
Solving the MCP Problem Heuristically

Wen-Lin Yang
Department of Information Technology

National Pingtung Institute of Commerce
#51, Ming-Sheng East Road, Pingtung City, Taiwan.
Email: wly@npic.edu.tw Fax: 886-8-7223962

ABSTRACT

The multi-constrained path (MCP) selection problem occurs when the quality of services (QoS)

are supported for point-to-point connections in the distributed multimedia applications deployed on

the Internet. This NP-complete problem is concerned about how to determine a feasible path

between two given end-points, so that a set of QoS path constraints can be satisfied simultaneously.

Based on the branch-and-bound technique and tabu-searching strategy, an optimal algorithm and a

tabu-search based heuristic algorithm are developed in this paper for solving the MCP problem with

multiple constraints. The experimental results show that our tabu-search based heuristic algorithm

not only outperforms the previous published method in [4], but also demonstrates that it is indeed a

highly efficient method for solving the MCP problem in large-scale networks.

Keywords: Quality-of-service, Branch-and-bound, Tabu-search, Multi-constrained path

Contact author: Wen-Lin Yang

Workshop: Workshop on Computer Networks

 1

mailto:wly@npic.edu.tw

1. INTRODUCTION

For real-time multimedia applications deployed on the broadband integrated services networks,

various QoS requirements, such as bandwidth, delay, cost, delay jitter, packet loss rate, etc., must be

supported in order to provide appropriate service quality [8,9,11]. To provide such QoS-based

services, a routing problem concerning how to select a feasible path from a source node to a

destination node, so that all the given QoS constraints can be satisfied simultaneously. This QoS

routing problem is often referred as a multi-constrained path selection problem (MCP) [1,2,3,4].

The MCP problem is known to be NP-complete [1,12]. To cope with the NP-complete, a

number of heuristics were developed for the MCP problem in the past [1,2,3,4,6]. In [1,2,6,10], the

MCP problem with only two independent additive QoS constraints was studied, and

polynomial-time heuristic algorithms were proposed. For the MCP problem with multiple additive

QoS constrains, two heuristic methods have been published in [3,4]. A limited path heuristic

modified from extended Bellman-Ford algorithm [5] was developed in [3], where the simulation

results show that this method works well for a small mesh of 64 nodes. However, since it requires

 space in each node to store all the legal partial paths, the required running space

could be enormous for networks with a large amount of nodes. Hence, this approach is not suitable

for the MCP problem in large-scale networks. In [4], a randomized heuristic algorithm with

time complexity and storage complexity was proposed for the MCP problem with multiple

constraints. Although this heuristic algorithm can efficiently solve small-size MCP problems, its

performance degrades very fast as the distance between two given end-points is increased. A

simulation study of this algorithm is presented in section 5.

|))ln(||(| 2 NNO

)(2NO

)(NO

In this paper, an optimal algorithm and a heuristic algorithm are presented for solving the MCP

problems with multiple constraints. The optimal algorithm is developed based on the

branch-and-bound technique, and its performance is much more efficient than the extended

Bellman-Ford based optimal algorithm proposed in [5,13]. As for the heuristic algorithm, it was

developed based on the tabu searching strategy and the branch-and-bound based optimal algorithm.

 2

A number of simulations are presented in section 5. The experimental results show that our

tabu-search based heuristic method not just performs very well on a number of different network

topologies, but also demonstrates that it is indeed a highly efficient method for solving the

large-scale MCP problems.

2. THE MCP PROBLEM

Consider a network that is modeled by a directed graph , where is a set of nodes

and

),(EVG V

E is a set of links. Each link Evu ∈),(is associated with K positive additive QoS

parameters:)1(,....,1,0),,(−= Kivuwi . For non-additive QoS parameters like bandwidth, a

pre-processing procedure can be invoked to remove links with bandwidth less than requirement.

Hence, only positive additive QoS parameters are considered in this study.

For any link e from node to node , the following notation:

, represents

u v

))(),......,),(()(),(10 eweewewvuw K−== (1w K QoS parameters assigned on link . In

addition, for a path

e

P and a QoS parameter , the path weight is defined as the

summation of on every link along the path

i)(Pwi

)(ewi e P .

Given K constraints , iC)1(0 −≤≤ Ki

)1(0

, and a pair of nodes S and T representing a source

node and a destination node respectively, the goal of the MCP problem is to find a path P from S to

T such that , where iCP ≤)(iw −≤≤ Ki . A path that can simultaneously satisfy all the QoS

constraints is called a feasible path.

