallest  should have the highest priority 

to be selected for branching. This searching strategy is based on an observation that a state node 

with smaller  would have more chance to lead to a feasible path. A priority heap 

maintained in Figure 3 is used to keep all the state nodes, where the node with the smallest 

 should be always on the root of the heap. As shown in lines 24~25 of Figure 3, only 

state nodes that contain non-destination nodes and their  are not greater than zero, are 

eligible for further branching, and are thus stored in the heap. 

jvalueobj _

valueobj _

valueobj _

valueobj _

The time complexity of our branch-and-bound algorithm is bounded by O  with  

denoting the number of nodes in the network and  representing the largest node-degree, since at 

the worst case the height of the state-space tree is at most 

)( nd n

d

)1( −n  and the number of children of any 

state node could be as large as . d

3.2. The example 

To illustrate our branch-and-bound method for the MCP problem, a numerical example is given 

in Figure 1 and 2. Based on a six-node network given in Figure 1, the nodes 0 and 5 are assumed to 

represent the source node and destination node respectively, and the paths between these two nodes 

must satisfy two QoS constraints,  and , which are no more than 5. A state-space tree is then 

constructed in Figure 2, where all the state nodes are numbered based on their creating sequence. 

0C 1C

For example, state nodes  and  are created earlier than state nodes  and , because 

the  of  is  and the  of  is 

4s 5s 6s 7s

valueobj _ 3s 6− valueobj _ 2s 7− . The branching process occurs 

on state node  is earlier than state node . For the same reason, the branching process occurs 

on state node  is earlier than state node . Note that the path  is not 

feasible. The branching process stops after the first feasible path  is found. 

2

3s

s 3s

5s 730 ss →→

852 ss→

1s

→

s→

0s s→
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(0,0,0)
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4 4 3

1 5 5

s1 s2

s3 s4 s5

s6 s7 s8

(-8,1,1) (-7,1,2)

(-5,2,3)(1,3,6)

(-1,4,5)

(-6,2,2)

(1,5,6)(-4,3,3)

Figure 2.  State-space tree construction based on
  branch-and-bound algorithm

node attribute vector= (obj_value,w0,w1)
C0 = 5, C1=5

0

2

1

4

3

5

source

destination

(2,2)

(1,1)(1,2)

(3,4)(1,1)

(1,1) (1,1) (2,4)

Figure 1.  An example of 6-node network

Link attribute vector= (weight0,weight1)

 

 The branch-and-bound based procedure { 
(1) Initialize a node heap H ; 
(2) Let  denote the source node, and S T  denote the destination node; 
(3) Let  = the  constraint, jC jth Kj ≤≤1 ; 
(4) Let = the  QoS parameter on link ;  ),( vuw j jth ),( vu

(5) Let state  store the source node  and be the root of the state-space tree; 0S S
(6) Add  to heap 0S H ; 
(7) While ( ) { ϕ∉H

(8)   ;  )(_ HtopremoveSu =

(9)   For each node  adjacent to node  stored at state { v u uS
(10)      If ( v  is not on the path from  to , and  is unvisited from u ) { 0S uS v
(11)      Create a new state node  for v  based on the information stored in state node  of 

; 
vS uS

u
(12)       ; YESbranchSv =>− ),( vupathSpathS uv +>−=>− ;  
(13)      Let  denote the path from  to ;  vP 0S vS

(14)      , where ∑ −= =
K
j jvjv CPwvalueobj 1 ])([_ 1_ =vvalueobj  if [ ; 0])( >− jvj CPw

(15)      If ( obj ) { 0_ >vvalue
(16)         ; } NObranchSv =>−

(17)      Else { 
(18)         If ( v ) { T==

(19)           ; NObranchSv =>−

(20)           If ( obj ) 0_ ≤vvalue
(21)             Return ;  vP
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(22)         } 
(23)         Else { 
(24)           Add  to heap v H ;   
(25)           Make the new state node  to be a child-node of state node ;            vS uS

(26)   }}}} }  
(27)   Output “No feasible path found.”; 
(28) } 

Figure 3.  The branch-and-bound based optimal algorithm  

 

S u v T

L
Figure 4.  A partial path of length L. 

