
A Dynamic Location Tracking Strategy for PCS

Using Hierarchical Location Databases

Chi-Chih Lee Hwa-Chuan Lin SingLing Lee

Department of Computer Science and Information Engineering

National Chung Cheng University, Chiayi 62107,

Taiwan, Republic of China

Abstract

In this paper, we propose a dynamic location tracking strategy for the hierarchical

location database architecture in personal communication service systems (PCS). In

our strategy, a user’s current location is stored at a specific location database, called the

local anchor (LA). We focus on studying the problem how to decide the best position

for the LA to get a great benefit in location registration. The LA periodically collects

the user’s mobility and calling patterns and dynamically changes its position according

to his/her behavior after a period of time. When a user has a small call-to-mobility

ratio (CMR), our strategy efficiently reduces registration costs. Besides, we use caching

bypass pointers for call delivery procedures but avoid cache miss which happens in the

caching strategy. Thus our strategy has the same performance as the caching strategy

in reducing call delivery costs when the CMR is large, but performs much better than

the caching strategy when the CMR is small. Our simulation result shows that our

strategy produces 30% performance improvement than the basic strategy and 20%

performance improvement than the caching strategy.

1 Introduction

1.1 Background

Personal Communication Service (PCS) system provides people to communicate with

each other within the network coverage. Location management is a key component in the

operation of PCS [2, 14]. It is an important problem to design an efficient location man-

agement strategy to reduce database access and signaling traffic for the system. Location

management contains two main operations — location registration (or called Move) and call

delivery (or called Find). There are two commonly standards in the current two-level lo-

cation database architecture: IS-41 [1, 12] and GSM [12, 13]. Two types of databases are

used to record the location information of the mobile terminal (MT), they are the Home

Location Register (HLR) and the Visitor Location Register (VLR), respectively. The HLR

is a centralized database containing user profiles of subscribers. These user profiles record

information such as the type of services subscribed, the billing information, the quality-of-

service (QoS) requirements, and the current locations of the MTs. There are several VLRs

distributed throughout the PCS network, and each one stores replication of the user profiles

of the registered subscribers and the information of the MTs currently residing in its associ-

ated area. Figure 1 shows the basic architecture of the current PCS network in the two-level

archtecture. The PCS service area is divided into cells. All MTs within a cell communicate

with a base station through wireless links. Several cells are grouped together to form a con-

tiguous geographical region called registration area (RA). All base stations within a giving

RA are conected to a mobile switch center (MSC). The MSC provides switching function for

the MTs in their associated area. Each VLR may associate with one or several MSCs. In

this paper we assume each VLR associates with one MSC. The MSCs, VLRs, and the HLR

are interconnected through the public switch telephone network (PSTN).

Location registration is the procedure that an MT explicitly reports its new location to

the network while the MT crosses RA boundies. When an MT enters a new RA, a location

registration request is sent to its serving MSC, which relays the location registration request

to the MT’s HLR. The HLR updates the MT’s profile to record the location of the VLR

associated with its serving MSC and sends the service profile to the VLR. Furthermore, the

CellBase station

HLR

VLR
MSC

PSTN

Figure 1: PCS network architecture

HLR sends a deregistration message to the VLR associated with the old RA. The old VLR

removes the MT’s profile. When a call arrives, the call delivery procedure is used to locate

the callee’s current location. The caller’s MSC sends a query message to the callee’s HLR

to retrieve the location of his/her VLR. Then the callee’s HLR sends a query message to

his/her VLR. The VLR relays this request to the serving MSC of the callee. If the callee

can receive a call, a Temporary Local Directory Number (TLDN) is associated to the callee

and the TLDN is sent to the callee’s HLR, which forwards the TLDN to the caller’s MSC.

The caller then setups a connection.

As the PCS subscribers keep increasing, the requirements of database access and signal-

ing transimission also increase dramatically [2, 14, 17, 18]. The traffic load of the HLR will

become system bottleneck. To accommodate the increased traffic for the future PCS sys-

tems, it is necessary to use a scalable architecture. And the hierarchical distributed location

architecture is a possible solution among different approaches. In this architecture, location

databases are interconnected by a Common Channel Signaling (CSS) network. The hier-

archical location database architecture greatly reduces network signaling traffic while most

calls received by users and most RA crossings are geographically localized [2, 3, 5, 10, 11, 18].

However, a major drawback of the hierarchical location architecture is that the number of

database access is more than that of the two-level architecture. A number of auxiliary

strategies has been proposed to improve this drawback.

1.2 Previous work

To reduce location registration and call delivery costs further, several auxiliary strategies

have been proposed. They are the user-profile replication, pointer-forwarding, local anchor,

and caching strategies, which are described as follows.

In the user-profile replication strategy [16], a user’s profile is replicated at one or several

selected locations in order to reduce the call delivery cost. On the other hand, the database

update cost will be increased potentially since replicas must be maintained consistently

whenever the MT moves. The number of replicas of an MT may be limited by system

resource, such as the signaling network and the database capacity. Besides, the replication

decision is made by a centralized system, which must collect mobility and calling patterns

of all users from time to time. This strategy performs well for those users who receive calls

frequently relative to the rate at which they cross RAs, i.e., users with large call-to-mobility

ratio (CMR).

In the pointer-forwarding strategy [7, 9, 15], a pointer is created at the old VLR that

points to the location of the new VLR instead of updating the HLR when a user moves across

his/her RA boundary. When an incoming call arrives, the callee’s HLR is queried first to

find the first VLR which he/she was registered at, and then the signal follows a chain of

forwarding pointers to the his/her current serving VLR. This strategy saves the registration

cost while users change RAs frequently. However, the cost of the call delivery procedure

will increase due to trace the chain of forwarding pointers whose length is too long. The

pointer-forwarding strategy performs good while users with small CMR.

In the local anchor strategy [4], the MT reports its location change to a specific VLR

called the local anchor (LA) which points to the location of the MT’s current RA. The HLR

keeps a pointer to the local anchor. This approach reduces the registration cost. While an

incoming call arrives, the caller first queries the callee’s HLR to get the location of the local

anchor, and then the callee’s HLR queries the local anchor to retrieve the location of his/her

current serving VLR. This strategy performs well for users with small CMR.

