

2

Involving Memory Resource Consideration in Workload Distribution

for Software DSM Systems

Tyng-Yeu Liang+ (Assistant Professor), Yen-Tso Liu (Ph.D. Candidate)

Yi-Ching Chen (Master), Ce-Kuen Shieh (Professor)

+Department of Computer Science and Information Engineering, Leader University

No. 188, Sec. 5, An-Chung Road, Tainan, Taiwan

Department of Electrical Engineering, National Chung Kung University

No. 1, Ta-Hsueh Road, Tainan, Taiwan

{lty,andy,ycchen,shieh}@hpds.ee.ncku.edu.tw

Phone: 886-6-2550217 Fax:886-6-2748678

Abstract-This paper is aimed at resolving the problem of workload distribution for software

distributed shared memory (DSM) systems. According to the past methods, DSM systems usually

took only CPU resource into account for workload distribution. They distributed program threads

based on the computational capability of processors to make load balance, expecting thereby the

minimal execution time of applications. However, the cost of memory accesses is an important

factor for program performance in addition to computational cost. If processors cannot afford

enough physical memory space to cache all the data needed by threads, these processors must

perform page replacements to make memory space for data caching while executing the threads.

The execution of the threads absolutely will be delayed due to the latency of performing page

replacement, and then the execution time of programs will increase. Therefore, only accomplishing

load balance cannot exactly guarantee the minimal execution time of programs. In this paper, we

propose a new workload distributing method, which simultaneously considers CPU resource and

memory resource, for DSM systems. Our experimental results show that memory resource is indeed

an important consideration for workload distribution on DSM systems, and our method is more

effective for minimizing the execution time of DSM applications than the others considering only

either CPU resource or memory resource.

Keywords: workload distribution, distributed shared memory, page replacement, load balance,

memory resource

+: the corresponding author of this paper
This paper is submitted to the Workshop on Computer system of ICS200
1

1. Introduction

Workload distribution is an important issue for the performance of network-based

computation. When an application is parallilized on a set of machines, it is necessary to carefully

distribute the workload of this application to make the working machines complete their assigned

work at the same time, thereby expecting the minimal execution time of the application. However,

to accomplish this goal on network-based working environments is a big challenge. One reason is

that machines on computer network are not identical in resource capability such as CPU power,

physical memory space, I/O and so on. Even if all the working machines are assigned with the same

amount of work, they still will not complete their assigned work at the same time due to different

resource capabilities. Hence, a better solution is to distribute program workload based on the

resource capabilities of processors. Another reason is that computer network is a shared working

environment and any application has to compete with other applications for system resource. Any

user job submission or completion can cause that the residual resource capabilities of processors

change. Therefore, dynamically adapting the workload distribution of applications according to

resource capability changes is required while executing these applications. Obviously, workload

distribution is not a trivial job for users even system designers based on the previous reasons.

Recently, software distributed shared memory (DSM) [1][2][3][4][5][6] has successfully

provides an easy user interface for network-based computation. With the support of DSM run time

systems, programmers can make use of shared variables instead of message passing to develop their

applications on computer network. Consequently, they can concentrate on developing application

2

algorithms but not handling data transfer between processes. The complexity of programming on

computer network has also been simplified by DSM systems. On the other hand, modern DSM

systems [7][8][9] support multithreading per node and thread migration to automatically adapt

workload distribution in order to provide good performance for user applications. Therefore, many

applications that need massive computation such as image processing, numeric analysis and scenic

simulation have been implemented on DSM systems.

However, the past workload distributing methods [10][11][12][13] proposed for DSM

systems usually only took CPU resource into account. According to these methods, DSM systems

usually distributed working threads of programs based on the computational power of processors to

make load balance, thereby expecting the minimal execution time of the programs. They never

cared about whether processors have enough memory resource to meet thread memory demand.