3. THE OPTIMAL ALGORITHM

In this section, we present an optimal algorithm for the MCP problem. The algorithm is

developed based on the branch-and-bound technique and given in Figure 3. A heuristic procedure

modified from the optimal algorithm is used as a kernel function in our tabu-search based heuristic

algorithm, which is represented in section 4.

3.1. The branch-and-bound algorithm

 3

In order to solve the MCP problem optimally, a data structure called state-space tree is

generated from a given network to record all the feasible paths. Based on the state-space tree, a

branch-and-bound based algorithm is applied to search for a feasible path. The state-space tree is

constructed in the following ways.

G

Let the source node of network be the root of the state-space tree. As shown in Figure 2,

for each state node in the state-space tree, two labels mark it: one is the node number in the

original network and another one is an attribute vector. Let denote the attribute vector of

state node . Let

G

jS j

G jY

jS K denotes the number of QoS constraints, and can then be defined as

follows:

jY

(1) , where),.....,,_(,1, Kjjjj wwvalueobj=Υ ∑=
∈Pvu

ijij vuww
),(

,,),(, Ki ≤≤1 .

(2) In Figure 3, in the attribute vector Y is computed based on the following

equation:

jvalueobj _ j

∑ −>−= =
K
i iij Cjswvalueobj 1])([_ , …………………………………………………….. (1)

where = a positive integer, if jvalueobj _ 0])([>−>− ii Cjsw , for any QoS parameter . i

In the above equation, we use representing the summation of on every link

along the path from source node

)(jswi >−)(ewi e

s to node . j

For any state node with node-label u , a new state node is created for each

down-stream node , if the link is in the network . In addition, these new state nodes are

made to be children of S , and they are at the same level in the state-space tree. For any

intermediate state node with node-label , down-stream nodes of node cannot be added in

the state-space tree if the , where is a given constraint and

uS

u

ijw ,

vS

v),(vu

iC

G

jS j

C

j

i> i K≤≤1 . Since one of

QoS constraints is violated, the path from root to state node is not a feasible path for the MCP

problem. As a result, the state node becomes a leaf node in the state-space tree.

jS

jS

By applying the above branching process recursively, the entire state-space tree is then obtained

for the MCP problem. The destination node must appear at some of the leaf nodes of the state-space

 4

tree. Since the goal of our problem is to find a feasible path that satisfies all the path constraints, we

may speed up this searching process by giving priorities to the state nodes that are eligible for

branching. That is, the state node j with the smallest should have the highest priority

to be selected for branching. This searching strategy is based on an observation that a state node

with smaller would have more chance to lead to a feasible path. A priority heap

maintained in Figure 3 is used to keep all the state nodes, where the node with the smallest

 should be always on the root of the heap. As shown in lines 24~25 of Figure 3, only

state nodes that contain non-destination nodes and their are not greater than zero, are

eligible for further branching, and are thus stored in the heap.

jvalueobj _

valueobj _

valueobj _

valueobj _

The time complexity of our branch-and-bound algorithm is bounded by O with

denoting the number of nodes in the network and representing the largest node-degree, since at

the worst case the height of the state-space tree is at most

)(nd n

d

)1(−n and the number of children of any

state node could be as large as . d

3.2. The example

To illustrate our branch-and-bound method for the MCP problem, a numerical example is given

in Figure 1 and 2. Based on a six-node network given in Figure 1, the nodes 0 and 5 are assumed to

represent the source node and destination node respectively, and the paths between these two nodes

must satisfy two QoS constraints, and , which are no more than 5. A state-space tree is then

constructed in Figure 2, where all the state nodes are numbered based on their creating sequence.

0C 1C

For example, state nodes and are created earlier than state nodes and , because

the of is and the of is

4s 5s 6s 7s

valueobj _ 3s 6− valueobj _ 2s 7− . The branching process occurs

on state node is earlier than state node . For the same reason, the branching process occurs

on state node is earlier than state node . Note that the path is not

feasible. The branching process stops after the first feasible path is found.