In the caching strategy [8, 10, 11], the callee’s location information is stored at the

caller’s database. The main idea is to reuse the information about the user’s location from

the previous call to that user. This information consists of bypass pointers kept at a database

along the path that allows the signaling messages to bypass portions of the path. A pair of

bypass pointer will be created between the caller and the called party. They are the forward

bypass pointer and the reverse bypass pointer. The forward bypass pointer is created at

the database s which is the ancestor of the caller’s RA to reduce the setup time of the call

delivery procedure. And the reverse bypass pointer used by the acknowledgement message

is created at the database t, the ancestor of the callee’s RA. When the CMR is large, clearly,

those saving information will be useful and efficient for locating users. When the CMR is

small, the caching strategy must pay an additional cost to maintain the validness of the

bypass pointers [6].

1.3 Motivation of our work

In this paper, we propose the dynamic location tracking strategy to reduce database

access and signaling traffic at the same time. This strategy combines the characteristic of

the local anchor strategy in registration and that of the caching strategy in call delivery.

While a user has a large CMR, the cost of the call delivery will be reduced by using the

information of bypass pointers. Besides, the registration cost also can be greatly reduced

even when a user has a small CMR. Each user selects a database as the local anchor (LA)

to record his/her location information. A user performs the registration procedure only at

the current serving VLR and his/her local anchor instead of updating several databases.

Besides, each forward bypass pointer records the callee’s LA for call delivery. As long as

we find the callee’s LA, then we can find his/her actual location through querying his/her

LA. Hence, our strategy can prevent cache miss when a user moves out of the subtree

rooted at the database t. Furthermore, we focus on deciding an appropriate position for

each LA in the tree-structured location architecture. Each LA periodically collects a user’s

mobility and calling patterns, and its position can be dynamically adjusted according to the

computing result after a certain time period. When the LA has been adjusted, it implies

that several forward bypass pointers which cache this LA need to be updated. If these

bypass pointers are updated at once, the update cost will increase dramatically. In order

to overcome this problem, we keep a pointer from the old LA to the new LA instead of

updating bypass pointers at once. When a call delivery procedure is invoked, the bypass

pointer will be updated through call delivery message. First, the reverse bypass pointer

will be created at the new LA, then the forward bypass pointer will be updated through

the acknowledgement message. In other words, the forward bypass pointer will be updated

through the acknowledgement message only when it is used by a user to perform a call

delivery procedure. Thus we can avoid that several forward bypass pointers are updated at

the same time. Finally, the experiment result shows that our strategy gains a great benefit

in reducing database access and signaling traffic by dynamically adjusting bypass pointers

with LAs.

The rest of this paper is organized as follows. In Section 2, we describes the dynamic

location tracking strategy and the appropriate position deciding scheme. Section 3 briefly

discuss analysis of different strategies. Simulation result shows in Section 4. Finally, Section

5 concludes the thesis.

2 Dynamic Location Tracking Strategy

Our strategy is able to make database access and signaling traffic reduced in the hier-

archical location database architecture for PCS mobility management. Our objects are as

follows :

• Reduce the cost of location registration operation.

• Reduce the cost of call delivery.

• Dynamically adjust the position of the LA according to a user’s behavior to make

bypass pointers used more efficiently.

LAi

i
Move

RAx
RAy

Figure 2: An example of the local anchor strategy

Our strategy makes use of the local anchor to track users’ location information, and

the cost of updating databases for location registration can be reduced. Whenever an MT

moves to a new RA, it sends a registration message to the new RA and its current serving

LA. Furthermore, an anchoring pointer is created at the MT’s LA. This approach only needs

to have two database registrations, hence the registration cost can be reduced efficiently.

Figure 2 shows an example of the local anchor strategy. While the MT i moves from the

RAx to the RAy, the LAi keeps an anchoring pointer which points to the location RAy in its

database. Generally speaking, the local anchor can be differentiated into static and dynamic

ones. For the static LA, the LA doesn’t change its position until an incoming call arrives.

For the dynamic LA, the LA changes its location dynamically. However, the dynamic LA

performs much better than the static LA according to the previous research[4]. The reason

why the static LA does not have good performance is that a user may have to register to

his/her LA located at a far region. Thus the registration cost will increase potentially. In

this paper, we will focus on studying the strategy how to dynamically adjust the position of

the LA.

Furthermore, this strategy is also similar to the caching strategy which reuses the user’s

location information from the previous call to that user. For users who receive calls fre-

quently, the cost of a call delivery procedure can be saved efficiently. However, the perfor-

mance of the caching strategy depends upon the probability whether the cached information

is valid or not. It should be noted that the cached information becomes invalid when users

move out of the subtree rooted at the database t. The database t only stores location in-

formation of its child nodes. When a call request arrives the database t, the query message

is propagated downward to find the called user. If the called user is not found under the

database t, the cache miss happens. In order to avoid the cache miss, we view the location

of the database t as the local anchor of called users, hence the called user can be found

certainly at the database t. Besides, it is important to decide an appropriate position for

the database t, which can make bypass pointers used efficiently. We adjust the position of

the database t to the best position t′ according to the user’s mobility and calling patterns.

The dynamic location tracking strategy for PCS includes two main operations, called

Intelligent local anchor (ILA)Move and ILA Find.

2.1 Intelligent LA Move scheme

When a user moves to a new RA, the ILAMove procedure is initialized. The user’s LA

will record the location of the RA where the user resides. We assume that there is a small

memory in the mobile terminal that records which location database is the user’s current

serving LA. Whenever the user moves across RA boundaries, the registration message is

propagated to this LA. Before the LA changes its position from t to t′, the user still registers

to the LA at t. We denote the old RA of MT i as RAold and the new RA of MT i as RAnew.

Let LAcurrent
i be the current LA of MT i and LAnew

i is the new LA of MT i. Let LAadjusted
i

be the adjusted LA. We describe the ILAMove as follows:

Case 1: The LA serves a new user who has never performed the dynamic adjusting LA

procedure, it collects his/her mobility patterns to decide the best position of the

LA.

Case 1.1: The MT i moves from RAold to RAnew. It does not move out of the subtree

rooted at its serving LA, LAcurrent
i .

