

 1

ICS2002: Workshop on Database and Software Engineering

An Approach to Deploying a Process Model Quickly

Feng-Yu Chung and Feng-Jian Wang

Department of Computer Science and Information Engineering

 National Chiao Tung University

Room 510, EC Building, 1001 Ta-Hsueh Road, Hsinchu City, Taiwan, ROC

Telephone: (03)5712121 x 54718

Fax: (03)5724176

Email: {fychong,fjwang}@csie.nctu.edu.tw

Abstract

Workflow technology has been frequently adopted by the applications of commerce, but

only a few projects have been reported to consider workflow technology into non-business

applications. In 2001, we constructed a workflow system to solve some traditional problems of

departments in the universities. In order to deploy our workflow system to another department

of similar request quickly, we propose an approach that constructs a Process Model Template

and then reuses it. This paper describes what a process model template is and how to analyze

and design a process model template. Finally, this paper demonstrates the implementation and

reuse of a process model template.

Keywords: workflow, reuse, deployment, process model, template.

1. Introduction

In recent years, workflow technology has become more and more popular. Workflow

management helps organizations to organize their work on different activities in such a way that

predictable processes are carried out effectively and efficiently in a distributed environment [1].

The Workflow Management Coalition (WfMC) has developed a framework for the

establishment of workflow standards [2]. In general, workflow technology is more frequently

 2

adopted by the applications of commerce, since workflow technology can bring the benefits of

business process modeling for specifying workflow-oriented application systems [3]. So far

only a few projects have been reported to consider workflow technology into non-business

applications [4].

With the achievement of a mature workflow management system developed in our

laboratory, in 2001, we proposed a project that adopts our workflow technology to solve some

traditional problems of departments in the universities. The project is now on the process of

loading to work. An interesting phenomenon observed is that there are thousands of

departments in the universities and the workflow system with each slight modification might be

applied in a corresponding department. Without well strategies of reuse, system developers will

waste a lot of time to construct a new system or modify their product to satisfy a department of

similar request.

In this paper, we propose an approach that constructs a process model template used to

construct a similar workflow application system quickly. This paper will describe the basic

concept of a process model template and illustrate the construction process with four stages and

four actions. This paper is organized as follows: Section 2 briefly introduces our workflow

management system, and the workflow project. Section 3 describes what a process model

template is, and illustrates how to analyze and design a process model template on our WFMS.

Section 4 shows an example that demonstrates how to construct a real process model template

and then reuses it. Chapter 5 is a conclusion of this paper.

2. Background

2.1 An overview of our WFMS

Our workflow management system, Agentflow, is completely based on n-tier software

architecture. It includes four major components: 1) PDE (Process Definition Editor), a visual

editor used to specify workflow processes, 2) FormDesigner, a graphical development tool

 3

used to construct electronic forms, 3) Agenda, a client-side program of user interaction, and 4)

Flow Engine, the core component of our WFMS.

When system developers want to build a workflow application on Agentflow platform,

they use the PDE to write the specifications from all the process view, artifact view, and

organizational view [5]. Moreover, two methodologies, process-oriented approach and

artifact-oriented approach, are proposed for constructing workflow application systems [6].

Recently, workflow interoperability and system integration is becoming an important issue.

Agentflow system also supports a fully interoperable and integrated environment. Our

laboratory proposed an architecture using XML to integrate software applications [7]. In

addition, our laboratory also proposed an approach to apply Enterprise Java Beans in an

internet workflow management system [8]. These researches enrich the capability of

Agentflow system.

2.2 The CSIE Workflow Project

The departments in the universities use traditional man-power resource to handle many

works without office tools. They employ assistants or part-time students for these works.

However, part of the works might be automated too. And flow-related works can be chosen to

indicate the capability of Agentflow system. In 2001, we proposed a project to make a

workflow service system for our department, namely CSIE workflow application system. This

system involves five major sub-systems:

n Department-computer-center system

n Master-and-doctor-routine system

n Announce system

n Intra-laboratory system

n Agentflow-administration system

 4

3. Constructing a Process Model Template on Agentflow System

3.1 Basic Concept and Our Approach

A project in Agentflow term is a process model designed for a specific application domain.