2

3s

s 3s

5s 730 ss →→

852 ss→

1s

→

s→

0s s→

 5

0

s0

(0,0,0)

2 1

4 4 3

1 5 5

s1 s2

s3 s4 s5

s6 s7 s8

(-8,1,1) (-7,1,2)

(-5,2,3)(1,3,6)

(-1,4,5)

(-6,2,2)

(1,5,6)(-4,3,3)

Figure 2. State-space tree construction based on
 branch-and-bound algorithm

node attribute vector= (obj_value,w0,w1)
C0 = 5, C1=5

0

2

1

4

3

5

source

destination

(2,2)

(1,1)(1,2)

(3,4)(1,1)

(1,1) (1,1) (2,4)

Figure 1. An example of 6-node network

Link attribute vector= (weight0,weight1)

 The branch-and-bound based procedure {
(1) Initialize a node heap H ;
(2) Let denote the source node, and S T denote the destination node;
(3) Let = the constraint, jC jth Kj ≤≤1 ;
(4) Let = the QoS parameter on link ;),(vuw j jth),(vu

(5) Let state store the source node and be the root of the state-space tree; 0S S
(6) Add to heap 0S H ;
(7) While () { ϕ∉H

(8) ;)(_ HtopremoveSu =

(9) For each node adjacent to node stored at state { v u uS
(10) If (v is not on the path from to , and is unvisited from u) { 0S uS v
(11) Create a new state node for v based on the information stored in state node of

;
vS uS

u
(12) ; YESbranchSv =>−),(vupathSpathS uv +>−=>− ;
(13) Let denote the path from to ; vP 0S vS

(14) , where ∑ −= =
K
j jvjv CPwvalueobj 1])([_ 1_ =vvalueobj if [; 0])(>− jvj CPw

(15) If (obj) { 0_ >vvalue
(16) ; } NObranchSv =>−

(17) Else {
(18) If (v) { T==

(19) ; NObranchSv =>−

(20) If (obj) 0_ ≤vvalue
(21) Return ; vP

 6

(22) }
(23) Else {
(24) Add to heap v H ;
(25) Make the new state node to be a child-node of state node ; vS uS

(26) }}}} }
(27) Output “No feasible path found.”;
(28) }

Figure 3. The branch-and-bound based optimal algorithm

S u v T

L
Figure 4. A partial path of length L.

4. A TABU-SEARCH BASED ALGORITHM

Since the MCP problem is NP-complete, the optimal algorithm presented in the previous

section performs well only for networks with a small number of hops between source and

destination nodes. For large-scale networks, it may take too much CPU time to traverse the whole

state-space tree to find a feasible path. Hence, a tabu-search based heuristic algorithm is developed

in this section to solve the MCP problem in large-scale networks.

 Given an infeasible path P from node S to node T as shown in Figure 4, our tabu-search based

heuristic algorithm was designed to iteratively reduce the cumulative link weights on randomly

selected partial paths R of P. This reduction is achieved by replacing old path R with a new

partial path 'R of lower cost, where cost is computed by a cost function defined in the equation (2).

The searching process of our heuristic algorithm can be outlined as follows:

(a) To find an infeasible path P from S to T, where MP∈ and M is defined in the following:

M ={ | represents the path with the smallest value of among all paths iΨ iΨ)(Pwi P

from S to T, where and ∑=
∈Pe

ii ewPw)()(Ki ≤≤1 }.

 The set M can be determined by finding a set of the shortest paths between source and

destination nodes, where each shortest path is found based on a criterion that is to minimize the

 7

summation of all link-weights along the path based on a QoS parameter. Hence, the cardinality of

set M is equal to the number of QoS parameters. The heuristic procedure stops if there is a

feasible path found in the set M .

'R

{on

(Rwi

(10∗

(Si

(Ci

'P

H

Ci>

(b) A pair of nodes u and v is selected on path P, where TvvuuSP >−+>−+>−= . All the

links on path vu >− are then removed. Note that the length of the selected path vu >−

should not be greater than a given integer L.

(c) A branch-and-bound based heuristic (BBH) procedure given in Figure 5 is applied to search

for a new partial path for nodes u and v. The BBH procedure is modified from the

branch-and-bound based optimal algorithm given in Figure 3. The main goal of the BBH

procedure is to find a new path 'R , which is from node u to node v. The path 'R is

determined by the following cost function :)('RY

})()(
1

''

'
∑=
=

K

i
i RAMinimizatiRY

R
,……..……………………….……………………..(2)

where , if ;)())(''' RCRA ii −=)()('' RCRw ii ≤

))()()(''' RCRwRA iii −= , if ;)()('' RCRw ii >

)()())(' TvCuSCTCRC iii >−−>−−>−= , Ki ≤≤1 .

In the above equations, represents the residual QoS constraint for the path)'R ith 'R .

Since our goal is to rebuild a complete feasible path 'P from node S to node T at step (d), it is

not necessary to require the partial path 'R obtained at this step must be feasible with

respective to . In fact, we only need a ‘good’ partial path)('RCi
'R , which can lead to a path

 found at step (d), where 'P could be infeasible. Hence, based on the cost function defined

in equation (2), the BB procedure is developed to search for a new path 'R whose cost

value is minimal. Note that for the case that path weight is greater than path QoS

constraint (i.e.,), we make the path undesirable by multiplying the cost value

of the path by 10.

