
 1

Workshop on Databases and Software Engineering

A Partial View Materialization Approach
in Data Warehouse Environment

Huei-Huang Chen
hhchen@cse.ttu.edu.tw

Ting-Yi Chen
cti@it01.cse.ttu.edu.tw

Department of Computer Science and Engineering, Tatung University
No. 40, Chung-Shan N. Rd., Sec. 3, Taipei, 104, Taiwan, R.O.C.
Tel: 886-2-25925252 ext.3295 Fax: 886-2-25925252 ext.2288

Abstract
In a data warehouse environment (DWE), users access very large databases to carry

out strategic analysis for maintaining business competitiveness by executing OLAP

queries. Therefore, efficient query processing becomes a critical issue. The storage

space of the dedicated OLAP server is smaller than the total size of all data cubes

usually. That is, only parts of the data cubes can be stored. Materialized views

selection is the most important decisions in building a Data Warehouse.

At the heart of all OLAP or multidimensional data analysis applications is the

ability to simultaneously aggregate across many sets of dimensions. Computing

multidimensional aggregates is a performance bottleneck for these applications. In

this paper, we address an approach that is combined materialized views selection and

computing the views for implementation of materialized views. The Partial View

Materialization Approach includes two phases of views selection and views

materialization. It also includes the advantages of Extended Reverse Progressive View

Materialization Algorithm (ERPVMA) and Overlap Method, so the approach can

effectively improve the data warehouse performance.

Keywords: On-Line Analytical Processing; Data Cube; Data Cube Lattice;

Materialized View; Partially-Materialized Lattice; Overlap Method.

mailto:hhchen@cse.ttu.edu.tw
mailto:cti@it01.cse.ttu.edu.tw

 2

1. Introduction
In many enterprises, Decision Support Systems (DSS) play an important role for

businesses. The main reason for DSS’s popularity is that DSS are the key to gaining

competitive advantage for business. Many enterprises have built or are building

unified decision-support databases called data warehouses on which users can carry

out their analysis. Since queries to data warehouse tend to be queried which identify

trends in large multidimensional data, these queries typically make large use of

aggregations. This leads to a necessity of multidimensional data analysis: On-Line

Analytical Processing. OLAP is a technique that guarantees extremely fast response

time for multidimensional queries in data warehouse.

Two commonly used techniques to speed up OLAP queries are materialized

views and indices. But the storage space of the dedicated OLAP server may be

smaller than the total size of all data cubes. That is, only parts of the data cubes can be

stored, and so we need to select suitable data cubes that can minimize the query cost

and can used to answer more queries. Materialized views selection is the most

important decisions in building a Data Warehouse. At the heart of all OLAP is the

ability to simultaneously aggregate across many sets of dimensions. Computing

multidimensional aggregates is a performance bottleneck for OLAP. So how to

improve the question to increase the OLAP performance is one of the most significant

studies of the subject.

Hence, in this paper, we address an approach that is combined materialized

views selection and computing the views for views materialization. The Partial View

Materialization Approach includes the advantages of ERPVMA and Overlap Method,

so we expecting the approach can improve the data warehouse performance, and let

the performance optimizations.

 3

We consider a warehouse of retail information, with point-of-sale (pos) data

from one thousand of stores. The point of sale data is stored in the warehouse in a

large pos table, called a fact table. It contains a tuple for each item sold in a sales

transaction. Each tuple has the format:

pos (storeID, itemID, quarter, qty, price).

Let the stores and items tables contain store information and item information,

respectively. The key of stores is storeID, and the key of items is itemID.

stores(storeID, city, region).

items (itemID, name, category, cost).

The rest of the thesis is organized as follows. In Chapter 2, we survey the related

works that is used by the Approach that we address. In Chapter 3, we detail explain

the Partial View Materialization Approach that we proposed. In Chapter 4, we

experiment on Extended Progressive View Materialization Algorithm and Extended

Reverse Progressive View Materialization Algorithm. Then, analysis and explain what

are advantages of the approach that we present. In Chapter 5, we conclude this thesis

and point out the future work that has arisen from this area.

2. Related Works

2.1. The Lattice Framework
� Lattice Model [4]: We can aggregate any combinations of the three dimensions,

stores, items, quarter, and obtain totally eight possible views (group-by or cubes).