A Process Model Template (PMT) is an incomplete process model made by removing

specific environment parameters of an original process model. A PMT in our approach

preserves the definition of control-flow and data-flow in an original process model. By

inputting other personal environment parameters into a PMT, a complete process model for

another similar domain can be obtained. For example, after constructing corresponding PMTs

of the CSIE workflow application system, system developers can quickly construct another

department workflow application system by reusing these templates.

Figure 1. The PMT Construction Process

Figure 1 illustrates the PMT construction process. In our approach, the PMT construction

process originates from the products and there are four actions that need be done:

1. Product Selection: Choose a product that has reusable value and economic benefit.

2. Grouping: Analyze the product and separate it into independent groups according to

the feature of the process definition tool. Section 3.2 will describe the analysis of our

process definition tool.

3. Modification: Observe the table schema of WFMS and modify the content of specific

parameters in every independent group. Section 3.3 will describe the modification

Workflow

Products

PMTs

1. Product Selection 2. Grouping

Analyzing the Feature

Of Definition Tool

Checking Content of

Table Schema

3. Modification 4. Iteration

 5

methods.

4. Iteration: Return to 3rd stage again and re-modify the PMT, till no more change.

3.2 The Analysis of our Process Definition Tool

Our PMT is based on the process model of our WFMS. The analysis and design must suit

the feature of our process definition tool, PDE, illustrated in Figure 2. The PDE includes four

components: 1) Project Information, 2) Activity Sub-Model, 3) Artifact Sub-Model, and 4)

Project Role .

Figure 2. The PDE of Agentflow System

With implementation experience of the CSIE application system, there are some aspects

needed to consider and check in the four components of PDE. Here are two different examples

that modify an original workflow system to construct another similar workflow system. The

first example is the Seminar-Paper-Insert process of the DSSL-Intra-Laboratory system. The

following list is part of DSSL-Intra-Laboratory system specification:

n Project Name – DSSL Intra-Laboratory System

n Process Name – Seminar-Paper-Insert Process

 6

n Execution Role – DSSL Master Students

n Artifact Name –Paper-Insert Form

n Runtime Script (Connection to Seminar Database) – IP= 140.113.x.x, Database=

dssl, Account= sa, Password= 123

If one wants to reuse the DSSL-Intra-Laboratory system to other laboratory like PCSL, the

following steps to modify the corresponding parameters which need be done:

1. Change the Project Name from DSSL to PCSL.

2. Reset the Master Students in their laboratory.

3. Reset the runtime script about seminar database information.

Another example is the Students-Personal-Study process of the Master-and-

doctor-routine-work system. The following list is the part of its system specification:

n Project Name – Master-and-doctor-routine-work System

n Process Name – Students-Personal-Study Process

n Execution Role – 1. Office Assistant for this job, and 2. All Master Students

n The Title of Artifact – CSIE Personal-Study Form

n Time Control – The system will warn the students by sending an e-mail if this work

does not complete after 7 days.

If one wants to reuse the Master-and-doctor-routine-work system to other department, the

following steps to modify the corresponding parameters which need be done:

1. Reset the Office Assistant for this job in their department.

2. Change the title of CSIE Personal-Study Form.

3. Change the Time Control for their requirement.

According to above observation, there are five independent aspects needed to modify in

general: 1) Process Information, 2) Execution Role, 3) Artifact Information, 4) Time/Event

Control, and 5) Runtime Action. In order to design a PMT based on the process model of our

WFMS, the table schema of Agentflow process repository must be understood and then the

 7

specific parameters of an original process model must be checked and modified.

3.3 Five Independent Aspects of a PMT

3.3.1 Process Information

Process information supports basic data of a process. When users execute a process, they

can read it. The related table schema about process information is Project,

Process_GenInf, and Process_Version.