Y

)('R)'(Rwi

(d) Let TvRuS >−++>−= ''P . If 'P is not a feasible path, then 'PP = and jump back to

 8

step (a). Otherwise, the procedure stops.

(e) The steps from (b) to (d) can be put together to form a path-rebuilding procedure, which is

embedded into a tabu-search based iteration loop, where a circular queue is implemented as a

tabu list for storing all the selected paths vu >− . Only selected partial path that are not in the

tabu list are eligible for path rebuilding. The tabu-searched based procedure stops when a

feasible path is found or a fixed number of iterations have elapsed.

Based on the above ideas, the complete pseudo-code of our heuristic algorithm is developed in

Figure 6. At line 8 in Figure 6, the initial value of L is set to be , and the value is increased by

one at line 28 if path

minL

'R cannot be obtained after a certain number of iterations. Since the function

BBH is developed based on the branch-and-bound technique, it is only efficient for small-size

meshes. Furthermore, its performance degrades very fast as the mesh size exceeds some threshold

value, which is usually a small integer. Hence, the maximum value of L is set to be a small integer,

. The value of L is reset back to at line 16 if a path maxL minL 'R is found. In section 5.3, a set of

simulations is carried out to show that the values of and would affect the performance

of our tabu-search based method.

minL maxL

One may use the branch-and-bound based optimal algorithm shown in Figure 3 to search for a

feasible path 'R for nodes u and v. According to our simulation results, the heuristic algorithm

developed based on the BBH procedure performs much better than the one developed based on

the optimal algorithm. This phenomenon is due to the fact that it is too hard to obtain a feasible

partial path 'R for nodes u and v; as a result, a large amount of iterations in the tabu-searching

process are wasted and the probability of finding a feasible path is low. On the other hand, although

the goal of the BBH procedure is to find a “good” path 'R and the rebuilt path 'P based on 'R

may be infeasible, however, the tabu-search based procedure can be prevented from being stuck into

some searching area by accepting an infeasible path 'P at line 23 in Figure 6. Hence, the searching

space explored by BBH procedure is much larger and the probability of finding a feasible path by

 9

the tabu-search based procedure is much higher.

The time complexity of heuristic procedure in Figure 6 is bounded by the number of times of

the BBH procedure at line 14 being executed. Hence, it is at the worst case.)(ITERATIONSdO n ∗

Function BBH (src, dest, R, { iRCi ∀)()
(1) Compute using the cost function defined in equation (2);)(RY

(2) Let)(_ RYCOSTBEST = ; ; φ='R
(3) Let state store the source node src and be the root of the state-space tree; 0S
(4) Add to an empty node heap 0S H ;
(5) While () { ϕ∉H

(6) ;)(_ HtopremoveSu =

(7) For each node v adjacent to node stored at state { u uS
(8) If (v is not on the path from to , and is unvisited from) { 0S uS v u
(9) Create a new state node for based on the information stored in state node of

;
vS v uS

u
(10) ; YESbranchSv =>−),(vupathSpathS uv +>−=>− ;
(11) Let denote the path from to ; vP 0S vS
(12) Let be the path cost of , and compute the value of using the cost

function defined in equation (2);
vtcos vP vtcos

(13) If (cos) {COSTBesttv _> NObranchSv =>− ;}

(14) Else {
(15) If (v) { dest==

(16) ; ; vtCOSTBEST cos_ = vPR =' NObranchSv =>− ;
(17) }
(18) Else {
(19) Add to heap v H ;
(20) Make the new state node to be a child-node of state node ; vS uS

(21) }}}} }

RETURN 'R ;
}

Figure 5. The branch-and-bound based heuristic procedure

Tabu-search based heuristic procedure {
(1) Given a network),(EVG =

(2) Let denote the source node, and S T denote the destination node;

 10

(3) Let = the constraint, jC jth Kj ≤≤1 ;

(4) Let F={P| P is a path from S to T, and P is determined by Dijkstra algorithm based on K QoS
parameters};

(5) Let FP∈ , and P contains the longest partial path that satisfies all the constraints;
(6) Let P be the initial path for iterations;
(7) Initialize a circular queue Q to be the tabu list;
(8) ; Given two small integers ; Let 0=== hkj maxmin , LL minLL = ;
(9) While (j < ITERATIONS) {
(10) Randomly select a partial infeasible path R on P where LRPR ≤⊂ ||, ;