The relation of these eight views can be modeled as a cube-lattice shown in

Figure 2.1.

� Dimension Hierarchies and Lattices [4]: The various dimensions represented

by the group-by attributes of a fact table often are organized into dimension

hierarchies. The hierarchies are very important to OLAP queries, because they

 4

(storeID, itemID, quarter)

(storeID,quarter)(storeID,itemID) (itemID, quarter)

(itemID)(storeID) (quarter)

()

Figure 2.1: Data cube lattice of pos.

realize the “drill-down” and “roll-up” operations. With the presence of

hierarchies, the lattice diagram becomes more complex. For example, consider

two dimensions: store and item, whose hierarchies are shown in Figure 2.2. The

resulting diagram of combining these two dimensions with hierarchies is shown

in Figure 2.3.

� Generalized Cube Views and Partially Materialized Lattices [6]: Some views

may do aggregation on columns used as dimension attributes in other views. We

will call these views generalized cube views. A partially materialized lattice is

obtained by removing some nodes of the lattice, to represent the fact that the

corresponding views are not being materialized. When a node n is removed, all

storeID

city

region

none

(a) stores

itemID

category

none

(b) items

(itemID, storeID)

(itemID, city)

(itemID, region)

(itemID)

(category, storeID)

(category, city)

(category, region)

(category)

(storeID)

(city)

(region)

none

Figure 2.2: Hierarchies for the stores and items Figure 2.3: Combining two hierarchical

 5

incoming and outgoing edges from node n are also removed, and new edges

are added between nodes above and below node n .

2.2. Progressive View Materialization Algorithm (PVMA)
The benefit and cost metrics that discussed in the paper [8] use in selecting views to

materialize are base on the frequency of updates and accesses on each view and the

view size. The PVMA assumes that the selection of each materialized view is done

independently. It also assumes that there is no space constraint in the warehouse and

that the OLAP uses relational database systems (ROLAP). The benefit)(vbenefitk of

selecting a view v is considered for all views v that are not in the set of selected

views in iteration k . The profit)(vbenefitk of a view v is the subtraction of

benefit and cost of view v . The view that yields the maximum positive profit is

selected to materialize. The search terminates when it is not possible to increase the

profit further.

� Data Cube Lattices: As discussed in the paper [4], a data cube can be presented

by using a lattice. For example, consider that there are 2 dimensions: Product

and Region as a sample. The representation of these two dimensions as a lattice

is shown in Figure 2.4. The box in Figure 2.4, a number at lower left represents a

view size and a number at lower right is the frequency of queries on the view.

P1.R1
1,000,000 1

P2.R1
600,000 2

P3.R1
100,000 5

P1.R2
700,000 2

P2.R2
4,00,000 3

P3.R2
80,000 10

P1.R3
1,00,000 4

P2.R3
70,000 1

P3.R3
2,000 20

P1.R4
30,000 7

P2.R4
5,000 30

P3.R4
100 1

Figure 2.4: Lattice of data cube [8].

 6

� Nearest Materialized Parent View (NMPV):

))(),(min()(vRvRvNMPV sk = Svs ∈∀ , where vvs → *

where vvs → * means that view sv is one of the parents of view v , and S

represents a collection of views which the PVMA algorithm decides to

materialize.

� Benefit Calculation: The benefit)(vbenefitk of view v in iteration k is:

 rba
vvchildp

k Tfp
bf

vRvNMPVRvbenefit)))()(((()(
)(

∑
∪∈

−=

where rbaT is the time for one random block access, and bf is the blocking

factor of the view. The view)(vchild represents child views, whose NMPV is

v .

� Cost Calculation: Each change to the fact table in OLAP involves update to

each view - all dimensions and all levels of each dimension are affected. We

recommend that when aggregated views are created, their primary key indexes

are created as well. We assume that their primary key indexes are implemented

as +B trees. We derive the time estimation for each update operation as follows,

where f represents the frequency of each operation on a view.

� Insert and Delete: (i) read a block of a view, (ii) rewrite a block of the

view, (iii) read a leaf node (block), and (iv) rewrite the leaf node. Thus total

cost for the insertion of one row is)(4 rbaf .

� Update: (i) read a leaf node, (ii) read a block of a view, and (iii) rewrite the

block of a view. Thus total update cost for one update is)(3 rbaf .