 
4. A TABU-SEARCH BASED ALGORITHM 

Since the MCP problem is NP-complete, the optimal algorithm presented in the previous 

section performs well only for networks with a small number of hops between source and 

destination nodes. For large-scale networks, it may take too much CPU time to traverse the whole 

state-space tree to find a feasible path. Hence, a tabu-search based heuristic algorithm is developed 

in this section to solve the MCP problem in large-scale networks.  

 Given an infeasible path P from node S to node T as shown in Figure 4, our tabu-search based 

heuristic algorithm was designed to iteratively reduce the cumulative link weights on randomly 

selected partial paths R  of P. This reduction is achieved by replacing old path R  with a new 

partial path 'R  of lower cost, where cost is computed by a cost function defined in the equation (2). 

The searching process of our heuristic algorithm can be outlined as follows: 

(a) To find an infeasible path P from S to T, where MP∈  and M  is defined in the following: 

M ={  |  represents the path with the smallest value of  among all paths iΨ iΨ )(Pwi P  

from S to T, where  and ∑=
∈Pe

ii ewPw )()( Ki ≤≤1 }. 

 The set M  can be determined by finding a set of the shortest paths between source and 

destination nodes, where each shortest path is found based on a criterion that is to minimize the 
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summation of all link-weights along the path based on a QoS parameter. Hence, the cardinality of 

set M  is equal to the number of QoS parameters. The heuristic procedure stops if there is a 

feasible path found in the set M . 

'R

{on

(Rwi

(10∗

(Si

(Ci

'P

H

Ci>

(b) A pair of nodes u and v is selected on path P, where TvvuuSP >−+>−+>−= . All the 

links on path vu >−  are then removed. Note that the length of the selected path vu >−  

should not be greater than a given integer L.  

(c) A branch-and-bound based heuristic ( BBH ) procedure given in Figure 5 is applied to search 

for a new partial path  for nodes u and v. The BBH  procedure is modified from the 

branch-and-bound based optimal algorithm given in Figure 3. The main goal of the BBH  

procedure is to find a new path 'R , which is from node u to node v. The path 'R  is 

determined by the following cost function : )( 'RY

})()(
1

''

'
∑=
=

K

i
i RAMinimizatiRY

R
,……..……………………….……………………..(2) 

where  ,      if  ;   )())( ''' RCRA ii −= )()( '' RCRw ii ≤

))()()( ''' RCRwRA iii −= ,  if  ; )()( '' RCRw ii >

)()())( ' TvCuSCTCRC iii >−−>−−>−= , Ki ≤≤1 . 

In the above equations,  represents the  residual QoS constraint for the path )'R ith 'R . 

Since our goal is to rebuild a complete feasible path 'P  from node S to node T at step (d), it is 

not necessary to require the partial path 'R  obtained at this step must be feasible with 

respective to . In fact, we only need a ‘good’ partial path )( 'RCi
'R , which can lead to a path 

 found at step (d), where 'P  could be infeasible. Hence, based on the cost function defined 

in equation (2), the BB  procedure is developed to search for a new path 'R  whose cost 

value  is minimal. Note that for the case that path weight is greater than path QoS 

constraint (i.e., ), we make the path undesirable by multiplying the cost value 

of the path by 10.  

Y

)( 'R)'(Rwi

(d) Let TvRuS >−++>−= ''P . If 'P  is not a feasible path, then 'PP =  and jump back to 
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step (a). Otherwise, the procedure stops. 

(e) The steps from (b) to (d) can be put together to form a path-rebuilding procedure, which is 

embedded into a tabu-search based iteration loop, where a circular queue is implemented as a 

tabu list for storing all the selected paths vu >− . Only selected partial path that are not in the 

tabu list are eligible for path rebuilding. The tabu-searched based procedure stops when a 

feasible path is found or a fixed number of iterations have elapsed.  