(11) Assume 21 PRPP ++= and R is a path from node u to node v;
(12) If (R) { Q∉

(13) ; RQQ ∪=)()()(21 PCPCCRC iiii −−= , Ki ≤≤1 ;
(14) ;))(,,,(' iRCRvuBBHR i ∀=

(15) If (R) { φ≠'

(16) minLL = ;
(17) Rebuild a new path 'P from node u to node v such that ; 2

'
1

' PRPP ++=

(18) ; //remember the original path '_ Ppathorig =

(19) If ('P is a feasible path)
(20) RETURN 'P ;
(21) Else
(22) ; 0=h

(23) 'PP = ;
(24) }
(25) Else {
(26) ++k ;
(27) If ((k > ITERATIONS/10) AND (maxLL <)) {

(28) ; ; ++L 0=k

(29) }
(30) ++h ;
(31) If (h > ITERATIONS/5) {
(32) ; pathorigP _= 0=h ;

(33) } } }
(34) ; ++j

(35) }
(36) Output “No feasible path found.”;
(37) }

Figure 6. Tabu-search based heuristic procedure

 11

5. SIMULATION RESULTS

In this section, we have several sets of experiments to compare performance and efficiency for

the optimal and heuristic algorithms presented in this paper for the MCP problem. All the

simulations are done with the following experimental parameters: PIII 866 MHz CPU, 512MB

RAM, Linux OS. The simulation programs were developed by ++C . For all benchmarks, the QoS

parameters (link weights) on each link are randomly selected from 0 to 10.

For the MCP problem, a heuristic method may not find a feasible path; even at least one

feasible path exists in the network. Hence, in this study, a parameter named “success ratio” is used to

evaluate the performances of the heuristic algorithms. The “success ratio” is defined as follows:

success ratio= number of feasible paths found by a heuristic algorithm / number of feasible

paths found by an optimal algorithm . %100∗

Three algorithms are studied in this simulation. The first one is the branch-and-bound based

optimal algorithm presented in Figure 3. The other two are the tabu-search based heuristic algorithm

given in Figure 6 and the TK_MK heuristic algorithm proposed in paper [4].

5.2. Benchmark generation

In order to measure the performance more accurately, two network topologies: ANSNET and

mesh given in Figure 7 and 8 are used in the simulations. For each network topology, two different

methods for generating benchmarks are designed to do performance comparisons for our

tabu-search based heuristic and TM heuristic. These two methods are described as follows:

(a) Based on a given pair of source and destination nodes of a network, a number of benchmarks

are generated by randomly assigning weights on each link of the network. The source and

destination nodes are chosen in a way that the number of hops of the path between them is as

largest as possible. In Figure 7, for example, assuming node 1 and node 32 be source and

destination nodes respectively, a number of benchmarks are generated by randomly assigning

weights on each link of the ANSNET. As for the meshes shown in Figure 8, the source and

 12

destination nodes are located at the two-ends of the longest diagonal line of a mesh.

(b) This method is similar to the first one except that a pair of source and destination nodes is

randomly selected for each benchmark generated using the method (a). That is, at most N

distinct pairs of source and destination nodes may exist for N benchmarks generated.

Given a set of different number of nodes, two sets of benchmarks using the above two methods are

generated for simulations carried out in section 5.2. For simulations done in section 5.3, 5.4 and 5.5,

the benchmarks tested are generated by the method (a) only.

5.2. Performance

(A) ANSNET

A network topology shown in Figure 7 is modified from ANSNET [7], which was studied in

[3,4]. In Table 1 and 2, each data is obtained based on 1000 benchmarks. The constraints, ,

are chosen in a way that the number of feasible paths found by the optimal algorithm can be spanned

in a wide range.

10 / CC

As shown in Table 1 and 2, the average success ratios of two heuristics are more than 99%

based on different values of QoS constraints. The experimental results show that our tabu-search

based heuristic algorithm is almost as good as the TK_MK method for the ANSNET.

(B) Mesh

Like the ANSNET, for a mesh, two sets of benchmarks are used to compare

performance between two heuristic algorithms. The experimental results are shown in Table 3 and 4,

where each data is computed based on 1000 benchmarks. Since optimal solutions cannot be found

for meshes with more than 81 nodes, the largest benchmark simulated is a mesh in Table 3

and 4.