Table 1. The Project Table

Table 1 illustrates the Project table that records the project information. Since identifier

Project_ID will be automatically created by Agentflow system, system developers can

ignore it. Identifier Author_ID is the ID that has the privilege to modify the project. In a PMT,

“System Administrator” should be selected to play as the role of author. Identifier

Project_Name records project name, so system developers can save a general project name

into a PMT, for example, “Announce System”, but not save a specific project name, such as,

“CSIE Announce System”. Identifier Project_Version records project version. In a PMT,

its default value is usually the same as the version of an original process model.

In order to make above description more systematically, these modifications can be

distinguished as follows:

n No Modification (NM) – It means that system developers can ignore it and cannot

change anything. For example, identifier “Project_ID” must be ignored.

n System Value Modification (SVM) – This modification means that system

IDENTIFIER MEANING

Project_ID The key of this table. It is unique.

Author_ID The Member_ID of author that has the privilege to modify the

project. It is a foreign key from the Member_GenInf table.

Project_Name The name of project used to be read by users.

Project_Version The version of project used to distinguish this project from

another similar project.

 8

developers must change original value to system value. For example, identifier

“Author_ID” need be changed from original value to “System Administrator”.

n General Value Modification (GVM) – This modification means that system

developers must change specific value to general value. For example, the project

name must be saved a general name.

n Flexible Value Modification (FVM) – This modification means that system

developers can choose their personal value without restriction.

n Restricted Value Modification (RVM) – This modification means that system

developers must save restricted value.

Table 2. The Process_GenInf Table

Table 2 illustrates the Process_GenInf table that records general information of

process. Identifiers Process_ID and Project_ID belong to NM. Identifier

Process_Name records process name and it belongs to GVM. Identifier Policy records

dispatching policy and it belongs to FVM. Identifier AutoExec records a Boolean string used

to determine automatic execution or not. It belongs to NM. Furthermore, identifiers Action,

PreAction, and PostAction are relative to runtime action and they will be described in

section 3.3.5.

IDENTIFIER MEANING

Process_ID The key of this table. It is unique.

Project_ID The Project_ID that the process belongs to. It is a foreign

key from the Project table.

Process_Name The name of process.

Policy There are two kinds of dispatching policies: 1. random and 2.

queue.

AutoExec A Boolean string used to determine automatic execution or not.

Aciton The Action-Script of process.

PreAction The PreAction-Script of process.

PostAction The PostAction-Script of process.

 9

Table 3. The Process_Version Table

Table 3 illustrates the Process_Version table that records process version. Identifiers

Process_Version_ID and Process_ID belong to NM. Identifiers StartTime and

EndTime belong to FVM. The default value of identifier Executable is “false” and it

belongs to RVM, since a PMT is impossibly executable.

3.3.2 Execution Role

Execution role defines the ones who can execute processes. In PDE, there are four

methods provided for defining the process worker: Project role, Organization role,

Role-from-process, and Role -from-artifact. The related table schema about execution role is

Role_GenInf, Member_GenInf, Role_Member_Map, Process_Role_Map,

Project_Role_GenInf and ProjectRol_Member_Map.

Table 4. The Role_GenInf Table

IDENTIFIER MEANING

Process_Version_ID The key of this table. It is unique.

Process_ID The Process_ID that the process version belongs to. It is

a foreign key from the Process_GenInf table.

StartTime The start time of process.

EndTime The end time of process.

Executable A Boolean string used to determine executable or not.

IDENTIFIER MEANING

Role_ID The key of this table. It is unique.

Role_Name The name of role.

Department_ID The department ID that the role belongs to. It is a foreign key.

 10

Table 5. The Member_GenInf Table

Table 6. The Role_Member_Map Table

Table 4 illustrates the Role_GenInf table that records the general information of roles.

Table 5 illustrates the Member_GenInf table that records general information of members.