However, the cost of memory access is an important factor for program performance in addition to

computational cost. If processors have not enough physical memory space to caching all the data

needed by working threads, these processors need to consecutively execute page replacement for

data caching while executing the threads. Although the processors still can complete the work of the

threads, however the execution of these threads will be absolutely delayed by the latency of

executing page replacements. Therefore, load balance cannot necessarily guarantee the minimal

execution time of programs. Ignoring memory resource consideration, DSM systems probably make

long-termed wrong decisions in workload distribution, and then degrade program performance due

to the latency of executing page replacements even when load balance is achieved.

3

This paper is aimed at resolving the problem of workload distribution for software DSM

systems as previous described. We develop a new workload distributing method for DSM systems in

this paper. First, we analyze the execution of programs running on DSM systems. Then, we derive a

set of mathematical formulas for precisely estimating the execution time of programs with

considering both of CPU resource and memory resource. With these derived mathematical formulas,

the proposed method can find out good thread distributing ways to effectively adapt workload

distribution and enhance program performance. We have implemented this new method on a test

bed called Teamster that is a DSM system built on a cluster of Intelx86 PCs connected with Ethernet

network. In addition, we have implemented three loop applications, i.e., SOR, Jacobi and Matrix

Multiplication to evaluate the effectiveness of the proposed workload distributing method. The

experimental results shows that memory resource consideration indeed is very important for

workload distribution on DSM systems. In addition, our method is more effective for minimizing

the execution time of the test programs than the others considering only either CPU resource or

memory resource.

The rest of this paper is organized as follows. Section 2 discusses work related to the field of

DSM workload distribution. Section 3 introduces the proposed method and Section 4 describes the

implementation of the proposed method. Section 5 discusses the results of performance evaluation.

Finally, Section 6 gives the conclusions of this paper and our future work.

4

2. Related Work

 Currently, the DSM systems that support dynamic workload distribution are CVM, JIAJIA

and Cohesion. CVM [14] focuses on making load balance and reducing data consistency

communication. In order to accomplish these two goals, CVM distributes program threads onto

processors based on the computational power of processors and the computational demand of

threads. Basically, a processor with more computational power is assigned with more program

threads. In addition, CVM locates on the same node the pairs of threads that show the highest

degree of mutual data sharing, expecting thereby a maximum communication reduction. On the

other hand, JIAJIA [15] assumes that processors have enough physical memory space to hold the

data needed by threads. This system considers only CPU resource while distributing program

workload. Same as CVM, JIAJIA also distributes program workload onto processors based on the

computational power of processors. As to Cohesion [16], the job of distributing program workload

is divided into two phases. One is migration phase and the other is exchange phase. In the migration

phase, Cohesion estimates the workload of each processor and then migrate threads from the heavily

loaded node to the lightly loaded node to reduce load imbalance cost. In the exchange phase,

Cohesion locates on the same node the pairs of threads that show the highest degree of mutual data

sharing to reduce communication cost via thread exchange.

 In addition to the DSM studies, some researches of distributed systems have discussed the

problem of workload distribution. Peris [17] analyzed the influence of physical memory size on

system performance. He proposed a stochastic model to predict the execution cost of parallel

5

programs including memory access cost. His study shows that wrong workload distribution will

increase overhead of memory accesses and then degrade system performance. However, the

proposed model is difficult to make it practical. On the other hand, Zhang [18] proposed making use

of CPU load index and memory load index for workload distribution. When a new user job is

created on a machine, a CPU-based policy is used for workload distribution if memory load index

shows that this machine has enough memory resource capability to support the user job. Otherwise,

a memory-based policy is added into workload distribution. This job will be migrated to another

machine that can support enough memory resource or blocked in a waiting queue until local node

can provide enough memory resource for its memory demand based this memory-based policy.

Although this method considers memory resource into workload distribution, its aim is to promote

the utility of system resource and throughput. However, the main purpose of workload distribution

on DSM systems is to minimize the execution time of user applications. In addition, the working

threads of user programs usually have to cooperate with each other to complete the work of the

same programs. Therefore, Zhang’s method is not suitable to apply to DSM systems.