1. The MT i deregisters at RAold and registers at RAnew.

2. The registration message is propagated to LAcurrent
i , and LAcurrent

i stores

the move record in its event table for the MT i.

3. The acknowledgement message returns from LAcurrent
i to RAnew.

Case 1.2: The MT i moves from RAold to RAnew. It moves out of the subtree rooted

at is serving LA, LAcurrent
i (Figure 3).

1. The MT i deregisters at RAold and registers at RAnew.

2. The registration message is propagated to the least common ancestor

(LCA) of these two RAs, and the LCA becomes the MT’s new LA, LAnew
i .

LAnew
i stores the move record for the MT i.

3. The LA movement procedure is invoked. First, records of LAcurrent
i will

be copied to LAnew
i . Secord, the system will check whether LAcurrent

i exits

reverse bypass pointers for the MT i. If it does exist, a LA movement

pointer that points to the location of LAnew
i will be crated at LAcurrent

i .

4. The acknowledgement message returns from the LAnew
i to RAnew.

Case 2: The LA at t, LAcurrent
i , has performed the dynamic adjusting LA procedure to

change its position to t′. Whenever the MT i crosses RA boundaries, it keeps

registering to the adjusted LA at t′, LAadjusted
i (Figure 3).

adjusted
LAi

RAy RAz

i

current
LAi

old
LAi

RAy RAz

i

new
LAi

(a)Case 1.2 (b)Case 2

Figure 3: The procedure of ILAMove

1. The deregistration and registration messages are sent to RAold and RAnew

respectively.

2. The registration message is propagated to LAadjusted
i of the MT i, and LAadjusted

i

stores the move record for the MT i.

3. The acknowledgement message returns from the LAadjusted
i to the RAnew, and

the registration procedure is complete.

Whenever we want to adjust the database t to t′, we may encounter a problem that

several forward bypass pointers need to be updated at the same time. The database update

overhead will be increased potentially. Therefore, we setup a LA pointer which points to the

new LA instead of updating these forward reverse bypass pointers at once.

2.2 Intelligent LA Find scheme

The ILAFind procedure is invoked when a calling MT sends a call request. The ILAFind

can be divided into four cases, each of them is described as follows. We denote the RAcaller

as the caller’s RA, the RAcallee as the callee’s RA, and the LAcallee as the callee’s LA.

Case 1: The caller and the callee are at the same RA.

1. The call request is sent to the RAcallee, and it is queried directly to find the

callee.

2. In this case, no bypass pointers will be created.

Case 2: No bypass pointer exists between the caller and the callee, and the RAcaller is

under the coverage of the LAcallee.

1. The call request is sent to the LAcallee, and then the call request is forwarded

to the RAcallee through the LAcallee.

2. The acknowledgement message returns from theRAcallee to theRAcaller through

the LAcallee.

3. No Bypass pointers will be created for the callee in this case.

Case 3: No bypass pointer exists between the caller and the callee, and the caller does not

reside under the coverage of the LAcallee.

1. The call request is sent to the LAcallee, and then the call request is forwarded

to the RAcallee through the LAcallee. Besides, the LAcallee stores the call record

for the callee.

2. The acknowledgement message returns from theRAcallee to theRAcaller through

the LAcallee.

3. A pair of bypass pointers is created between the RAcaller and the LAcallee.

Case 4: A pair of bypass pointers exists between the caller and the callee, and the caller

does not reside under the coverage of the LAcallee.

Case 4.1: The position of the LAcallee has not been moved.

1. The forward bypass pointer is found at the RAcaller, then the call request

is send to the LAcallee through this forward bypass pointer.

2. The LAcallee forwards the call to the RAcallee, and it stores the call record

for the callee. If the LAcallee is just the RAcallee, then the LAcallee is

queried directly to find the callee.

LAj

RAx RAy
callercallee

Find i

RAx RAy
callercallee

Find

LAj

i

t

s

(a)Case 3 (b)Case 4.1

j j

Figure 4: The procedure of ILAFind

3. The acknowledgement message returns from the RAcallee to the RAcaller

through the reverse bypass pointer which is stored at the LAcallee.

Case 4.2: The position of the LAcallee has been moved from t to t′, and t is the leaf

node.

1. The call request is send from the RAcaller to the old LAcallee t through

this forward bypass pointer.

2. The old LAcallee is queried to find the callee. It also gets the location of

the adjusted LAcalee t
′, and the reverse bypass pointer stored at t will be

moved to t′.

3. The acknowledgement message returns from the RAcallee to the RAcaller

through the reverse bypass pointer stored at t′. And the call record is

stored at t′. During the return path, the forward bypass pointer will be

updated to cache t′ at the RAcaller.

Case 4.3: The position of the LAcallee has been moved from t to t′, and t is not the leaf

node.

1. The call request is send from the RAcaller to the old LAcallee t through

the forward bypass pointer.

2. The old LAcallee is queried to get the location of the adjusted LAcalee t
′,

(c)Case 4.2

RAx RAy
callercallee

Find

LAj

i

t s

t’

RAx RAy
callercallee

Find

LAj

i

t

s

t’

jj

(d)Case 4.3

Figure 5: The procedure of ILAFind

and the reverse bypass pointer which is stored at t will be moved to t′.

3. When the call arrives t′, LAcallee stores the call record and forwards the

call to the RAcallee.

4. The acknowledgement message returns from the RAcallee to the RAcaller

through the reverse bypass pointer stored at t′. During the return path,

the forward bypass pointer will be updated to cache t′ at the RAcaller.