Based on the above ideas, the complete pseudo-code of our heuristic algorithm is developed in 

Figure 6. At line 8 in Figure 6, the initial value of L is set to be , and the value is increased by 

one at line 28 if path 

minL

'R  cannot be obtained after a certain number of iterations. Since the function 

BBH is developed based on the branch-and-bound technique, it is only efficient for small-size 

meshes. Furthermore, its performance degrades very fast as the mesh size exceeds some threshold 

value, which is usually a small integer. Hence, the maximum value of L is set to be a small integer, 

. The value of L is reset back to  at line 16 if a path maxL minL 'R  is found. In section 5.3, a set of 

simulations is carried out to show that the values of  and  would affect the performance 

of our tabu-search based method.  

minL maxL

One may use the branch-and-bound based optimal algorithm shown in Figure 3 to search for a 

feasible path 'R  for nodes u and v. According to our simulation results, the heuristic algorithm 

developed based on the BBH  procedure performs much better than the one developed based on 

the optimal algorithm. This phenomenon is due to the fact that it is too hard to obtain a feasible 

partial path 'R  for nodes u and v; as a result, a large amount of iterations in the tabu-searching 

process are wasted and the probability of finding a feasible path is low. On the other hand, although 

the goal of the BBH  procedure is to find a “good” path 'R  and the rebuilt path 'P  based on 'R  

may be infeasible, however, the tabu-search based procedure can be prevented from being stuck into 

some searching area by accepting an infeasible path 'P  at line 23 in Figure 6. Hence, the searching 

space explored by BBH  procedure is much larger and the probability of finding a feasible path by 
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the tabu-search based procedure is much higher. 

The time complexity of heuristic procedure in Figure 6 is bounded by the number of times of 

the BBH procedure at line 14 being executed. Hence, it is  at the worst case. )( ITERATIONSdO n ∗

 
Function BBH (src, dest, R,  { iRCi ∀)( )
(1) Compute  using the cost function defined in equation (2); )(RY

(2) Let )(_ RYCOSTBEST = ; ; φ='R
(3) Let state  store the source node src and be the root of the state-space tree; 0S
(4) Add  to an empty node heap 0S H ; 
(5) While ( ) { ϕ∉H

(6)    ; )(_ HtopremoveSu =

(7)    For each node v  adjacent to node  stored at state { u uS
(8)    If ( v  is not on the path from  to , and  is unvisited from ) { 0S uS v u
(9)       Create a new state node  for  based on the information stored in state node  of 

; 
vS v uS

u
(10)        ; YESbranchSv =>− ),( vupathSpathS uv +>−=>− ;  
(11)       Let  denote the path from  to ;  vP 0S vS
(12)       Let  be the path cost of , and compute the value of  using the cost 

function defined in equation (2);  
vtcos vP vtcos

(13)       If ( cos ) {COSTBesttv _> NObranchSv =>− ;} 

(14)       Else { 
(15)           If ( v ) { dest==

(16)             ; ; vtCOSTBEST cos_ = vPR =' NObranchSv =>− ; 
(17)           } 
(18)           Else { 
(19)              Add  to heap v H ;   
(20)              Make the new state node  to be a child-node of state node ;           vS uS

(21) }}}} }  

RETURN 'R ; 
} 

Figure 5. The branch-and-bound based heuristic procedure 

 

Tabu-search based heuristic procedure { 
(1) Given a network  ),( EVG =

(2) Let  denote the source node, and S T  denote the destination node; 
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(3) Let  = the  constraint, jC jth Kj ≤≤1 ;  

(4) Let F={P| P is a path from S to T, and P is determined by Dijkstra algorithm based on K QoS 
parameters};  

(5) Let FP∈ , and P contains the longest partial path that satisfies all the constraints; 
(6) Let P be the initial path for iterations;  
(7) Initialize a circular queue Q to be the tabu list;  
(8)  ; Given two small integers ; Let 0=== hkj maxmin , LL minLL = ; 
(9) While ( j  <  ITERATIONS) { 
(10)    Randomly select a partial infeasible path R on P where LRPR ≤⊂ ||, ; 

(11)    Assume 21 PRPP ++=  and R  is a path from node u to node v;  
(12)    If ( R ) { Q∉