As the above description, the previous DSM methods always considered the computation

time and communication time of programs while distributing program threads onto processors. They

never were concerned with the problem of whether processors have enough physical memory space

for caching the data needed by threads. On the other hand, the other methods proposed for

distributed systems are not suitable for DSM systems. Therefore, it is necessary to study how to

develop an effective method to resolve the problem of workload distribution for DSM systems.

6

3. The Proposed Workload Distributing Method

DSM applications can be categorized into three kinds. They are fork-join, run-to-complete

and iterative [19]. These three different kinds of applications have different execution characteristics.

Consequently, it is necessary to design different workload distributing methods for these three

different kinds of applications. Since working threads of iterative applications usually repeat the

same things, this program characteristic is helpful to predict thread behavior and adapt workload

distribution to enhance program performance. Therefore, we focus on resolving the problem of

workload distribution for iterative applications running on DSM systems in this paper.

We analyze the execution of iterative DSM applications and derive a set of mathematical

formulas in this paper. Using these derived formulas, the proposed working distributing method can

precisely predict the execution time of programs running with a candidate thread distributing way,

and then decide if this thread distributing way is helpful to minimize the execution time of programs.

Then, the proposed method can search good thread distributing ways for DSM systems to

effectively enhance the performance of user programs. Our analysis, the derived formulas and the

algorithm of adapting workload distribution are described as follows.

3.1 Analysis

In DSM, an iterative problem is usually partitioned into a number of threads. Then, these

threads are distributed onto processors for parallel execution. When the threads finish their work in

the current iteration, they have to join at a barrier before entering the next iteration. Let T(x,k)

7

represent the time that node x executes its local threads in the kth iteration. The execution time of

the kth iteration and the total execution time of the program can be estimated as Eq(1) and Eq(2),

respectively. Since iterative threads usually have regular behavior and data access pattern, T(x,k)

theoretically will keep the same value in each iteration if system status and the mapping of threads

onto processors do not change. Consequently, T(x,k) can be simplified as T(x) and the total

execution of program can be simply predicted as Eq(3).

I(k)=Max{T(x,k) | x = 1..M, M is the number of execution nodes} Eq(1)

∑
=

=
N

k
kITEP

1
)(.. , N is the number of iterations. Eq(2)

ITNTEP *.. = , Eq(3)

where IT is Max{T(x) | x = 1..M, M is the number of execution nodes}

Basically, can be divided into three parts. They are computation time, communication

time and memory time as shown in Eq(4). Computation time (i.e.,T) is the time that node x

executes the computational work of local threads. Communication time (i.e.,) is the time

that node x communicates with other nodes for data sharing between threads. Memory time (i.e.,

) is the time that node x executes page replacements to cache the data accessed by its local

threads.

()xT

()xcomp

()xTcomm

()xTmem

T(x)= Tcomp(x)+ Tcomm(x) + Tmem(x) Eq (4)

Let be the set of threads running on node x, be the computation time of thread j running on

node x, be the time of executing page replacements for caching the data accessed by thread j on

xS jx
compt

jx
memt

8

node x. Then, and can be further derived as Eq(5) and Eq(6). ()xTcomp

() ∑
∈

=
ixSj

x

() ∑
∈

=
xSj
tx

f
Sj

jx

x

×∑
∈

()xTmem

() (tx spi+

jx
compcomp tT Eq(5)

jx
memmemT Eq(6)

Moreover, the time of executing page replacement for caching the data needed by working threads

can be further divided into two parts according to our analysis. One is the time of scanning physical

memory to search least-recently used (LRU) data pages and then swapping out the data pages from

physical memory to disk. Another is the time of swapping in the data pages needed by threads from

disk to physical memory. Therefore, Eq(6) can be further derived as follows.

())()xtxT spomem = Eq(7)

jxf ：the number of page replacements that node x executes for caching the data needed by thread j.