2.3 The Appropriate Position Deciding Scheme

Each location database that serves as the LA has to record its serving user’s calling

and mobility patterns. Its primary function is to collect these information, and to compute

the most appropriate location for the LA. By adjusting the position of the LA, it not only

greatly reduces the registration cost, but also reduces the call delivery cost efficiently. We

use a user event table to store a user’s mobility and calling patterns. They consists of regis-

tration events and call events. Whenever a user crosses RA boundaries or a caller makes a

call through bypass pointers, these events will be saved in this event table. Table 1 shows

an example of a user’s event table. In order to explain the appropriate position deciding

scheme, we define some parameters as follows:

Revent: The amount of the registration events

Cevent: The amount of the call events

CLAi: The set of MTi’s candidate LAs

cost(CLAi
j): The cost of the j-th candidate LA of MTi

RAi: The set of RA where MTi resides

RAi
k: The k-th RA where MTi resides

d(s, CLAi
j): The distance from s to the candidate LAi

j

ρs: The registration rate of MTi in s, and s ∈ RAi

γs: The call rate of MTi in s, and s ∈ RAi

cost(CLAi
j) = Revent

Revent+Cevent
· 2 ∑

s∈RAi

ρs · d(s, CLAi
j)

+ Cevent

Revent+Cevent
· 2 ∑

s∈RAi

γs · [d(s, CLAi
j) + d(s′, CLAi

j)]

where s′ = LCA(RAi, CLAi
j)

Figure 6: The appropriate position analysis function

The best LA position deciding algorithm

Input: A set of RA where MTi resides.

Output: The most appropriate position for MTi’s LA.

Step 1: Select the location databases as the candidate LAs for evaluating which one is

better. The candidate LAs contain the databases which locate between

RAi and the LCA of RAi.

Step 2: Gather statistics of the registration rate and the call rate for each RA of RAi.

Step 3: For each candidate LA, compute its link costs of registration and call,

respectively.

Step 4: Execute the appropriate position analysis function. If all candidate LAs

finish computing, then go to Step 5, else go to Step 3.

Step 5: Return the position of the candidate LA with the minimum cost, t′ , to beMTi’s

new serving LA. Adjust MTi’s LA to this new LA t′.

We use the best LA position deciding algorithm to compute the appropriate position

t′ for a user’s LA according to his/her mobility and calling patterns. The registration rate

and the call rate of each RA are known through a user’s event table. They will be useful

to decide the best position for a user’s LA. First, we select several location databases as the

candidate LAs. These candidate LAs contain the databases which locate between the RAs

where the user resides and the LCA of these RAs. After these candidate LAs have been

choosed, we compute the cost of each candidate LA. The cost can be divided into registra-

tion and call costs. The cost of the candidate LA is computed by the appropriate position

analysis function (Figure 6). When the costs of all candidate LAs have been computed, the

most appropriate LA is with the minimum cost. Thus we will adjust the user’s LA to the

best position.

RA id Reg. events Call events

RA555 1 2

RA556 2 1

RA557 2 3

RA558 4 2

RA559 11 19

RA560 12 9

RA560 4 0

Table 1: An example of the user event table

RA id Reg. rate Call rate

RA555 0.0278 0.0556

RA556 0.0556 0.0278

RA557 0.0556 0.0833

RA558 0.1111 0.0556

RA559 0.3056 0.5278

RA560 0.3333 0.25

RA561 0.1111 0

Table 2: The registration rate and the call rate of the event table

We give an example to explain our appropriate position deciding scheme. Table 1 shows

a user’s event table of his/her current LA61, and it records call and registration events of each

RA respectively under this subtree (Figure 7). We can know the registration rate and the

call rate of the event table (Table 2). Each database which locates between these registration

areas where the user resides and the LCA of these registration areas will be computed for

deciding the most appropriate LA for the user.

In this example, DB61, DB184, DB185, DB185, and DB555 ∼ DB561 will be computed

respectively, and we have to compute registration and call costs for each DB. For example,

DB555 is computed as follows:

DB555 :

Reg. cost = 2 ∗ 4 ∗ 0.9722 = 7.778

Call cost = 2 ∗ 2 ∗ 0.0556 + 2 ∗ 6 ∗ 0.9444 = 11.556

Total cost = 7.778 + 11.556 = 19.333

184 185 186

61

555 556 557 558 559 560 561554553

Figure 7: An example of the position deciding scheme

Weighted cost = 0.5 ∗ 7.778 + 0.5 ∗ 11.556 = 9.667

The total cost means that we sum up the registration and call costs directly, and the weighted

cost means that we assign different weight values to registration and call costs according to

the user’s registration and call events. In this example, we can choose DB186 as the most

appropriate LA for the user according to the computing result(Table 3).

Database id Reg. cost Call cost Total cost Weighted cost

DB61 4 4 8 4

DB184 5.889 7.778 13.667 6.883

DB185 5.111 7.333 12.444 6.222

DB186 3 4.889 7.889 3.944

DB555 7.778 11.556 19.333 9.667

DB556 6.889 11.222 18.111 9.056

DB557 6.889 11 17.889 8.944

DB558 6.667 11.111 17.778 8.889

DB559 3.778 6.778 10.556 5.278

DB560 3.667 7.889 11.556 5.778

DB561 4.556 8.889 13.444 6.722

Table 3: The result of computing the best position

Generally speaking, we can decide the most appropriate LA according to the total cost

of each DB (Table 3). However, we should consider the relation between registration and

call events. In some cases, the most appropriate LA will not be decided clearly if it is only

decided according to the total cost. Figure 8 is a special example, and we are not sure which

one is the most appropriate LA. We describe this situation as follows.

1

2 3

4 5 6 7

140RA6

960RA5

Call eventsReg. eventsRA id

140RA6

960RA5

Call eventsReg. eventsRA id

Figure 8: An example of the position decideing scheme

In this case, we cannot decide the best position of the LA according to the total cost.

We are not sure whether DB5 is better than DB1 and DB2, because their total costs are

the same (see Table 4). However, we can observe that the number of registration events is

Database id Reg. cost Call cost Total cost Weighted cost

DB1 4 4 8 4

DB2 3.6 4.4 8 3.673

DB3 4.4 7.6 12 4.691

DB5 3.2 4.8 8 3.345

DB6 4.8 11.2 16 5.382

Table 4: The result of computing the best position

more than the number of call events. Hence, the weight value of registration cost should be

more expensive than that of call cost. Because the registration cost of DB5 is smaller than

those of DB1 and DB2, we can still easily decide that DB5 is the most appropriate LA than

the others. In other words, it can greatly reduce registration cost to select DB5 as the LA;

because DB5 is close to the region where the user frequently registers. This result leads to

the conclusion that we should decide the most suitable position for the LA by the weighted

cost.