Table 6 illustrates the Role_Member_Map table used to map identifiers Role_ID and

Member_ID. The Role_Member_Map table indicates the members who play the role in the

Role_GenInf table. Agentflow system provides a graphical tool, Organizer, to construct the

organization of company. System administrator can use Agentflow Organizer to edit these three

tables. Usually, these tables are little modified for a long time, because they are relative to

personnel transfer in an organization. It is not necessary to modify them in our approach.

Table 7. The Process_Role_Map Table

Table 7 illustrates the Process_Role_Map table used to map identifiers Process_ID

IDENTIFIER MEANING

Member_ID The key of this table. It is unique.

Login_ID The login ID of our WFMS.

Member_Name The name of member.

Password The login password of our WFMS.

Phone The phone of member.

EMail The e-mail of member.

Org_ID The specific ID in their organization.

Main_Role_ID The main Role_ID that member plays as. It is a foreign key

from the Member_GenInf table.

IDENTIFIER MEANING

Role_ID The role ID. It is a foreign key from the Role_GenInf table.

Member_ID The member ID. It is a foreign key from the

Member_GenInf table.

IDENTIFIER MEANING

Process_ID The process ID. It is a foreign key from the

Process_GenInf table.

Role_ID The role ID. It is a foreign key from the Role_GenInf table.

 11

and Role_ID. It indicates the roles that have privilege to execute the process in the

Process_GenInf table. In a PMT, it belongs to FVM, since there is no restriction about

privilege setting.

Table 8. The Project_Role_GenInf Table

Table 8 illustrates the Project_Role_GenInf table that records project role general

information. Identifiers Project_Role_ID and Project_ID belong to NM. Identifier

Project_Role_Name records the name of a project role and it belongs to GVM. Identifier

ID belongs to FVM.

Table 9. The ProjectRole_Member_Map Table

Table 9 illustrates the ProjectRole_Member_Map table used to map identifiers

Project_Role_ID and MemID. It indicates the members who play the project role in the

Project_Role_GenInf table. In a PMT, these records need to be cleared, since different

organizations have different setting of project roles. It belongs to RVM.

3.3.3 Artifact Information

Many tasks need to operate some data such as documents, reports, records, etc. In

AgentFlow System, artifacts are used to capture and collect these data. Artifact information

represents formal information of an artifact, including artifact name, synopsis, serial

number… etc. The related table schema about artifact information is Artifact_GenInf,

IDENTIFIER MEANING

Project_Role_ID The key of this table. It is unique.

Project_ID The Project_ID that the project role belongs to. It is a

foreign key from the Project table.

Project_Role_Name The name of project role.

ID The specific ID in their organization.

IDENTIFIER MEANING

Project_Role_ID The project role ID. It is a foreign key from the

Project_Role_GenInf table.

Member_ID The member ID. It is a foreign key from the

Member_GenInf table.

 12

and “ARTIFACT”+Artifact_ID+“_Form”.

Table 10. The Artifact_GenInf Table

Table 10 illustrates the Artifact_GenInf table that records general information of

artifacts. Identifiers Artifact_ID and Project_ID belong to NM. Identifier

Artifact_Name records artifact name and it belongs to GVM.

Table 11. The “ARTIFACT”+Artifact_ID+“_Form” Table

Table 11 illustrates the “ARTIFACT”+Artifact_ID+“_Form” table used to record

attributes and plug-in components of an artifact. In a PMT, identifiers Item_ID and

Item_Name are the same as its original process model, so they belong to NM. There is no

restriction about identifier DefValue, so it belongs to FVM. Identifier Property records

attributes of an item, such as, size, location, color, text, script and so on. In a PMT, it belongs to

GVM.

3.3.4 Time/Event Control

In real world, many tasks run on a regular time schedule, or start after some events have

happened. So, the time/event control is needed in a workflow management system. Agentflow

system can let developers set system events to the deadline of each process. The related table

schema about time/event control is Pro_Warning and CronTable.

IDENTIFIER MEANING

Artifact_ID The key of this table. It is unique.