(13)         ;  RQQ ∪= )()()( 21 PCPCCRC iiii −−= , Ki ≤≤1 ;  
(14)          ; ))(,,,(' iRCRvuBBHR i ∀=

(15)         If ( R ) { φ≠'

(16)              minLL = ; 
(17)              Rebuild a new path 'P  from node u to node v such that ; 2

'
1

' PRPP ++=

(18)               ;   //remember the original path '_ Ppathorig =

(19)              If ( 'P  is a feasible path)  
(20)                 RETURN 'P ; 
(21)              Else 
(22)                 ; 0=h

(23)              'PP = ; 
(24)         } 
(25)         Else { 
(26)             ++k  ;             
(27)             If ( ( k  > ITERATIONS/10) AND ( maxLL < ) ) {   

(28)                 ; ; ++L 0=k

(29)             } 
(30)             ++h ; 
(31)             If ( h  > ITERATIONS/5) { 
(32)                 ; pathorigP _= 0=h ; 

(33)     }   }   } 
(34)     ; ++j

(35)   } 
(36) Output “No feasible path found.”;   
(37) } 

Figure 6. Tabu-search based heuristic procedure 
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5. SIMULATION RESULTS 

In this section, we have several sets of experiments to compare performance and efficiency for 

the optimal and heuristic algorithms presented in this paper for the MCP problem. All the 

simulations are done with the following experimental parameters: PIII 866 MHz CPU, 512MB 

RAM, Linux OS. The simulation programs were developed by ++C . For all benchmarks, the QoS 

parameters (link weights) on each link are randomly selected from 0 to 10.  

For the MCP problem, a heuristic method may not find a feasible path; even at least one 

feasible path exists in the network. Hence, in this study, a parameter named “success ratio” is used to 

evaluate the performances of the heuristic algorithms. The “success ratio” is defined as follows:  

success ratio= number of feasible paths found by a heuristic algorithm / number of feasible 

paths found by an optimal algorithm . %100∗

Three algorithms are studied in this simulation. The first one is the branch-and-bound based 

optimal algorithm presented in Figure 3. The other two are the tabu-search based heuristic algorithm 

given in Figure 6 and the TK_MK heuristic algorithm proposed in paper [4].  

5.2. Benchmark generation 

In order to measure the performance more accurately, two network topologies: ANSNET and 

mesh given in Figure 7 and 8 are used in the simulations. For each network topology, two different 

methods for generating benchmarks are designed to do performance comparisons for our 

tabu-search based heuristic and TM heuristic. These two methods are described as follows: 

(a) Based on a given pair of source and destination nodes of a network, a number of benchmarks 

are generated by randomly assigning weights on each link of the network. The source and 

destination nodes are chosen in a way that the number of hops of the path between them is as 

largest as possible. In Figure 7, for example, assuming node 1 and node 32 be source and 

destination nodes respectively, a number of benchmarks are generated by randomly assigning 

weights on each link of the ANSNET. As for the meshes shown in Figure 8, the source and 
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destination nodes are located at the two-ends of the longest diagonal line of a mesh. 

(b) This method is similar to the first one except that a pair of source and destination nodes is 

randomly selected for each benchmark generated using the method (a). That is, at most N 

distinct pairs of source and destination nodes may exist for N benchmarks generated. 

Given a set of different number of nodes, two sets of benchmarks using the above two methods are 

generated for simulations carried out in section 5.2. For simulations done in section 5.3, 5.4 and 5.5, 

the benchmarks tested are generated by the method (a) only.  

5.2. Performance 

(A) ANSNET 

A network topology shown in Figure 7 is modified from ANSNET [7], which was studied in 

[3,4]. In Table 1 and 2, each data is obtained based on 1000 benchmarks. The constraints, , 

are chosen in a way that the number of feasible paths found by the optimal algorithm can be spanned 

in a wide range.  

10 / CC

As shown in Table 1 and 2, the average success ratios of two heuristics are more than 99% 

based on different values of QoS constraints. The experimental results show that our tabu-search 

based heuristic algorithm is almost as good as the TK_MK method for the ANSNET.  