So far, we have seen how to decide the most appropriate position of the LA for a

user through our computing scheme. The LA periodically collects the user’s mobility and

calling patterns to decide whether the LA should be adjusted its position. We execute

the appropriate position deciding scheme off-line, and it won’t increase the system load

dramatically. We assume each location database has the computing function for adjusting

LA dynamically. Besides, the LA does not necessary proceed computing everyday, it depends

on the user’s behavior. If the user’s behavior changes frequently, the system trends to collect

and to compute everyday. If the user rarely changes his/her behavior, then the system will

collect this user’s information of a week and compute the most suitable LA for him/her.

Therefore, the user’s LA dynamically changes according to his/her behavior.

3 Cost Analysis

In this section, we derive the cost function of the basic, eager caching, and dynamic

location tracking strategies to analyze the registration and call delivery costs. We assume

that s and t are location databases with forward and reverse bypass pointers for callee j. Let

RAx and RAy be the RAs where caller i and callee j reside respectively, and RAz is the RA

which callee j moves to. We assume the level of the leaf node is zero. Suppose b1 be the

levels from s to LCA(RAx, RAy) and b2 be the levels from t to LCA(RAx, RAy). And q is

the levels from RAy to RAz. The levels from RAx (or RAy) to LCA(RAx, RAy) is r. The

user’s LA will be dynamically adjusted its position from t to t′ according to our appropriate

position deciding scheme. Assume that the levels from t′ to LCA(RAx, RAy) is �.

The total cost of a location management strategy depends on Move cost and Find cost.

Our cost analysis considers communication and database access as the basic measurement

of costs. In order to estimate the total cost clearly, we define the cost parameters as follows:

Table 5: Define the cost parameters

n1 Average number of move operations.

n2 Average number of find operations.

T (t) The coverage area of database t.

γ Average probability of moving out the subtree rooted at database t

between two consecutive calls.

α(i) The probability of i moves between two consecutive calls.

β(t, i) The probability of the user moves out of database t given there

are i moves between two calls.

R The cost of reading a database.

U The cost of updating a database.

C The cost of traversing a signal link.

3.1 Analytical Model

We select m-way search tree as the architecture of hierarchical location database for our

analytical model [11]. First, we discuss the probability of the user moving out of the subtree

rooted at database t between two consecutive calls. Between two calls arrive, we assume the

user moves i times. Therefore, we can describe the probability as follows:

γ =
∑

i

P[a user moves out t and there are i moves between two calls]

=
∑

i

γ(t, i) =
∑

i

α(i)β(t, i)

α(i) denotes the probability of a user who moves i times between two consecutive calls. The

probability β(t, i) denotes a user moving out of the subtree rooted at database t. Let h be

the level of database t, and the RAs under database t are numbered from 1 to mh. Hence,

β(t, i) =
mh∑

j=1

P[the user starts in j]β′(t, i, j)

β′(t, i, j) denotes the probability of the user moving out of database t in i steps given that

he/she starts in RA j. Assume that the probability of the user’s moving to the right is

u, and the probability of the user’s moving to the left is v. Thus we can get the following

equations.

β′(t, i, j) = β′(t, i− 1, j + 1)u + β′(t, i− 1, j − 1)v

for 2 ≤ j ≤ mh − 1 , 1 < i

β′(t, i, 1) = β′(t, i− 1, 2)u , for 1 < i

β′(t, i,mh) = β′(t, i− 1,mh − 1)v ,for 1 < i

The boundary conditions are described as follows:

β′(t, 1, 1) = v , β′(t, 1,mh) = u

β′(t, 1, j) = 0 , for 2 ≤ j ≤ mh − 1

Finally, we get the value, γ, and we use it to evaluate the costs of different strategies later.

3.2 Basic Strategy

First, we analyze the costs of the basic strategy. As we know, there are two main opera-

tions in the basic strategy: BasicMove and BasicFind. They are involved in the registration

and call delivery procedures respectively.

• The cost of BasicMove

When an MT moves form RAy to RAz, the registration and deregistration mes-

sages propagate from RAy to RAz through LCA(RAy, RAz). The databases un-

der LCA(RAy,RAz) are queried and updated during the registration and deregis-

tration operations. The communication signal traverses from RAy to RAz through

LCA(RAy, RAz), and it returns from RAz to RAy. Assume that MCbasic is the cost

of a BasicMOV E operation, then

MCbasic = 2(2q + 1)R + (2q + 1)U + 4qC

• The cost of BasicFind

When caller i at RAx calls callee j at RAy, the query message is propagated from RAx

to RAy through LCA(RAx, RAy). The acknowledgement message returns form RAy

to RAx. Let FCbasic be the cost of a BasicF ind operation, then

FCbasic = 2(2r + 1)R + 4rC

Thus the total cost for callee j in the basic strategy is defined as follows:

TCbasic = n1 ·MCbasic + n2 · FCbasic

3.3 Eager Caching Strategy

The two main operations in the eager caching strategy are called EagerMove and

CacheFind. They are involved in the registration and call delivery procedures respectively.

• The cost of EagerMove

EagerMove is similar to BasicMove, but it pays an additional cost to delete invalid

bypass pointers. We assume that there is a pair of bypass pointers constructed at the

ancestors of RAx and RAy for callee j. When an MT moves from RAy to RAz, it leaves

the area of the coverage of database t. The forward bypass pointer of database s becomes

invalid, and it will be deleted by EagerMove. In order to delete invalid bypass pointers,

EagerMove deletes records in database s and t. The communication signal for deleting

invalid bypass pointers propagates from RAy to RAx through LCA(RAx, RAy). Thus

the additional cost for deleting a pair of bypass pointers for callee j is 2U+2(b1+b2)C.

We should notice that the more forward bypass pointers cache the location of database

t, the more costs need to pay to delete invalid bypass pointers when a callee leaves

database t. Assume that the maximum height of the tree is H. Let M be the average

cost of a BasicMove operation. M ′(t, i) denotes the cost of i EagerMove operations

between two consecutive calls given a bypass pointer directed at database t. MCcache

denotes the average cost of a EagerMove operation, hence we can obtain it as follows:

M =
H∑

q=1

M(q)m
H−q

mH−1

M ′(t, i) = [(M + 2U + 2(b1 + b2)C)γ(t, i)]i + [M(1− γ(t, i))]i

MCcache =
∞∑

i=0

M ′(t, i)α(i)

• The cost of CacheFind

The difference between CacheFind and BasicFind is that CacheFind locates a

callee by using bypass pointers. If no bypass pointers exist between the caller and the

called party. A pair of bypass pointers will be constructed when the first time the caller

calls the callee. To setup bypass pointers, CacheFind updates records in database s

and t. The cost for constructing a pair of bypass pointer is 2U . If there is a pair

of bypass pointers between caller i and callee j, the cost of reading databases from s

to t can be saved. The saving cost of reading databases through bypass pointers is

2(b1 + b2 − 1)R.