NN ×

99×

In Table 4, two heuristic methods give more than 99% success ratios for all benchmarks. While

in Table 3, the tabu-search based heuristic method outperforms the TK_MK method for all cases. In

Table 3, two end-nodes of the longest diagonal line of a mesh are used to be the source and

 13

destination nodes (see Figure 8). The number of hops between these two nodes on a mesh is

at least . Since benchmarks in Table 3 are generated based on the same pair of source and

destination nodes, the length of each feasible path found in Table 3 is at least . While in

Table 4, the average length of a feasible path is around . As a result, it is much harder to find a

feasible path for the benchmarks used in Table 3.

NN ×

)1−N

)1(2 −∗ N

(2∗

N

When the size of a mesh is increased from 49 nodes to 81 nodes, the average success ratio of

the tabu-search based method is changed from 94.5% to 92.9%, while the average success ratio of

the TK_MK method is decreased from 84.2% to 58.9%. Obviously, the performance of our

tabu-search based method is much better and stable than the TK_MK method for meshes. NN ×

9

14
13

1810

11

12

15

19

20

27

8

1

2

3

4

5

6

7

16

17

26
29

28

31

30

32

24

21

25

22 23

Figure 7. A network topology

source

destination Figure 8. A 16-node mesh

source

destination

5.3. Efficiency

In order to compare the executing time for two heuristic methods, several large size of meshes

are used for experiments. The benchmarks tested in this set of experiments are generated by the

method (a) described in section 5.1. The experimental results are shown in Table 5.

Each CPU time in Table 5 is a summation of the executing time of 100 different benchmarks.

Several experimental results derived from Table 5 are summarized as follows:

 The optimal solutions cannot be obtained within a reasonable amount of time by the

branch-and-bound based optimal algorithm when the mesh size is greater than 81.

 14

 For two heuristic algorithms, the executing time is increased when the values of QoS

constraints are decreased. However, for the branch-and-bound algorithm, the executing time is

decreased when the values of QoS constraints are decreased. This phenomenon is due to the fact

that the number of state nodes, which are eligible for branching in the state space tree

constructed in the branch-and-bound algorithm, is increased when the values of QoS constraints

are increased. On the contrary, it would become harder for two heuristic algorithms to find a

feasible path when the given QoS constraints become tight.

 For small meshes, the executing speed of TK_MK method is faster than the tabu-search based

method. However, when the number of nodes of meshes is in the range between 2500 and

10000, our tabu-search based method is much more efficient than the TK_MK method.

 Let = (# of feasible paths by TK_MK method) / (# of feasible paths by Tabu method) .

Since the values are much less than 1 for most of the benchmarks used in Table 5, the

performance of our tabu-search based method is much better than the TK_MK method. In

addition, the value is decreased as the mesh size is increased. For the mesh size is not less

than 1600, the probability is very low for the TK_MK method to find a feasible path with at

least 78 (i.e., hops, even the QoS constraints are so loose that the success ratio of

the tabu-search based method is 1.

α %100∗

α

α

2))140(−∗

 For a mesh as large as 10000 nodes, it takes only around 4 seconds for the tabu-search based

method to find a feasible path with at least 198 hops. Hence, it is a highly efficient method for

the MCP problem in a large network.

5.4. The success ratio versus the for the tabu-search based heuristic algorithm minmax / LL

Based on meshes, the same set of 1000 benchmarks generated using the method (a) described

in section 5.1 is used to for two sets of simulations, which are with and

 respectively. As shown in Table 6, the success ratio is improved when the values

of and are increased. However, this improvement is at the expense of consuming more

5/10/ minmax =LL

7/12/ minmax =LL

maxL minL

 15

CPU executing time.

5.5. The success ratio versus the number of QoS constraints

As shown in Figure 9, the success ratio is decreased as the number of constraints is increased

for two heuristic algorithms. However, the performance of the TK_MK method affected by the

number of constraints is much more serious than the tabu-search based method. This set of

simulations is based on 1000 benchmarks generated for an 8 8× mesh using the method (a)

described in section 5.1.

6. CONCLUSIONS

Based on the branch-and-bound technique and tabu-searching strategy, an optimal algorithm

and a tabu-search based heuristic algorithm are developed in this paper for solving the MCP problem

with multiple constraints. The experimental results show that our tabu-search based heuristic

algorithm not only outperforms the previous published method in [4], but also is a very efficient

approach for solving the MCP problem in large-scale networks.

Table 1. The first set of success ratios of two heuristic algorithms for the ANSNET

 Based on the network in Figure 7, source and destination nodes are set to be node1 and node 32
respectively.

 The number of feasible paths found by all algorithms is based on 1000 benchmarks, which are
generated by the method (a) in section 5.1.

 ; 10~0, 10 =ww 5,10 minmax == LL .