We can derive a formula of the cost of update operations on view v as

rba
Uu

uu
Dd

i
Ii

i TfNfNfNt)344(cos ∑∑∑
∈∈∈

++= . rbaT is the time for one random

block access.

 7

� Profit Calculation: PVMA calculates benefit and cost for each view in each

iteration. The function)(vprofitk that is the profit of view v , and is defined

as)(cos)()(vtvbenefitvprofit kk −= .

2.3. Overlap Method
� Choosing a Parent to Compute a View [1]: Each view in the view DAG

(Directed Acyclic Graph) has more than one parent from which it could be

computed. We need to choose one of these parents thus converting the DAG to a

rooted tree. The root of the tree is the base view and each view’s parent is the

view to be used for computing it. For example, one possible tree for computing

the DAG in Figure 2.5 is as shown in Figure 2.6.

� Choosing a Set of Views for Overlapped Computation: The next step is to

choose a set of views that can be computed concurrently within the memory

constraints. To compute a view in memory, we need memory equal to the size of

its partition. We assume that we have estimates of sizes of the views. We have

shown that finding an overall optimal allocation scheme for our view tree is

NP-hard. So, instead of trying to find the optimal allocation we do the allocation

by using the heuristic of traversing the tree in a breadth first (BF) search order:

� Views to the left have smaller partition sizes, and require less memory. So

consider these before considering views to the right.

� Views at a higher level tend to be bigger. Thus, these should be given

higher priority for allocation than views at a lower level in the tree.

� Example Computation of a CUBE: Consider the CUBE to be computed on {A,

B, C, D}. The tree of views and the estimates of the partition sizes of the views

are shown in. If the memory available is 25 pages, BF allocation will generate

three subtrees, each of which is computed in one pass. These subtrees are shown

 8

(A, B, C, D)

(A, B, C) (A, B, D) (A, C, D) (B, C, D)

(A, B) (A, C) (A, D)

(A)

[1] [1] [10] [10]

[1] [1] [5]

[1]

(B, C, D)

(B, C) (B, D)

(B)

[10]

[1] [1] [40]

[1]

(C, D) (C) (D)

()

[10]

[5][1]

(C, D)

Figure 2.7: Steps of the algorithm [1].

in Figure 2.7. In the second and third steps the views (B, C, D) and (C, D) are

allocated 10 Pages as there are 9 sorted runs to merge.

3. Partial View Materialization Approach
In order to combine the views selection and views materialization to improve the

performance of OLAP or multidimensional data analysis applications in data

warehouse environment. We address an approach that combines materialized views

(A, B, C, D)

(A, B, C) (A, B, D) (A, C, D) (B, C, D)

(A, B) (A, C) (A, D) (B, C) (B, D)
(C,D)

(A) (B) (C) (D)

()

(A, B, C, D)

(A, B, C) (A, B, D) (A, C, D) (B, C, D)

(A, B) (A, C) (A, D)
(B, C)

(B, D)
(C,D)

(A) (B)
(C)

(D)

()

[1] [1] [10] [10]

[1] [1] [5]
[1]

[1] [40]

[5][1] [1] [1]

[...] indicates estimated partition size in number of pages

Figure 2.5: Sort orders enforced on the views. Figure 2.6: Estimates of partition sizes.

 9

selection and computing the views for implementation of materialized views.

 Figure 3.1 illustrated the Partial View Materialization Approach that we

proposed in this paper. First, we build the EGCVL from the base tables. Second,

through ERPVMA we select the appropriate set of materialized views. Third,

according to the set, we can build Partially-Materialized Lattice as the input in the

Overlap Method. Then we utilize Overlap Method to compute these views.

3.1. View Selection

3.1.1. Extended Generalized Cube Views Lattices (EGCVL)

Base on the notion as mentioned in the Section 2.1, we can get the generalized cube

views lattices (GCVL). Then we let GCVL combine with the data cube lattice that is

M V 1 M V 2 M V 3 M V 4M V m

M a te r ia liz e d V ie w s

B T 1 B T 2 B T 3 B T 4 B T n

B a s e T a b le s

V 1 V 2 V 3 V 4 V m

T h e v ie w s to b e m a te r ia liz e d

V ie w S e le c tio n :

E R P V M A

V ie w M a te r ia liz a t io n :

O v e rla p M e th o d

E G C V L a ttic e

P a rtia lly -M a te r ia liz e d
L a ttic e

Figure 3.1: The Partial View Materialization approach.