When the communication shortcut is available between database s and t, the cost

of communication between s and t can also be saved. The saving cost of communication

is 2(b1 + b2)C. In this paper, we assume that communication shortcuts are unavailable

in the underlying signaling network. Let FCcache be the average cost of a CacheFind

operation, and it can be described as follows:

FCcache = (FCbasic + 2U)γ + (FCbasic − 2(b1 + b2 − 1)R)(1− γ)

Finally, the total cost for callee j in the eager caching strategy is defined as follows:

TCcache = n1 ·MCcache + n2 · FCcache

3.4 Dynamic Location Tracking Strategy

In the dynamic location tracking strategy, a pair of bypass pointers is created between

the caller and the called party. The forward bypass pointer for the callee caches the location

of the callee’s LA, and the reverse bypass pointer which caches the location of the caller’s RA

is created at the callee’s LA. The two main operations in this strategy are called ILAMove

and ILAFind. They are involved in the registration and call delivery procedures respectively.

• The cost of ILAMove

Whenever callee j crosses RA boundaries, he/she reports the current location

to his/her LA (database t). The LA keeps callee j ’s location information; thus the

bypass pointers for callee j are still valid. When callee j moves from RAy to RAz, the

registration message is propagated from RAz until it reaches LCA(RAy, RAz). The

acknowledgement message is returned from LCA(RAy, RAz). Hence, the communi-

cation cost of ILAMove is 2qC, and it saves 1
2
communication cost than BasicMove

or EagerMove. ILAMove just updates 3 databases, RAy, RAz, and LCA(RAy, RAz).

The cost of updating databases is 3U, which saves (2q−2)U than BasicMove or Eager-

Move. Futhermore, there is a LA address mapping table stored at each RA. So, we get

the location of the LA by querying this table of the RA. Besides, the cost of querying

databases becomes 4R, which saves (4q − 2)R than BasicMove or CacheMove. Let

PM(q) be the cost of a ILAMove operation without leaving database t.

PM(q) = MCbasic − (4q − 2)R− (2q − 2)U − 2qC) = 4R + 3U + 2qC

If callee j leaves the subtree rooted at database t, then the LA movement proce-

dure is invoked by ILAMove. And the new serving LA of callee j is LCA(RAy, RAz).

Besides, callee j ’s profile is moved from the old LA to LCA(RAy, RAz), and a LA

movement pointer kept at the old LA points to the new serving LA. The bypass point-

ers for callee j are still stored at this old LA. In this situation, ILAMove pays an

additional cost for changing the location of the LA, but saves the cost for updating

bypass pointers at once. This additional cost for changing the LA is 2R + 2C + U .

Assume that the maximum height of the tree is H. Let PM be the average cost of

a ILAMove operation without leaving its LA. M ′′(t, i) denotes the cost of i ILAMove

operations between two consecutive calls given a bypass pointer directed at database

t. Then, we can obtain the average cost of a ILAMove operation denoted MCILA.

PM =
H∑

q=1

PM(q)m
H−q

mH−1

M ′′(t, i) = [(PM + (2R + 2C + U))γ(t, i)]i + [PM(1− γ(t, i))]i

MCILA =
∞∑

i=0

M ′′(t, i)α(i)

• The cost of ILAFind

If callee j does not leave database t, there is no need to update the location

information of the forward bypass pointer stored at database s. When caller i at RAx

makes a call to caller j at RAy through bypass pointers, the cost of reading databases

between s and t can be saved. The saving cost of reading databases between s and t is

2(b1+ b2−1)R. Besides, the cost of reading databases from t to RAy can also be saved

through the anchoring pointer. Hence, the saving cost of reading databases between t

and RAy is 2(r − b2 − 1)R.

If caller i calls callee j and callee j has left databse t, it implies that the by-

pass pointers for callee j cache the location of his/her old LA. In this circumstance,

the cache information needs to be updated. When the call request arrives database t,

the call request needs to be forwarded to his/her current serving LA through the LA

movement pointer stored at the old LA. By querying this old LA, the reverse bypass

pointer for callee j can be acquired. This reverse bypass pointer should be moved to

callee j’s current serving LA. Hence, the bypass pointers for callee j will be updated

at his/her current LA and database s through the return path of the acknowledgement

message. Let FCILA be the average cost of a ILAFind operation.

FCILA = (FCbasic+(3U +C)− (b1 + b2−1)R− (b1 + b2−2)R−2(r− b2−2)R)γ

+ (FCbasic − 2(b1 + b2 − 1)R− 2(b1 + r − 2)R)(1− γ)

Before deciding the most appropriate position for callee j’s LA, the total cost for callee

j in the dynamic location tracking strategy is defined as follows:

TCDLT = n1 ·MCILA + n2 · FCILA

Finally, we formula the cost of callee j after deciding the most appropriate loca-

tion for his/her LA. Assume that callee j’s LA has been adjusted from t to t′. Before

next time the LA invokes a dynamic adjusting procedure, the postion of this LA won’t

be changed, even callee j leaves database t′. Let γ′ denote the probability that the user

leaves T (t′) between two consecutive calls. M ′′(t′, i) denotes the cost of i ILAMove

operations between two consecutive calls given a bypass pointer directed at database t′.