(B) Mesh 

Like the ANSNET, for a  mesh, two sets of benchmarks are used to compare 

performance between two heuristic algorithms. The experimental results are shown in Table 3 and 4, 

where each data is computed based on 1000 benchmarks. Since optimal solutions cannot be found 

for meshes with more than 81 nodes, the largest benchmark simulated is a  mesh in Table 3 

and 4. 

NN ×

99×

In Table 4, two heuristic methods give more than 99% success ratios for all benchmarks. While 

in Table 3, the tabu-search based heuristic method outperforms the TK_MK method for all cases. In 

Table 3, two end-nodes of the longest diagonal line of a mesh are used to be the source and 
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destination nodes (see Figure 8). The number of hops between these two nodes on a  mesh is 

at least . Since benchmarks in Table 3 are generated based on the same pair of source and 

destination nodes, the length of each feasible path found in Table 3 is at least . While in 

Table 4, the average length of a feasible path is around . As a result, it is much harder to find a 

feasible path for the benchmarks used in Table 3.  

NN ×

)1−N

)1(2 −∗ N

(2∗

N

When the size of a mesh is increased from 49 nodes to 81 nodes, the average success ratio of 

the tabu-search based method is changed from 94.5% to 92.9%, while the average success ratio of 

the TK_MK method is decreased from 84.2% to 58.9%. Obviously, the performance of our 

tabu-search based method is much better and stable than the TK_MK method for  meshes. NN ×

9

14
13

1810
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12

15

19

20

27

8

1

2

3

4

5

6

7

16

17

26
29

28

31

30

32

24

21

25

22 23

Figure 7.  A network topology

source

destination Figure 8.  A 16-node mesh

source

destination

5.3. Efficiency 

In order to compare the executing time for two heuristic methods, several large size of meshes 

are used for experiments. The benchmarks tested in this set of experiments are generated by the 

method (a) described in section 5.1. The experimental results are shown in Table 5. 

Each CPU time in Table 5 is a summation of the executing time of 100 different benchmarks. 

Several experimental results derived from Table 5 are summarized as follows: 

 The optimal solutions cannot be obtained within a reasonable amount of time by the 

branch-and-bound based optimal algorithm when the mesh size is greater than 81. 
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 For two heuristic algorithms, the executing time is increased when the values of QoS 

constraints are decreased. However, for the branch-and-bound algorithm, the executing time is 

decreased when the values of QoS constraints are decreased. This phenomenon is due to the fact 

that the number of state nodes, which are eligible for branching in the state space tree 

constructed in the branch-and-bound algorithm, is increased when the values of QoS constraints 

are increased. On the contrary, it would become harder for two heuristic algorithms to find a 

feasible path when the given QoS constraints become tight. 

 For small meshes, the executing speed of TK_MK method is faster than the tabu-search based 

method. However, when the number of nodes of meshes is in the range between 2500 and 

10000, our tabu-search based method is much more efficient than the TK_MK method.  

 Let = (# of feasible paths by TK_MK method) / (# of feasible paths by Tabu method) . 

Since the  values are much less than 1 for most of the benchmarks used in Table 5, the 

performance of our tabu-search based method is much better than the TK_MK method. In 

addition, the  value is decreased as the mesh size is increased. For the mesh size is not less 

than 1600, the probability is very low for the TK_MK method to find a feasible path with at 

least 78 (i.e.,  hops, even the QoS constraints are so loose that the success ratio of 

the tabu-search based method is 1. 

α %100∗

α

α

2 ))140( −∗

 For a mesh as large as 10000 nodes, it takes only around 4 seconds for the tabu-search based 

method to find a feasible path with at least 198 hops. Hence, it is a highly efficient method for 

the MCP problem in a large network. 

5.4. The success ratio versus the  for the tabu-search based heuristic algorithm minmax / LL

Based on meshes, the same set of 1000 benchmarks generated using the method (a) described 

in section 5.1 is used to for two sets of simulations, which are with  and 

 respectively. As shown in Table 6, the success ratio is improved when the values 

of  and  are increased. However, this improvement is at the expense of consuming more 

5/10/ minmax =LL

7/12/ minmax =LL

maxL minL
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CPU executing time.  