 10

mentioned in Section 2.2. The new data cube lattice that is produced by us to be called

Extended Generalized Cube Views Lattices (EGCVL). Figure 3.2 shows the EGCVL

for pos.

 A number at upper middle of the box in Figure 3.2 represents the index of a view.

A number at lower left of the box in Figure 3.2 represents the size of a view. A

number at lower right of the box in Figure 3.2 is the frequency of queries on the view.

The top view (storeID, itemID, quarter) corresponds to the fact table. EGCVL is our

main framework to analysis and selection materialized views.

3.1.2. Cost Model

The cost model in our approach is base on that is proposed by [8]. It has described in

Section 2.2. But we modify the cost model a little bit. It is described as follows.

� Benefit Calculation: Sometimes, the child views of view v are not all have

the same Nearest Materialized Parent View with v in a data cube lattice when

materialized view selection every time. Before we discuss the new benefit

formula in the EPVMA, let us introduce a notion Different Nearest Materialized

Parent View Child Views (DNMPVC). If v was materialized, we say that the

view cv is one of the child views of v , but)()(vNMPVvNMPV c ≠ . The

DNMPVC(v) represents the set of cv . Contrary, the Same Nearest Materialized

Parent View Child Views (SNMPVC) means if v was materialized, the view

cv is one of the child views of v , and)()(vNMPVvNMPV c = . The

SNMPVC(v) represents the set of cv . Hence, the new benefit calculation is:

rba
vvSNMPVCpvDNMPVCv vvchildp

c
k Tfp

bf
vRvNMPVRfp

bf
vRvNMPVRvbenefit

c cc

))))())(((()))())((((()(
)()()(

∑∑ ∑
∪∈∈ ∪∈

−+−=

(3.1)

 11

0
store ID, item ID, quarter
1,000,000 1

2
storeID, category,quarter
400,000 30

3
city, item ID , quarter
250,000 1

1
storeID, item ID

250,000 10

4
store ID, ca tegory

100,000 25

5
city, item ID
62,500 3

6
store ID, quarter
4,000 20

8
region, item ID, quarter
50,000 2

7
city, category, quarter
100,000 30

9
storeID

1000 6

13
region, category, quarter
20,000 50

10
city, category
25,000 45

11
region, item ID
12,500 1

12
city, quarter
1,000 1

14
item ID, quarter
1,000 2

15
city

250 4

16
region, category

5,000 30

17
item ID

250 1

19
category, quarter

400 10

18
region, quarter

200 3

21
category

100 40

22
quarter

4 50

20
region

50 5

23
all()

Figure 3.2: Extended Generalized cube views lattices for pos.

� Cost Calculation: Due to the source changes are loaded into the warehouse at

regular intervals, usually once a day. So we consider the size of views and

frequency of queries on views is happen between two update operations. So we

remove the factor which frequency of update operations on each view. Hence,

the new cost calculation is:

rba
Uu

u
Dd

i
Ii

i TNNNt)344(cos ∑∑∑
∈∈∈

++= (3.2)

� Profit Calculation: The profit calculation is not change, it is like Eq. (3.3).

)(cos)()(vtvbenefitvprofit kk −= (3.3)

3.1.3. Extended Progressive View Materialization Algorithm (EPVMA)

The algorithm of PVMA [8] assumes that (1) the selection of each materialized view

 12

is done independently; (2) there is no space constraint in the warehouse and (3) that

the OLAP uses relational database systems (ROLAP). In our algorithm, we still retain

the assumption (1) and (3). But we modify the assumption (2), we add the storage

space constraint in our algorithm. Due to at the actual situation, storage space is

limited. Thus, the space condition is needed to consider.

In this paper, the first algorithm that we propose is called Extended Progressive

View Materialization Algorithm (EPVMA). It is described in Figure 3.3. EPVMA takes

the tactic that selects the largest profit view to materialize every time. It assumes that

only has the top view (fact table) to be materialized initial. In EPVMA, calculating the

views size is represented by)(xC . The parameter x is represent a view or the set of

the views.