We can clearly obtain MC ′
ILA which denotes the average cost of a ILAMove operation

when callee j’s LA has been dynamically adjusted from t to t′:

PM =
H∑

q=1

PM(q)m
H−q

mH−1

M ′′(t′, i) = [(PM + 4C)γ′(t′, i)]i + [PM(1− γ′(t′, i))]i

MC ′
ILA =

∞∑

i=0

M ′′(t′, i)α(i)

Furthermore, Let FC ′
ILA be the average of a ILAFind operation when callee j’s LA

has been dynamically adjusted from t to t′, which is described as follows:

FC ′
ILA = (FCbasic + 4C − 2(b1 + �− 1)R− 2(r − �− 1)R)γ′

+ (FCbasic − 2(b1 + �− 1)R− 2(r − �− 1)R)(1− γ′)

Therefore, after deciding the most appropriate position for callee j’s LA, the total cost

for callee j in the dynamic location tracking strategy is defined as follows:

TC ′
DLT = n1 ·MC ′

ILA + n2 · FC ′
ILA

4 Simulation Results

4.1 Simulation Environment

In our simulation, m-way search tree is selected as the architecture of hierarchical lo-

cation databases. Each node of the tree implies that the location database stores users’

profiles. A database at a higher level stores users’ profiles when users locate at the levels

below it. Location databases are interconnected by the signal links of the network. Besides,

Leaf nodes are location databases of the RAs. The user can store the records for his/her

friends in the friend table of the mobile terminal. When the system starts, each user gets

an event per hour, move or find. If he/she gets a find event, it implies that someone makes

a call to him/her. 85% of a user’s calls comes from his/her friends and 15% of those comes

from other users in the system. When he gets a move event, he chooses a direction, left or

right, and then moves to the neighbor RA.

We define system parameters listed in Table 6 for our simulation environment. We use

different levels of the tree structure, different cost value, and different measure days to com-

pare the performance between different strategies: the basic, eager caching, and dynamic

location tracking (DLT) strategies.

Table 6: System parameters values

Parameter Value Comment

L 6, 7 Maximum height of the tree structure

M 4, 3 The degree of the tree structure

DB 1365, 1099 The number of location databases

MT 100,000 The number of mobile terminals

FT 5 The number of a user’s friends

CMR 1 ∼ 20 Call-to-Mobility Ratio

D 3, 5 Measure days

U 2, 0.4, 2 The cost of updating a database

R 1, 0.2, 1 The cost of reading a database

C 1, 1, 0.2 The cost of traversing a signal link

4.2 Experiment Results

We use different parameters such as tree level, cost value, and measure day to observe

the effect of the simulation. Besides, for the dynamic location tracking strategy, we assume

that the system performs computing the appropriate LA for users every three and five days.

First, we use different levels of the tree structure to compare their performance (See

Figure 9 and Figure10), our strategy performs better than the basic and eager caching

strategies. In this case, we can see that the eager caching performs worst when the CMR is

smaller than 6. When the CMR is small, it implies that users may move to neighbor RAs

frequently. When the user moves, the eager caching has to pay an extra cost to delete invalid

bypass pointers. When the CMR is large, it implies that the user receives call frequently

rather than moves. The eager caching has better performance than the basic because of using

the bypass pointers to save the call setup time. Our strategy has the same performance in

different tree structure. When the CMR is small, our strategy is better than the eager

caching and basic, because it saves the cost of location registration. Our strategy uses the

local anchor to keep the user’s location information.

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

2 4 6 8 10 12 14 16 18 20

T
ot

al
 c

os
t[1

:1
00

00
]

CMR

Basic
Eager-Caching

DLT

Figure 9: L=6, M=4, MT=100,000, D=3, FT=5, U=2, R=1, C=0.2

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

2 4 6 8 10 12 14 16 18 20

T
ot

al
 c

os
t[1

:1
00

00
]

CMR

Basic
Eager-Caching

DLT

Figure 10: L=7, M=3, MT=100,000, D=3, FT=5, U=2, R=1, C=0.2

When the CMR is large, our strategy still performs well because of the fact that the

DLT also uses bypass pointers to efficiently reduce the cost of the call delivery operation.

Furthermore, the DLT uses the appropriate position deciding scheme to evaluate whether

the position of the user’s LA should be adjusted. When the CMR is small, the LA will

adjust its position to be close to the region where the user frequently moves. Thus the cost

of location registration can be greatly saved . Besides, the position which the LA is adjusted

to is also the region where the user receive calls frequently. When the CMR is large, the

find events are much more than move events. The LA at a higher level of the tree is better

than that at a lower level of the tree. Hence, the location of the LA is the same as before,

it implies that the location of the LA won’t be changed.

Figure 10 and Figure 11 shows that the appropriate LA deciding scheme is invoked in

three and five days respectively, and users rarely change their behavior. We can see if a

user rarely changes his/her behavior, and then his/her LA will keep static according to our

appropriate position deciding scheme. The system can extend the period for invoking the

dynamic adjust procedure. In Figure 10, Figure 12, and Figure 13, we use different cost

value to compare the performance. When the communication cost is more expensive than

the cost of accessing databases, the eager caching does not perform well because of paying

an addiction cost to delete invalid bypass pointers when the user leaves database t. If several

bypass pointers cache this location t, the cost of deleting invalid bypass pointers will increase

dramatically. Our strategy doesn’t delete bypass pointers when the user leaves database t.

The bypass pointers are updated through the acknowledgement messages of the call delivery

procedure.

Finally, we compare the difference between the DLT before invoking the appropriate

position deciding scheme (DLTbefore) and the DLT after invoking the appropriate position

deciding scheme (DLTafter) in Figure 14. When the CMR is small, the performance of

DLTafter is better than DLTbefore. We see that the move events do influence the result of

deciding which location is suitable for the user’s LA. As the CMR increases, DLTbefore and

DLTafter will be the same because of the fact that call events are more than move events.

When the user’s call events are more than move events, the LA won’t be adjusted to a lower

level of the tree.