5.5. The success ratio versus the number of QoS constraints 

As shown in Figure 9, the success ratio is decreased as the number of constraints is increased 

for two heuristic algorithms. However, the performance of the TK_MK method affected by the 

number of constraints is much more serious than the tabu-search based method. This set of 

simulations is based on 1000 benchmarks generated for an 8 8×  mesh using the method (a) 

described in section 5.1. 

 

6. CONCLUSIONS 

Based on the branch-and-bound technique and tabu-searching strategy, an optimal algorithm 

and a tabu-search based heuristic algorithm are developed in this paper for solving the MCP problem 

with multiple constraints. The experimental results show that our tabu-search based heuristic 

algorithm not only outperforms the previous published method in [4], but also is a very efficient 

approach for solving the MCP problem in large-scale networks. 

 

Table 1.  The first set of success ratios of two heuristic algorithms for the ANSNET 

 Based on the network in Figure 7, source and destination nodes are set to be node1 and node 32 
respectively.  

 The number of feasible paths found by all algorithms is based on 1000 benchmarks, which are 
generated by the method (a) in section 5.1. 

 ; 10~0, 10 =ww 5,10 minmax == LL . 

10 / CC  # of feasible paths found 
by optimal algorithm 

Tabu (success_ratio) TK_MK (success_ratio) 

28/30 916 99.6% 98.9% 
28/28 890 99.4% 99.1% 
24/28 754 99.5% 99.6% 
28/20 534 99.3% 100.0% 
24/20 395 98.2% 99.8% 
20/20 230 100.0% 100.0% 

Average  99.3% 99.6% 
 

Table 2.  The second set of success ratios of two heuristic algorithms for the ANSNET 
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 The number of feasible paths found by all algorithms is based on 1000 benchmarks, which are 
generated by the method (b) in section 5.1. 

 ; 10~0, 10 =ww 5,10 minmax == LL . 

10 / CC  # of feasible paths found 
by optimal algorithm 

Tabu (success_ratio) TK_MK (success_ratio) 

28/28 989 99.8% 100.0% 
20/24 872 99.8% 99.7% 
16/16 605 99.3% 100.0% 
16/12 463 99.6% 100.0% 
10/12 332 99.7% 100.0% 
8/10 210 100.0% 100.0% 

Average  99.7% 99.9% 
 

Table 3.  The first set of success ratios of two heuristic algorithms for  meshes NN ×

 The number of feasible paths found by all algorithms is based on 1000 benchmarks, which are 
generated by the method (a) in section 5.1. 

 ; 10~0, 10 =ww 5,10 minmax == LL . 

Nodes 10 / CC  # of feasible paths found 
by optimal algorithm 

Tabu (success_ratio) TK_MK (success_ratio)

64/56 966 96.6% 69.2% 
56/56 872 93.1% 57.7% 
48/56 606 89.9% 58.4% 

81 

48/48 313 92.0% 50.2% 
Average   92.9% 58.9% 

56/49 940 96.7% 77.2% 
49/49 818 94.3% 66.9% 
42/49 553 93.1% 70.3% 

64 

42/42 289 91.7% 70.9% 
Average   94.0% 71.3% 

48/42 880 96.5% 83.1% 
42/42 712 96.9% 81.3% 
36/42 444 95.0% 84.7% 

49 

36/36 236 89.4% 87.7% 
Average   94.5% 84.2% 

 
Table 4.  The second set of success ratios of two heuristic algorithms for  meshes NN ×

 The number of feasible paths found by all algorithms is based on 1000 benchmarks, which are 
generated by the method (b) in section 5.1. 

 ; 10~0, 10 =ww 5,10 minmax == LL . 