Initial:
 }0{vMVs = /* MVs：views which should be materialized ; 1v ：The top view

 φ=NR /* NR：views which should not be materialized

 rbaUu uDd dIi i TNNNt)344(cos ∑∑∑ ∈∈∈
++=

 =S Total storage space

φ=iewsCandidateV

/* iewsCandidateV ：views which can be selection to materialized)

Algorithm:
01 WHILE SMVsC <)(
02 BEGIN
03 FOR all views v
04 BEGIN
05 IF ())()((&)(&)(SvCMVsCNRvMVsv <+∉∉) THEN

06 Add v into iewsCandidateV
07 END IF
08 End FOR
09 IF φ=iewsCandidateV THEN
10 Exit the while loop
11 END IF
12 FOR all views v in iewsCandidateV

13 BEGIN

14 rba
vvSNMPVCpvDNMPVCv vvchildp

c
k Tfp

bf
vRvNMPVRfp

bf
vRvNMPVRvbenefit

c cc

))))())(((()))())((((()(
)()()(

∑∑ ∑
∪∈∈ ∪∈

−+−=

15)(cos)()(vtvbenefitvprofit kk −=

16 IF (0)(<vbenefitk) THEN
17 Add v into NR
18 Remove v from iewsCandidateV
19 END IF

 13

20 END FOR
21 φ=Bview /* Bview：a view with maximum profit

22 0=Bvalue /* Bvalue：profit of Bview
23 FOR all views v in iewsCandidateV
24 BEGIN
25 IF (φ=Bview) THEN
26 vBview =
27)(vprofitBvalue k=
28 END IF
29 IF ()(vprofitBvalue k<) THEN
30 vBview =
31)(vprofitBvalue k=
32 END IF
33 END FOR
34 Add Bview to MVs
35 φ=iewsCandidateV
36 END of While Loop

Figure 3.3: EPVMA Algorithm.

3.1.4. Reverse Progressive View Materialization Algorithm (RPVMA)

In EPVMA, it calculate the benefit consider the sum of query frequencies on the

views that may be materialized and its child views. This may be generated puffiness

issue when we calculate the profit in order to selection the materialized view. In order

to solve this issue, we address the Reverse Progressive View Materialization

Algorithm (RPVMA). It is described in Figure 3.4.

The difference between RPVMA and EPVMA is RPVMA assumes that all of the

views are materialized initially. A heuristic is to select the smallest profit view to be

removed every time. In RPVMA,)(MVsNPV represent whether MVs has any

view’s profit smaller than zero or not. The algorithm has two stages. First, it removes

the smallest profit every time until TrueMVsNPV ≠)(. Second, When MVs has not

any view’s profit smaller than zero, but SMVsC >)(, it is continue remove the view

that has the smallest profit until SMVsC <)(.

Initinal:
 =MVs {all views} /* MVs：views which should be materialized
 φ=NR /* NR：views which should not be materialized

 rbaUu uDd dIi i TNNNt)344(cos ∑∑∑ ∈∈∈
++=

 =S Total storage space

 14

φ=iewsCandidateV

/* iewsCandidateV ：views which can be selection to remove from MVs)

Algorithm:
01 WHILE TrueMVsNPV =)(
02 BEGIN
03 FOR all views v
04 BEGIN

05 IF ()(&)(NRvMVsv ∉∈) THEN
06 Add v into iewsCandidateV
07 END IF
08 End FOR
09 IF MVs = {top view} THEN

10 Exit the while loop

11 END IF

12 φ=Bview /* Bview：a view with minimum profit
13 ∞=Bvalue /* Bvalue：profit of Bview
14 FOR all views v in iewsCandidateV
15 BEGIN

16 rbavvchildp pk Tf
bf

vRvNMPVRvbenefit)))())(((()(
)(∑ ∪∈

−=

17)(cos)()(vtvbenefitvprofit kk −=

18 IF (φ=Bview) THEN
19 vBview = ,
20)(vprofitBvalue k=
21 END IF
22 IF ()(vprofitBvalue k>) THEN

23 vBview =
24)(vprofitBvalue k=
25 END IF
26 END FOR
27 Remove Bview from MVs
28 Add Bview into NR
29 φ=iewsCandidateV
30 END of while loop
31 WHILE SMVsC >)(
32 BEGIN
33 FOR all views v
34 BEGIN
35 IF ()(&)(NRvMVsv ∉∈) THEN
36 Add v into iewsCandidateV
37 END IF
38 End FOR
39 IF MVs = {top view} THEN
40 Exit the while loop
41 END IF
42 φ=Bview /* Bview：a view with minimum profit
43 ∞=Bvalue /* Bvalue：profit of Bview
44 FOR all views v in iewsCandidateV
45 BEGIN