Project_ID The Project_ID that the artifact belongs to. It is a foreign

key from the Project table.

Artifact_Name The name of artifact.

IDENTIFIER MEANING

Item_ID The item ID inside this artifact. It is unique.

Item_Name The name of item.

DefValue The default value of item.

Property The property of item.

 13

Table 12. The Process_Warning Table

Table 12 illustrates the Process_Warning table used to handle the time/event control.

Identifiers Process_Warning_ID and Process_ID belong to NM. In a PMT, there is no

restriction about process warning. System developers can flexibly save null or some default

values into identifiers After_Time and Function, so they belong to FVM.

Table 13. The CronTable Table

Table 13 illustrates the CronTable table used to indicate the process that will be

executed automatically by the system at the time entry. In a PMT, system developers can

flexibly save null or some default values into identifiers Process_ID and Entry, so they

belong to FVM.

3.3.5 Runtime Action

Agentflow system supports intermediate language to describe complex program logic for

runtime action. The context of this script language is similar to Java script, and system

developers can use some system objects and functions to retrieve process definition and control

the flow. The related table schema about runtime action is Process_GenInf,

Process_Warning, and “ARTIFACT”+Artifact_ID+“_Form” . System developers

IDENTIFIER MEANING

Process_Warning_ID The key of this table. It is unique.

Process_ID The Process_ID that the warning belongs to. It is a foreign

key from the Process_GenInf table.

After_Time The leaving minutes to execute the warning action after process

starting.

Function There are six warning functions: 1. wake up myself, 2. wake up

my manager, 3. wake up myself by e-mail, 4. wake up my

manager by e-mail, 5. bypass, and 6. user’s script definition.

IDENTIFIER MEANING

Process_ID The Process_ID of process that will be executed

automatically and periodically by the system. It is a foreign

key from the Process_GenInf table.

Entry The entry used to check the execution time.

 14

can use Agentflow Script Editor to write script program.

In a PMT, system developers should remain the script’s computing logic of an original

process model, but not the specific parameters or contexts. The following example shows a

script that connects to a database and retrieves some records of Name column from the Seminar

table.

Packages.java.lang.Class.forName("com.inet.tds.TdsDriver");

var con = Packages.java.sql.DriverManager.getConnection

("jdbc:inetdae:140.113.210.11:1433?database=dssl&sql7=true&charset=BIG5","sa","123");

var myStatement = con.createStatement();

var sql = "select distinct Name from Seminar";

var rs = myStatement.executeQuery(sql);

var cb_name = Form.getComponent("CB_name");

while(rs.next())

{

 var name = rs.getString("name");

 cb_name.addItem(name);

}

In this example, the specific parameters such as IP address, port, account, and password

need be removed. Here are two methods to modify these parameters or contexts:

1. String Replacing – System developers could change specific parameters or contexts

to special string patterns, for example, they can change IP address from

“140.113.210.11” to “db_ip”. When reusing the template of this kind, they need to

replace these string patterns to the parameters or the contexts of their personal

specification. This method will be easy but not flexible.

2. Dynamic Loading – System developers could create additional tables to save

specific parameters or contexts, and write additional scripts used to retrieve these

parameters or contexts from those tables. When reusing this template of this kind,

they just need to insert their personal parameters or contexts into the corresponding

tables. This method will be flexible but not easy.

 15

4. An Example

4.1 Constructing the PMT of Intra-Laboratory System

In this section, the DSSL-Intra-Laboratory system is considered as the original process

model used to construct our PMT of Intra-Laboratory system. The following parts show the

modifications of this template:

n Process Information Modification

Project_ID Author_ID Project_Name Project_Version

001 fychong DSSL-Intra-Laboratory System V1.0

Table 14. The Project Information of the DSSL-Intra-Laboratory System

Process_ID Project_ID Process_Name Policy AutoExec

P0001 001 Seminar-Paper-Insert process Random false

P0002 001 Seminar-Paper-Delete process Random false

P0003 001 Seminar-Paper-Query process Random false

Table 15. The Process General Information of the DSSL-Intra-Laboratory System

Process_ID StartTime EndTime Executable

P0001 2002-02-22 * true

P0002 2002-02-22 * true

P0003 2002-02-22 * true

Table 16. The Process Version of the DSSL-Intra-Laboratory System

Table 14, Table 15, and Table 16 show the process information of the

DSSL-Intra-Laboratory system and the following steps need be done:

Step 1) Change the project name from “DSSL-Intra-Laboratory System” to

“Intra-Laboratory System”.