Nodes 10 / CC  # of feasible paths found 
by optimal algorithm 

Tabu (success_ratio) TK_MK (success_ratio)

48/40 984 99.8% 98.4% 81 
32/24 663 98.9% 98.3% 
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24/24 546 98.9% 99.5% 
16/16 287 99.7% 100.00% 

Average   99.3% 99.0% 
42/42 995 99.9% 98.6% 
28/35 866 99.4% 99.0% 
28/21 621 99.2% 99.7% 

64 

14/14 259 99.6% 100.00% 
Average   99.5% 99.3% 

36/36 984 99.7% 98.9% 
30/24 846 99.5% 99.5% 
18/18 483 99.2% 100.00% 

49 

12/12 227 99.6% 100.00% 
Average   99.5% 99.6% 

 

 
Table 5. Efficiency comparisons based on NN ×  meshes 

 The number of feasible paths found by all algorithms is based on 100 benchmarks, which are generated 
by method (a) in section 5.1. 

 Each CPU time is a summation of all the executing time of 100 benchmarks. 
 The CPU time is marked as “n/a”, if it is over 7200 secs. 
 The optimal solutions are found by branch-and-bound algorithm.  
 = (# of feasible paths by TK_MK method) / ( # of feasible paths by Tabu method)  α %100∗

Optimal Tabu TK_MK 
Nodes 10 / CC  # of feasible 

paths 
CPU 
(sec) 

# of feasible 
paths 

CPU 
(sec) 

# of feasible 
paths 

CPU 
(sec) 

α  

81 65/65 100 4522 100 0.4 86 0.2 86.0%
81 60/50 79 1170 72 5.6 53 0.2 73.6%
81 50/50 50 464.1 44 5.2 28 0.1 63.6%

100 70/70 n/a n/a 100 1.9 73 0.3 73.0%
100 70/55 n/a n/a 84 17.2 56 0.3 66.7%
100 55/60 n/a n/a 58 34.7 21 0.2 36.2%

1600 310/280 n/a n/a 100 13.4 11 68.8 11.0%
1600 250/250 n/a n/a 90 45.1 0 72.6 0% 
1600 220/250 n/a n/a 55 171.2 0 65.6 0% 
2500 400/300 n/a n/a 100 27.2 4 265.0 4.0%
2500 350/300 n/a n/a 96 35.4 0 269.4 0% 
2500 300/300 n/a n/a 57 162.5 0 272.0 0% 
6400 550/600 n/a n/a 100 182.9 0 2117.0 0% 
6400 550/500 n/a n/a 92 192.4 0 2384.0 0% 
6400 500/500 n/a n/a 66 212.5 0 2413.0 0% 

10000 750/700 n/a n/a 100 435.2 0 5132.0 0% 
10000 700/600 n/a n/a 92 442.9 0 5166.0 0% 
10000 650/650 n/a n/a 76 449.1 0 5404.0 0% 

 
Table 6. The success ratio versus the  for the tabu-search based heuristic method minmax / LL

 The success ratio and CPU time obtained for the tabu-search based heuristic are based on 1000 
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benchmarks, which are generated by the method (a) in section 5.1. 
 ; 10~0, 10 =ww

5/10/ minmax =LL  7/12/ minmax =LL   Nodes 10 / CC  
success ratio CPU (sec) success ratio CPU (sec) 

64/56 96.6% 36.2 97.7% 114.5 
56/56 93.1% 58.9 96.1% 115.6 
48/56 89.9% 46.5 93.4% 116.0 

81 

48/48 92.0% 15.9 93.3% 42.4 
Average  92.9% 39.4 95.1% 97.1 

56/49 96.7% 25.5 97.7% 48.5 
49/49 94.3% 33.1 97.2% 51.1 
42/49 93.1% 22.2 100.0% 44.0 

64 

42/42 91.7% 10.9 95.5% 14.6 
Average  94.0% 22.9 97.6% 39.6 

48/42 96.5% 15.9 98.3% 19.5 
42/42 96.9% 12.5 97.9% 16.2 
36/42 95.0% 9.9 97.1% 11.1 

49 

36/36 89.4% 6.1 94.1% 8.5 
Average  94.5% 11.1 96.8% 13.8 

 

 
Figure 9. The success ratio versus the number of constraints for an  mesh 88×
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