46
rbavvchildp pk Tf

bf
vRvNMPVRvbenefit)))())(((()(

)(∑ ∪∈

−=

47)(cos)()(vtvbenefitvprofit kk −=

48 IF (φ=Bview) THEN

 15

49 vBview = ,
50)(vprofitBvalue k=
51 END IF
52 IF ()(vprofitBvalue k>) THEN

53 vBview =
54)(vprofitBvalue k=
55 END IF
56 END FOR
57 Remove Bview from MVs
58 Add Bview into NR
59 φ=iewsCandidateV
60 END of while loop

Figure 3.4: Reverse EPVMA Algorithm.

3.1.5. Extended RPVMA (ERPVMA)

Although RPVMA solves the puffiness issue, but its utility rate of storage space is not

good. Because the algorithm is doing the while loop until there is not any view’s

profit smaller than zero in MVs , the surplus storage space maybe enough to add

another views that good for query.

In order to make up for the drawback, we provide the algorithm that combines

the RPVMA and EPVMA is called Extended Reverse Progressive View

Materialization Algorithm (ERPVMA). It is described in Figure 3.7. The algorithm

runs RPVMA first, and then utilizes the EPVMA.

3.2. View Materialization

3.2.1. Building a Partially-Materialized Lattice

When we process the ERPVMA after, we can get the partial views that will be

materialized. Then we build the Partially-Materialized Lattice according to the result.

About the notion of Partially-Materialized Lattice was described in Section 2.1.

3.2.2. View Materialization with Overlap method

At the heart of all OLAP or multidimensional data analysis applications is the ability

to simultaneously aggregate across many sets of dimensions. Computing

multidimensional aggregates is a performance bottleneck for these applications. The

 16

Overlap Method [1] is a fast algorithm for computing a collection of group-bys. The

method in [1] focus on a special case of the aggregation problem－computation of the

CUBE operator. The CUBE operator requires computing group-bys on all possible

combinations of a list of attributes, and is equivalent to the union of a number of

standard group-by operations. In this paper, we select the Overlap Method to compute

the Partially-Materialized Lattice. We use the partially materialized lattice as the input

of the overlap method. About the steps that are how to run the Overlap Method was

described in Section 2.3.

4. Experiments and Results Analysis

4.1. Experiments for EPVMA and ERPVMA

4.1.1. Experiments Data

The data of these experiments are base on motivation example. In our experiments,
we used conditions shown as follows:

Table 4.1: The execution conditions of experiments.

Lattice Figure 3.3
Update operations Table 4.2
Block size 4096 bytes
Record size (fact table) 100 bytes

rbaT 16(msec)

Table 4.2: Description of update operation for experiments.

Operation Number of updated rows
Insert 1I 3500

Delete 1D 2500
Update 1U 4000

Running these algorithms before, we calculate the blocking factor (bf), cost, and

the range of total storage space:

 17

 40100/4096 ==bf

57600016)400032500435004(cos =××+×+×=t

≤0 total storage space 1283254≤

4.1.2. Experiments Result

The graph in Figure 4.1 shows the total query cost of the two algorithms. We can

see the total query cost in ERPVMA is almost smaller than in EPVMA. But has an

exception in increasing rate of storage space at 20%.

Although, in the experiments result, it still has some exceptions. We can’t sure

that ERPVMA is the best. But it is true that provide the better performance. So, in our

opinion that is using the algorithm that we propose to select materialized views is

better than others. And it provides user a new selection for materialized views

selection. Table 4.3 makes some comparison with PVMA[8], EPVMA and ERPVMA.

Comparison of total query costComparison of total query costComparison of total query costComparison of total query cost

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

110000000

120000000

130000000

140000000

150000000

160000000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Size of storage space (% of total views size)

T
ot

al
 q

ue
ry

 c
os

t

ERPVMA

EPVMA

Figure 4.1: Make a comparison between the size of storage space and total query cost.

 18

Table 4.3: makes some comparison with PVMA, EPVMA and ERPVMA.