Step 2) Change the author from “fychong” to “System Administrator”.

Step 3) Change the Executable of process version from “true” to “false”.

n Execution Role Modification

Role_ID Project_ID Role_Name Org_ID

 16

PR001 001 DSSL Instructor Null

PR002 001 DSSL Doctor Student Null

PR003 001 DSSL Master Student Null

Table 17. The Project Role General Information of the DSSL-Intra-Laboratory System

Role_ID Member_ID

PR001 M0012345

PR002 M8717544

PR002 M8817519

PR003 M8917512

PR003 M8917566

PR003 M9017581

Table 18. The Content of the ProjectRole_Member_Map Table of the DSSL-Intra-Laboratory

System

Table 17 and Table 18 show the project role information of the DSSL-Intra-Laboratory

system and the following two steps need be done:

Step 1) Change the project role name from “DSSL Instructor”, “DSSL Doctor Student”,

and “DSSL Master Student” to “Instructor”, “Doctor Student” and “Master Student”.

Step 2) Remove all records that RolID equals “PR001”, “PR002”, or “PR003” from the

PrjRol_Mem table.

n Runtime Action Modification

In the DSSL-Intra-Laboratory system, all of the three processes have the following script

that connects to a database and then inserts, deletes, or queries the data of seminar papers.

var con = Packages.java.sql.DriverManager.getConnection

("jdbc:inetdae:140.113.210.11:1433?database=dssl&sql7=true&charset=BIG5","sa","123");

Here are the two methods in our approach used to modify these parameters:

1. String Replacing Method:

Step 1) Change “140.113.210.11” to “db_ip”.

 17

Step 2) Change “1433” to “db_port”.

Step 3) Change “dssl” to “db_name”.

Step 4) Change “sa” to “db_account”.

Step 5) Change “123” to “db_password”.

After modification, the script will be like as:

var con = Packages.java.sql.DriverManager.getConnection

("jdbc:inetdae:db_ip:db_port?database=db_name&sql7=true&charset=BIG5","db_account","db_p

assword");

2. Dynamic Loading Method:

At first, an additional table , called DB_Parameter illustrated in Table 19, need be

created and be saved these parameters.

Table 19. The DB_Parameter Table

Moreover, system developers need to modify the original script to the following example

that retrieves parameters from the DB_Parameter table.

var SQLText = “Select * from DB_Parameter where ID = 1”;

var DataSet = Client.SQLloadValue(SQLText);

var sRecord = DataSet.get(0);

var IP = sRecord.get(”DB_IP”);

var PORT = sRecord.get(”DB_Port”);

var DBNAME = sRecord.get(”DB_Name”);

var ACCOUNT = sRecord.get(“DB_Account”);

IDENTIFIER MEANING

ID The key of DB_Paramter table. It is unique.

DB_IP The IP address of database server.

DB_Port The port of database server.

DB_Name The database name.

DB_Account The system account of database.

DB_Password The password of system account.

 18

var PASSWD = sRecord.get(“DB_Password”);

var con = Packages.java.sql.DriverManager.getConnection

("jdbc:inetdae:IP:PORT?database=DBNAME&sql7=true&charset=BIG5","ACCOUNT","PASSWD");

There is no modification in the artifact information and time/event control. After operating

the modifications mentioned above, a PMT of Intra-Laboratory system can be produced.

Furthermore, system developers can use the PDE to save and export this template to a “.PRJ”

file. When they want to reuse this template in the future, they just need to import this “.PRJ” file

in the beginning.