10 / CC # of feasible paths found
by optimal algorithm

Tabu (success_ratio) TK_MK (success_ratio)

28/30 916 99.6% 98.9%
28/28 890 99.4% 99.1%
24/28 754 99.5% 99.6%
28/20 534 99.3% 100.0%
24/20 395 98.2% 99.8%
20/20 230 100.0% 100.0%

Average 99.3% 99.6%

Table 2. The second set of success ratios of two heuristic algorithms for the ANSNET

 16

 The number of feasible paths found by all algorithms is based on 1000 benchmarks, which are
generated by the method (b) in section 5.1.

 ; 10~0, 10 =ww 5,10 minmax == LL .

10 / CC # of feasible paths found
by optimal algorithm

Tabu (success_ratio) TK_MK (success_ratio)

28/28 989 99.8% 100.0%
20/24 872 99.8% 99.7%
16/16 605 99.3% 100.0%
16/12 463 99.6% 100.0%
10/12 332 99.7% 100.0%
8/10 210 100.0% 100.0%

Average 99.7% 99.9%

Table 3. The first set of success ratios of two heuristic algorithms for meshes NN ×

 The number of feasible paths found by all algorithms is based on 1000 benchmarks, which are
generated by the method (a) in section 5.1.

 ; 10~0, 10 =ww 5,10 minmax == LL .

Nodes 10 / CC # of feasible paths found
by optimal algorithm

Tabu (success_ratio) TK_MK (success_ratio)

64/56 966 96.6% 69.2%
56/56 872 93.1% 57.7%
48/56 606 89.9% 58.4%

81

48/48 313 92.0% 50.2%
Average 92.9% 58.9%

56/49 940 96.7% 77.2%
49/49 818 94.3% 66.9%
42/49 553 93.1% 70.3%

64

42/42 289 91.7% 70.9%
Average 94.0% 71.3%

48/42 880 96.5% 83.1%
42/42 712 96.9% 81.3%
36/42 444 95.0% 84.7%

49

36/36 236 89.4% 87.7%
Average 94.5% 84.2%

Table 4. The second set of success ratios of two heuristic algorithms for meshes NN ×

 The number of feasible paths found by all algorithms is based on 1000 benchmarks, which are
generated by the method (b) in section 5.1.

 ; 10~0, 10 =ww 5,10 minmax == LL .

Nodes 10 / CC # of feasible paths found
by optimal algorithm

Tabu (success_ratio) TK_MK (success_ratio)

48/40 984 99.8% 98.4% 81
32/24 663 98.9% 98.3%

 17

24/24 546 98.9% 99.5%
16/16 287 99.7% 100.00%

Average 99.3% 99.0%
42/42 995 99.9% 98.6%
28/35 866 99.4% 99.0%
28/21 621 99.2% 99.7%

64

14/14 259 99.6% 100.00%
Average 99.5% 99.3%

36/36 984 99.7% 98.9%
30/24 846 99.5% 99.5%
18/18 483 99.2% 100.00%

49

12/12 227 99.6% 100.00%
Average 99.5% 99.6%

Table 5. Efficiency comparisons based on NN × meshes

 The number of feasible paths found by all algorithms is based on 100 benchmarks, which are generated
by method (a) in section 5.1.

 Each CPU time is a summation of all the executing time of 100 benchmarks.
 The CPU time is marked as “n/a”, if it is over 7200 secs.
 The optimal solutions are found by branch-and-bound algorithm.
 = (# of feasible paths by TK_MK method) / (# of feasible paths by Tabu method) α %100∗

Optimal Tabu TK_MK
Nodes 10 / CC # of feasible

paths
CPU
(sec)

of feasible
paths

CPU
(sec)

of feasible
paths

CPU
(sec)

α

81 65/65 100 4522 100 0.4 86 0.2 86.0%
81 60/50 79 1170 72 5.6 53 0.2 73.6%
81 50/50 50 464.1 44 5.2 28 0.1 63.6%

100 70/70 n/a n/a 100 1.9 73 0.3 73.0%
100 70/55 n/a n/a 84 17.2 56 0.3 66.7%
100 55/60 n/a n/a 58 34.7 21 0.2 36.2%

1600 310/280 n/a n/a 100 13.4 11 68.8 11.0%
1600 250/250 n/a n/a 90 45.1 0 72.6 0%
1600 220/250 n/a n/a 55 171.2 0 65.6 0%
2500 400/300 n/a n/a 100 27.2 4 265.0 4.0%
2500 350/300 n/a n/a 96 35.4 0 269.4 0%
2500 300/300 n/a n/a 57 162.5 0 272.0 0%
6400 550/600 n/a n/a 100 182.9 0 2117.0 0%
6400 550/500 n/a n/a 92 192.4 0 2384.0 0%
6400 500/500 n/a n/a 66 212.5 0 2413.0 0%