 PVMA EPVMA ERPVMA

Frequency of selection queries Yes Yes Yes

Cost of update operations Yes Yes Yes

Storage space condition No Yes Yes

Puffiness question Yes Yes No

Size of storage space (% of total views
size) ≥ 30% ---

Total query cost
is bigger than
ERPVMA.

Total query cost is
smaller than
EPVMA.

4.2. Analysis of Partial View Materialization Approach
The approach includes two phases. In the views selection phase, we use the ERPVMA

algorithm, the advantages in ERPVMA as the mention in Section 4.2. In the views

materialization phase, we use Overlap Method. Its advantages are described as

follows.

The Overlap Method is proposed in [1] is a sort-base overlap method. It includes

the optimizations share-sorts, smallest-parent, cache-results, and amortize-scans. The

Overlap Method computes the view that try to minimize the number of disk accesses

by overlapping the computation of the various views. They make use of partially

matching sort orders to reduce the number of sorting steps required. And the Overlap

Method is a multi-pass method. In each pass, a set of views is selected for computing

under memory constraints. These views are computed in an overlapped manner. The

tuples generated for a view are used to compute its descendents in the DAG. This

pipelining reduces the number of scans needed. The process is repeated until all views

get computed.

5. Conclusions
In conclusions, the Extended Reverse Progressive View Materialization Algorithm

 19

(ERPVMA) considers the frequency of selection queries and update cost. It is far

better in situations that involve storage space condition. And we also solve the

puffiness issue that PVMA maybe happens. That let our algorithm is more perfect.

And in the experiments result, it proves the ERPVMA has the better performance than

other algorithms for materialized views selection.

In the views materialization phase of the Partial View Materialization Approach,

we use the Partially-Materialized Lattice as the input in the overlap method. Letting

views selection and views materialization to combine to generate the Partial view

materialization approach. The Overlap Method includes the optimizations

Smallest-parent, Cache-results, Amortize-scans, and Share-sorts. It has presented one

particular sorting based scheme called Overlap. This scheme overlaps the

computation of different views and minimum the number of scans needed.

The Partial View Materialization Approach includes the advantages of ERPVMA

and Overlap Method, so the approach can let the performance of OLAP is

optimization.

It maybe selects queries that do not require scanning of views by instead using

indexes, and in our paper, we do not consider the index question. In order to group by

attributes further along the dimension hierarchy, the fact table must be joined with the

dimension tables before doing the aggregation. But our approach does not deal with

the factor. So, they are the factors that have to be added in our future work.

References
[1] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R.

Ramakrishnan, and S. Sarawagi, “On the Computation of Multidimensional

Aggregates”, Proceedings of the 22nd VLDB Conference, pp.506 - 521 Mumbai

(Bombay), India, 1996.

 20

[2] P. M. Deshpande, S. Agarwal, J. F. Naughton, and R. Ramakrishnan,

“Computation of Multidimensional Aggregates”, Technical Reprot-1314,

University of Wisconsin-Madison, 1996.

[3] J. Han and M. Kamber, “Data Mining: Concepts and Techniques”, Morgan

Kaufmann Publishers, 2001.

[4] V. Harinarayan, A. Raharaman, and J. Ullman, “Implementing Data Cubes

Efficiently”, Proceedings of ACM SIGMOD 1996 International Conference on

Management of Data, pp.205 - 216, Montreal, Canada, June 1996.

[5] P. Hass, J. F. Naughton, S. Seshadri, L. Stokes, “Sampling-Based Estimation of

the Number of Distinct Values of an Attribute”, In Proceedings of the 21st VLDB

Conference, pp.311 – 322, 1995.

[6] I. S. Mumick, D. Quass, and B. S. Mumick, “Maintenance of Data Cubes and

Summary tables in a Warehouse”, Proceedings of ACM SIGMOD 1997

International Conference on Management of Data, pp.100 - 111, Arizona, United

States, 1997.

[7] T. Teorey, “Data Modeling and Design”, Third edition, Morgan Kaufmann

Publishers, Inc., 1999.

[8] H. Uchiyama, K. Runapongsa, and T. J. Teorey, “A Progressive View

Materialization Algorithm”, Proceedings of the second ACM international

workshop on Data warehouse and OLAP, pp.36 - 41, Kansas City, Missouri,

United States, 1999.