()xtspo ：the average time of searching LRU data pages and swapping out the data pages on node x.

()xtspi ：the average time of swapping in pages on node x.

In this paper, we assume there is no data sharing between threads to simplify our work and

put our attention to the influence of memory resource on workload distribution. Therefore, we omit

 while implementing the proposed workload distributing method on a test bed. ()xTcomm

3.2 The Algorithm of Adapting Workload Distribution

 First, the workload-distributing algorithm of the proposed method searches the node with the

most value of T(x) and the node with the least value of T(x) to respectively be source node and

9

destination node by using the previous formulas. Then, it sets the length of program critical path as

the most value of T(x). Second, it simulates to migrate one thread from source node to destination

node and estimate the length of program critical path again. If the length of program critical path is

not reduced, the algorithm will stop adapting workload distribution. Otherwise, it continues

migrating threads from source node to destination node until the length of program critical path

cannot be reduced further. Then, it searches a new pair of source node and destination node and

repeats the previous operations. After finishing this workload-distributing algorithm, a new thread

distributing way, that is a set of numbers of threads assigned onto each processor, can be gained and

used to adapt program workload distribution via thread migration.

4. Implementation

We have implemented the proposed workload distributing method on a test bed, called

Teamster. We took advantage of the information mechanism used by Teamster to collect the

information necessary for workload distribution such as the computational power of processors, the

computational demand of threads, the amount of available physical memory space on each

processor, thread access pattern and so on. Using the collected information and the proposed method,

Teamster dynamically adapts program workload distribution to minimize the execution time of

programs. The details about system characteristics, information connection and the architecture of

workload distribution are described as follows.

10

4.1 System Overview

 Teamster [20] is a user-level DSM system built on a cluster of Intel 80x86 PCs connected

with Ethernet network. This DSM system provides a single and global address space for user

applications to prevent data address translation between nodes. In addition, Teamster supports

multiple memory consistency protocols, i.e., sequential and eager released to manage data

consistency in order to reduce data-consistency communication. On the other hand, Teamster

supports multiple processors per node and multithreading per node to execute user programs.

Moreover, it makes use of a diffusion reorganization mechanism to dynamically add nodes into or

delete nodes from program execution, and migrate user threads from one node to another. The main

purpose of this support is to increase the utility of system and enhance program performance.

4.2 Information Collection

The information necessary for the proposed workload distributing method can be classified

into static information and dynamic information. Static information includes CPU power, available

physical memory space and the average time of executing page replacements. The static information

of working machines is collected before the setup of DSM systems. On the other hand, dynamic

information consists of the computation time of each thread, the data access pattern of threads and

the residual memory capability of each processor. The dynamic information is collected during

program execution. Since Teamster is built on user level, it is easy to modify this run time system to

collect the dynamic information. We make use of a mechanism called active correlation track [21]

11

to collect the data access pattern of threads. We can know the working sets of threads and derive the

amount of thread memory demand with the access pattern of threads. In addition, we make use of

system primitive such as se to fetch the system information of residual physical memory space.

Then, we can predict the memory time of thread j on node x according to the memory demand of

thread j, the residual memory resource capability of node x and the average time of executing page

replacements on node x.

On the other hand, the computation time of a thread is measured as the time that this thread

arrives at the end of iteration. When a thread is fetched form the local queue to execute, the start

time is recorded. After this thread reaches the end of iteration, the arrival time also is recorded. Then,

the computation time of this thread is estimated as the interval between the start time and the arrival

time. Since the computational capability of processors is non-identical, the computation time of a

thread is different from node to node. When a thread j is migrated from node x to node y, the

computation time of this thread on node y, i.e., can be estimated as

where and are the computational power factors of node x and y.

jy
compt yx

jx
comp powerpowert /*

xpower ypower

The above method may include the time of requiring remote pages and executing page

replacements into the computation time of threads. Fortunately, the thread scheduling of Teamster is

non-preemptive. Consequently, the time of requiring remote page and executing page replacements

can be measured. Then, we can get rid of the time from the computation time of threads.