10000 750/700 n/a n/a 100 435.2 0 5132.0 0%
10000 700/600 n/a n/a 92 442.9 0 5166.0 0%
10000 650/650 n/a n/a 76 449.1 0 5404.0 0%

Table 6. The success ratio versus the for the tabu-search based heuristic method minmax / LL

 The success ratio and CPU time obtained for the tabu-search based heuristic are based on 1000

 18

benchmarks, which are generated by the method (a) in section 5.1.
 ; 10~0, 10 =ww

5/10/ minmax =LL 7/12/ minmax =LL Nodes 10 / CC
success ratio CPU (sec) success ratio CPU (sec)

64/56 96.6% 36.2 97.7% 114.5
56/56 93.1% 58.9 96.1% 115.6
48/56 89.9% 46.5 93.4% 116.0

81

48/48 92.0% 15.9 93.3% 42.4
Average 92.9% 39.4 95.1% 97.1

56/49 96.7% 25.5 97.7% 48.5
49/49 94.3% 33.1 97.2% 51.1
42/49 93.1% 22.2 100.0% 44.0

64

42/42 91.7% 10.9 95.5% 14.6
Average 94.0% 22.9 97.6% 39.6

48/42 96.5% 15.9 98.3% 19.5
42/42 96.9% 12.5 97.9% 16.2
36/42 95.0% 9.9 97.1% 11.1

49

36/36 89.4% 6.1 94.1% 8.5
Average 94.5% 11.1 96.8% 13.8

Figure 9. The success ratio versus the number of constraints for an mesh 88×

 19

 20

REFERENCES

[1] J. M. Jaffe, “Algorithms for finding paths with multiple constraints,” Networks, vol. 14, pp.

95-116, 1984.

[2] Shigang Chen and Klara Nahrstedt, “On Finding Multi-constrained Paths,” in Proceedings of

the ICC’98 Conference, IEEE, 1998, pp. 874-979.

[3] Xin Yuan and Xingming Liu, “Heuristic Algorithms for Multiconstrained Quality-of-Service

Routing,” IEEE Transaction on Networking, vol. 10, no. 2, pp. 244-256, April, 2002.

[4] Turgay Korkmaz and Marwan Krunz, “A Randomized Algorithm for Finding a Path Subject to

Multiple QoS Constraints,” in Proceedings of the IEEE Global Telecommunications

Conference, IEEE, 1999, pp. 1694-1698.

[5] R. Widyono, “The Design and Evaluation Algorithm for Real-time Channels,” TR-94-024,

International Computer Science Institute, UC Berkeley.

[6] Turgay Korkmaz, Marwan Krunz and Spyros Tragoudas, “An efficient algorithm for finding a

path subject to two additive constraints,” Computer Communications, vol. 25, pp. 225-238,

2002.

[7] D.E. Comer, Internetworking with TCP/IP, vol. I, Prentice Hall, 1995.

[8] Dinkar Sitaram and Asit Dan, Multimedia Servers, Morgan Kaufmann Publishers, 2000.

[9] Sanjeev Verma, Rajesh K. Pankaj, and Alberto Leon-Garica, “QoS based multicast routing

algorithms for real time applications”, Performance Evaluation, vol. 34 pp. 273-294, 1998.

[10] Q. Ma and P. Steenkiste, “Quality-of-Service Routing for Traffic with Performance

Guarantees,” Proceedings of IFIP Fifth International Workshop on Quality of Service, May

1997.

[11] Ariel Orda, “Routing with End-to-End QoS Guarantees in Broadband Networks,” IEEE/ACM

Transactions on Networking, vol. 7, no. 3, pp. 365-374,1999.

[12] Zheng Wang and Jon Crowcroft, “QoS Routing for Supporting Resource Reservation,” IEEE

Journal on Selected Areas in Communications, vol. 14, no. 7, pp. 1228-1234, Sept. 1996.

[13] Wen-Lin Yang, “A Branch-and-Bound Approach for Solving QoS Routing Problem,”

Proceedings of 2002 Symposium on Digital Life and Internet Technologies, NCKU, Taiwan,

June 2002.

	Workshop: Workshop on Computer Networks
	Figure 3. The branch-and-bound based optimal algorithm
	
	Figure 5. The branch-and-bound based heuristic procedure
	Figure 6. Tabu-search based heuristic procedure

	REFERENCES