After constructing a PMT, system developers can use any programming tools that have the

capability to insert their personal parameters into the table schema, for example, pure java, ASP,

JSP, Visual C++, and so on. There is no restriction about deployment tools.

4.2 Deploying the Template

In this section, we will use Agentflow system to create a deployment process used to

deploy the PMT of Intra-Laboratory system. This deployment process contains two

sub-processes: 1) Laboratory-Information-Setting process, and 2) Seminar-Database-Setting

process.

First, the Laboratory-Information-Setting process is used to set the laboratory name,

instructor, doctor student, and master student. Figure 3 illustrates the inputting diagram in

Agenda. After submitting this form, the Laboratory-Information-Setting process will get the

value from this artifact, and then update the process information and execution role aspects in

the PMT of Intra-Laboratory system. This sub-process will update the following three tables:

Project, Project_Role_GenInf, and ProjectRole_Member_Map.

 19

Figure 3. The Inputting Diagram of Laboratory-Information-Setting Process

Second, the Seminar-Database-Setting process is used to set the database information of

seminar. Figure 4 illustrates the inputting diagram in Agenda. After submitting this form, the

Seminar-Database-Setting process will get the value from this artifact and create an additional

table, called Seminar, used to save the seminar data. Then, the process will use the value to

update the runtime action aspect in the PMT of Intra-Laboratory system. If the runtime action

of this PMT is modified by the string replacing method, users need to replace them again. If the

runtime action of this PMT is modified by the dynamic loading method, users just need to insert

the value into the DB_Parameter table.

 20

Figure 4. The Inputting Diagram of Seminar-Database-Setting Process

5. Conclusion

We have presented an approach that constructs a PMT based on the process model of our

WFMS and reuse it. A PMT in our approach is divided into five independent aspects and there

are five modification actions to modify specific parameters in our table schema. We also have

demonstrated an example that implements a PMT of Intra-Laboratory system and then reuses it.

The examples indicate that our approach allows the following benefits:

1. Without the help of workflow management system.

2. More efficient than specifying with workflow management system directly.

3. With a friendly interface for building whole system.

4. Easily setup all parameters step by step.

There are two future works needed to be paid attention. The first one is the issue of

flexibility. A PMT in our approach is not flexible, because of the preservation of definition of

control-flow and data-flow. The second one is the issue of constructing a standard library of

PMT. In order to manage and share our PMTs effectively and efficiently, a standard and big

library is expected.

 21

Reference

[1] Cugola, G.; Di Nitto, E.; Fuggetta, A. “The JEDI Event-Based Infrastructure and Its

Application to the Development of the OPSS WFMS”. Software Engineering, IEEE

Transactions, Volume: 27 Issue: 9 , Sept. 2001.

[2] WFMC Workflow Standard – Workflow Reference Model.

http://www.wfmc.org/standards/docs/tc003v11.pdf

[3] Michael Amberg. “The Benefits of Business Process Modeling for Specifying

Workflow-Oriented Application Systems”.

http://www.seda.sowi.uni-bamberg.de/forschung/publikationen/html/wfmc-cfp.htm

[4] Reuss, T.; Vossen, G.; Weske, M. “Modeling Samples Processing in Laboratory

Environments as Scientific Workflows”. Proceedings of Database and Expert Systems

Applications, Eighth International Workshop, 1997.

[5] Y. S. Chen. Building an Edit and Enactment System for Process Definition. Master Thesis,

National Chiao-Tung University, 2001.

[6] R. J. Liou. Constructing Workflow Application Systems. Master Thesis, National

Chiao-Tung University, 2001.

[7] S. Z. Yeh. Integrate Workflow System on Internet with XML. Master Thesis, National

Chiao-Tung University, 2001.

[8] D. J. Lin. Applying Enterprise JavaBeans in an Internet Workflow ManagementSystem.

Master Thesis, National Chiao-Tung University, 2001.