12

4.3 The Architecture of Workload Distribution

 The implementation of the proposed workload distributing method adopts a central

architecture. That is, there is a root node is responsible for coordinating with the other nodes to

adapt workload distribution of user programs. After initiating an iterative application, the root node

distributes working threads to processors for execution. Then, each node begins to execute local

threads and collect the information necessary for workload distribution. When a node finishes the

work of its local threads, this node sends a barrier arrival message tailed with the local connected

information to the root node. After receiving the arrival messages and the collected information

from all the execution nodes, the root node searches a new thread distributing ways according to the

algorithm of adapting workload distribution and then broadcast the searching result. Based on this

new thread distributing way, the processors exchange threads by using the mechanism of thread

migration to adapt workload distribution of the executed program. Finally, all the working threads

are resumed to execute for the next iteration.

 Basically, it is ideal to perform the adaptation of workload distribution at the end of each

iteration. However, the cost of adapting workload distribution is too big. In order to reduce this cost,

our current implementation is to perform the mechanism of adapting workload distribution only

once during program execution. A compromise method is to develop a stochastic policy to trigger

the adaptation of workload distribution.

13

5. Performance Evaluation

We have implemented three iterative applications, i.e., SOR, Jacobi and Matrix

Multiplication to evaluate the effectiveness of considering memory resource into workload

distribution. These three applications were executed on 4 Xeon-500Mhz PCs connected with

100Mbps fast Ethernet network. The parameters of these three applications are listed in Table 1.

Table 2 is the amount of physical memory space provided by each node for executing these three

applications, respectively. In addition, we ran each application with three different workload

distributing methods, i.e., cpu-based, memory-based and cpu&memory-based. The cpu-based

method considers only CPU resource but ignores memory resource. In contrast, the memory-based

method distributes threads according to the amount of physical memory space that each processor

can provide for executing DSM applications. Basically, a processor having more free physical

memory space is assigned with more threads based on the memory-based method. Finally, the

cpu&memory-based method is our workload distributing method. Table 3 is the number of threads

assigned onto each processor while respectively applying these three methods for the test

applications. The experimental results are shown from Figure 1 to Figure 3.

Problem size

(double)
Thread
number

Memory demand
per thread (Mbytes)

Loop count

SOR 6144x6144 32 9 5
Jocobi 6144x6144 32 9 5

MatrixMultiplication 3072x3072 32 6.75 5
Table 1. The parameters of test applications

14

Unit: Mbyes Node 0 Node 1 Node 2 Node 3

SOR 400 36 45 72
Jocobi 400 36 45 72

MatrixMultiplication 400 27 33.75 54
Table 2. The amount of physical memory space provided by each processor for test applications\

(node0, node1, node2, node3) Cpu-based Memory-based CPU&memory based

SOR (8,8,8,8) (15,4,5,8) (14,5,5,8)
Jocobi (8,8,8,8) (15,4,5,8) (11,6,6,9)

MatrixMultiplication (8,8,8,8) (15,4,5,8) (10,7,7,8)
Table 3. The number of threads distributed onto each processor

0

20

40

60

80

100

120

Ex
ec

ut
io

n
ti

m
e

of
 e

ac
h

no
de

(S
ec

)

others

idle time

memory time

 computation time

CPU MEM CPU&MEM

Figure 1. The experimental result of SOR

0

20

40

60

80

100

120

E
xe

cu
ti

on
 ti

m
e

of
 e

ac
h

no
de

 (
S

ec
)

others

idle time

memory time

computation time

CPU MEM CPU&MEM

Figure 2. The experimental result of Jacobi

15

0

50

100

150

200

250
E

xe
cu

ti
on

 T
im

e
of

 e
ac

h
N

od
e

(S
ec

)

others

idle time

memory time

computation time

CPU MEM CPU&MEM

Figure 3. The experimental result of Matrix Multiplication

The experimental results of the three applications have a common situation, which is the

computation time of four execution nodes is the same while using the cpu-based method. Although

load balance is achieved, however the execution time of the three applications is not necessarily

reduced by load balance. Since node 2 and node 3 have not enough physical memory space for

thread memory demand, the memory time of these two nodes delay the completion of the test

applications although node 1 and node 4 have finished their work more early than node 2 and node 3.