10000

15000

20000

25000

30000

35000

40000

2 4 6 8 10 12 14 16 18 20

T
ot

al
 c

os
t[1

:1
00

00
]

CMR

Basic
Eager-Caching

DLT

Figure 11: L=7, M=3, MT=100,000, D=5, FT=5, U=2, R=1, C=0.2

10000

15000

20000

25000

30000

35000

40000

2 4 6 8 10 12 14 16 18 20

T
ot

al
 c

os
t[1

:1
00

00
]

CMR

Basic
Eager-Caching

DLT

Figure 12: L=7, M=3, MT=100,000, D=3, FT=5, U=2, R=1, C=1

8000

10000

12000

14000

16000

18000

20000

22000

24000

2 4 6 8 10 12 14 16 18 20

T
ot

al
 c

os
t[1

:1
00

00
]

CMR

Basic
Eager-Caching

DLT

Figure 13: L=7, M=3, MT=100,000, D=3, FT=5, U=0.4, R=0.2, C=1

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14 16 18 20

C
os

t R
at

io

CMR

DLTafter/DLTbefore

Figure 14: L=7, M=3, MT=100,000, D=3, FT=5, U=0.4, R=0.2, C=1

5 Conclusion

The main contribution of the paper is to propose the dynamic location tracking strategy,

which dynamically adjusts the position of the local anchor according to the user’s behavior.

Our strategy is based on the caching strategy, but modifies the registration and call delivery

procedures to get a great benefit in reducing communication and database access costs.

For registration procedures, we uses the LA to track a user’s current location, and it can

greatly reduce the registration cost. For call delivery procedures, we make the forward

bypass pointers cache each user’s LA, which can avoid cache miss when the user leaves t.

Besides, the appropriate position deciding scheme is invoked in our strategy to decide which

position is better for a user’s LA according to his/her mobility and calling patterns. Then

we adjust his/her LA to the best position. We can get a great benefit in location registration

through this dynamic adjusting LA procedure. Besides, while the position of the LA has

been changed from t to t′, several forward bypass pointers which cache the previous position

t may need to be updated at the same time. In our strategy, these bypass pointers will

be updated through the acknowledgement messages of the call delivery procedure. In other

words, the bypass pointer will be updated through the acknowledgement message only when

it is used by a user to perform the call delivery procedure. Thus we do not need to update

several bypass pointers at once.

With a small CMR, the frequency of successive move operations is high. Our strategy

greatly reduces registration cost by using a LA to keep a user’s current location. With a

large CMR, the frequency of successive find operations is high. Our strategy still greatly

reduces call delivery cost by using bypass pointers to locate mobile users. In our strategy,

each location database which serves as a LA must store a user’s information and provide the

computing function for adjusting LA dynamically. Besides, each user’s LA will not locate

at the same level; thus all users’ profiles are efficiently distributed in the tree structure.

We compare the performance of different strategies in the simulation. The results clearly

indicate that our strategy has better performance than the basic and caching strategies.

References

[1] EIA/TIA,”Cellular radio-telecommunicaiton intersystem operations,”Tech. Rep. IS-41

Reversion B, EIA/TIA, 1991.

[2] I.F. Akyildiz, J. McNair, J. Ho, H. Uzunalioglu and W. Wang, ”Mobility management

in next-generation wireless systems,” Proc. IEEE, vol. 87 , no. 8 , pp. 1347 -1384, Aug.

1999.

[3] C. Eynard, M. Lenti, A. Lombardo, O. Marengo, and S. Palazzo, “A methodology for the

performance evaluation of data query strategies in universal mobile telecommunication

systems (UMTS),” IEEE Journal Selected Areas in Communications, vol. 13, no. 5, pp.

893-907, June 1995.

[4] J. S. M. Ho and I. F. Akyildiz, ”Local anchor schmem for reducing signaling costs in

personal communications networks,” IEEE/ACM Trans. on Networking, vol. 4, no. 5,

Oct. 1996,pp. 709-725

[5] J.S.M. Ho and I.F. Akyildiz, “Dynamic hierarchical database architecture for location

management in PCS networks,” IEEE/ACM Transactions on Networking, vol. 5, no. 5,

pp. 646-660, Oct. 1997.

[6] H.-C. Lin and S.L. Lee, “A Presetting Location Strategy for Personal Communication

Using Hierarchical Location Database,” Proceeding of International Conference on Par-

allel and Distributed System, pp. 349-356, 2000.

[7] Y.-B. Lin and W.-N. Tsai, “Location tracking with distributed HLR’s and pointer for-

warding,” IEEE Transactions on Vehicular Technology, vol. 47, no. 1, pp. 58-64, Feb.

1998.

[8] R. Jain, Y.-B. Lin, C. Lo, and S. Mohan, “A caching strategy to reduce network impacts

of PCS,” IEEE Journal Selected Areas in Communications, vol. 12, no. 8, pp. 1434-1444,

Oct. 1994.

[9] R. Jain and Y.-B. Lin, “An auxiliary user location strategy employing forwarding point-

ers to reduce network impacts of PCS,” IEEE International Conference in Communi-

cations, vol. 2, pp. 740-744, 1995.

[10] R. Jain, “Reducing traffic impacts of PCS using hierarchical user location databases,”

IEEE International Conference in Communications, vol. 2, pp. 1153-1157, 1996.

[11] R. Jain and F. Anjum, “Caching in hierarchical user location databases for PCS,” IEEE

International Conference on Personal Wireless Communication, pp. 496-500, 1999.

[12] S. Mohan and R. Jain, “Two user location strategies for personal communications ser-

vices,” IEEE Personal Communications, vol. 1, no. 1, pp. 42-50, First Quarter 1994.

[13] M. Mouly and M. B. Pautet, ”The GSM system for personal communication services,”

M. Mouly, 49 rue Louise Bruneau, Palaiseau, France, 1992.

[14] E. Pitoura, G. Samaras,”Locating objects in mobile computing,” IEEE Transactions on

Knowledge and Data Engineering, vol. 13 , no. 4 , pp. 571-592, July-Aug. 2001.

[15] K.-L. Sue and C.-C. Tseng “One-step pointer forwarding strategy for location tracking

in distributed HLR environment,” IEEE Journal Selected Areas in Communications,

vol. 15, no. 8, pp. 1455-1466, Oct. 1997.

[16] N. Shivakumar and J. Widom, ”User profile replication for faster location lookup in

mobile environments,” in Proc. ACM MOBICOM’95, Nov. 1995, pp. 161-169.

[17] S. Tabbane, “Location Management Methods for Third-Generation Mobile System,”

IEEE Personal Communications., pp. 72-84, Aug. 1997.

[18] J.Z. Wang, “A fully distributed location registration strategy for universal personal

communication systems,” IEEE Journal Selected Areas in Communications, vol. 11, no.

6, pp. 850-860, Aug. 1993.