The main reason for this result is the cpu-based method cares about only load balance but ignore

whether processors are able to provide enough physical memory space for meeting thread memory

demand. By contrast, the memory-based method results in that four execution nodes have no

memory time in the three test programs since the number of threads assigned to a processor is

dependent on the amount of physical memory space that this processor can provide for DSM

applications. However, this result has different effect on the performance of the test programs.

16

Compared to the cpu-based method, the memory-based method minimizes the execution time of

SOR but increases the execution time of Jacobi and Matrix Multiplication. The main reason is that

node 0 is assigned with much more workload than the other three nodes. Consequently, if the

execution time of the test programs can be minimized is dependent on whether the loss from load

imbalance can be compensated by the gain from no memory time. Obviously, the consideration of

CPU resource is more important than the consideration of memory resource for the Jacobi and

Matrix Multiplication programs. Compared with the previous two methods, the cpu&memory based

method minimizes the execution time of the three test programs. That is because this method

considers not only CPU resource but also memory resource while estimating the execution time of

programs. Therefore, Teamster can make better decisions in workload distribution for executing the

test programs by using this method compared to the other two methods. Making a short summary,

our experimental results shows that simultaneously considering both of CPU resource and memory

resource is more effective for minimizing the execution time of programs than considering either

one of these two factors.

6. Conclusions and Future Work

 In this paper, we point out the importance of considering memory resource into workload

distribution to the performance of DSM programs. On the other hand, we analyze the execution of

DSM programs and develop a new workload distributing method for DSM systems according to our

analysis. In addition, we have implemented the proposed workload distributing method on a test bed,

17

i.e., Teamster, and developed a set of applications to evaluate the effectiveness of considering

memory resource into workload distribution. Our experimental results shows that memory resource

into workload distribution indeed is significant for the performance of DSM programs. The

proposed workload distributing method simultaneously taking CPU resource and memory resource

into account is more effective for reducing the execution time of programs running on DSM systems

than the other methods considering only either CPU resource or memory resource.

 The workload distributing method proposed in this paper does not take communication time

of processors into account. However, this factor is also very important to the performance of DSM

systems. We will combine this factor with computation time and memory time to develop an

advanced workload-distributing method for DSM systems in the future.

Reference:

[1] K. Li. IVY: A shared virtual memory system for parallel computing. In Proceedings of the 1988
International Conference on Parallel Processing (ICPP'88), p. 94-101, 1988.

[2] J.B. Carter, J.K. Bennett and W. Zwaenepoel. Implementation and Performance of Munin. In
Proceedings of 13th ACM Symposium on Operating System Principles, p. 152-164, 1991.

[3] B.N. Bershad, M.J. Zekauskas. The Midway Distributed Shared Memory System. In:
Proceedings of IEEE COMPCON Conference, p. 528-537, 1993.

[4] Weiwu Hu, Weisong Shi, Zhimin Tang. JIAJIA: An SVM System Based on A New Cache
Coherence, Protocol. In: Proceedings of the High Performance Computing and Networking
(HPCN'99), p.463-472, 1999.

[5] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, W. Zwaenepoel,
TreadMarks: Shared Memory Computing on Networks of Workstations. In IEEE Computer, 29

18

(2), p. 18-28, 1996.

[6] E. Speight and J.K. Bennett. Brazos: A third generation DSM system. In Proceedings of the
1997 USENIX Windows/NT Workshop, p. 95-106, August 1997.

[7] Roy Friedman, Maxim Goldin, Ayal Itzkovitz, Assaf Schuster. Millipede: Easy Parallel
Programming in Available Distributed Environments. In Software: Practice and Experience 27
(8), p. 929-965, 1997.

[8] Jyh-Chang Ueng, Ce-Kuen Shieh, Su-Cheong Mac, An-Chow Lai, Tyng-Yeu Laing.
Multi-threaded Design for a Software Distributed Shared Memory System. IEICE Transaction
on Information and Systems E82-D (12), p. 1512-1523, 2000.

[9] P. Keleher. The Coherent Virtual Machine. Technique Report Maryland TR93-215, Department
of Computer Science, University of Maryland, 1995.
http://www.cs.umd.edu/~keleher/papers.html.

[10] K. Thitikamol and P. Keleher. Thread migration and load balancing in non-dedicated
environments. In Proceeding of the 14th International Parallel and Distributed Processing
Symposium, p. 583-588, May 2000.

[11] Alex Dubrovski, Roy Friedman and Assaf Schuster, Load Balancing in Distributed Shared
Memory Systems. In International Journal of Applied Software Technology, vol 3, p. 167-202,
March 1998.

[12] C. Lai, C. K. Shieh, J. C. Ueng, Y. T. Kok, and L. Y. Kung, Load Balancing in Distributed
Shared Memory System. In IEEE International Performance, Computing, and
Communications Conference, Arizona, U.S.A., p. 152-158, February 1997.

[13] Jeffrey K. Hollingsworth and Peter J. Keleher, Prediction and Adaptation in Active Harmony.
In The 7th International Symposium on High Performance Distributed Computing, April 1998.
http://www.cs.umd.edu/~keleher/papers.html.

[14] Kritchalach Thitikamol and Pete Keleher Thread Migration and Communication Minimization
in DSM Systems. IEEE Proceedings, p. 487-497, 1999.

[15] Weisong Shi and Zhimin Tang. Dynamic Computation Scheduling for Load Balancing in
Home-based Software DSMs. In Proceedings of the 1999 International Symposium on Parallel
Architectures, Algorithms and Networks (I-SPAN'99)}, IEEE Computer Press, Perth, Australia,
June, 1999.

[16] Tyng-Yeu Liang, Ce-Kuen Shieh, Deh-Cheng Liu. Scheduling Loop Applications in Software
Distributed Shared Memory Systems, IEICE Transaction on Information and Systems, vol.
E83-D, no.9, p. 1721-1730, September 2000.

[17] Vinod G.J. Peris, Mark S. Squillante, and Vijay K. Naik. Analysis of the Impact of Memory in

19

http://www.cs.umd.edu/~keleher/papers.html
http://www.cs.umd.edu/~keleher/papers.html
http://www.ee.uwa.edu.au/~ispan99
http://www.ee.uwa.edu.au/~ispan99

Distributed Parallel Processing Systems". In Proceedings of the 1994 ACM SIGMETRICS
Conference, p. 5-18, February 1994.

[18] Li Xiao, Songqing Chen, and Xiaodong Zhang. Dynamic Cluster Resource Allocations for Jobs
with Known and Unknown Memory Demands. IEEE Transactions on Parallel and Distributed
Systems, Vol.13, No.3, p. 223-240, March 2002.

[19] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. Distributed Filaments:
Efficient Fine-Grain Parallelism on A Cluster of Workstations. In Proceedings of First
Symposium on Operating Systems Design and Implementation, p. 201-212, 1994.

[20] J. B. Chang and C. K. Shieh. Teamster: A Transparent Distributed Shared Memory for Cluster
Symmetric Multiprocessors. In Proceedings of the First IEEE/ACM International Symposium
on Cluster Computing and the Grid. p. 508-513, 2001

[21] Kritchal Thitikamol, Peter J. Keleher. Active Tracking Correlation. In Proceedings of the 19th
International Conference on Distributed Computing Systems, 1999.

http://www.cs.umd.edu/~keleher/papers.html.

20

http://www.cs.umd.edu/~keleher/papers.html

