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Abstract-This paper is aimed at resolving the problem of workload distribution for software 

distributed shared memory (DSM) systems. According to the past methods, DSM systems usually 

took only CPU resource into account for workload distribution. They distributed program threads 

based on the computational capability of processors to make load balance, expecting thereby the 

minimal execution time of applications. However, the cost of memory accesses is an important 

factor for program performance in addition to computational cost. If processors cannot afford 

enough physical memory space to cache all the data needed by threads, these processors must 

perform page replacements to make memory space for data caching while executing the threads. 

The execution of the threads absolutely will be delayed due to the latency of performing page 

replacement, and then the execution time of programs will increase. Therefore, only accomplishing 

load balance cannot exactly guarantee the minimal execution time of programs. In this paper, we 

propose a new workload distributing method, which simultaneously considers CPU resource and 

memory resource, for DSM systems. Our experimental results show that memory resource is indeed 

an important consideration for workload distribution on DSM systems, and our method is more 

effective for minimizing the execution time of DSM applications than the others considering only 

either CPU resource or memory resource. 
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1. Introduction 

Workload distribution is an important issue for the performance of network-based 

computation. When an application is parallilized on a set of machines, it is necessary to carefully 

distribute the workload of this application to make the working machines complete their assigned 

work at the same time, thereby expecting the minimal execution time of the application. However, 

to accomplish this goal on network-based working environments is a big challenge. One reason is 

that machines on computer network are not identical in resource capability such as CPU power, 

physical memory space, I/O and so on. Even if all the working machines are assigned with the same 

amount of work, they still will not complete their assigned work at the same time due to different 

resource capabilities. Hence, a better solution is to distribute program workload based on the 

resource capabilities of processors. Another reason is that computer network is a shared working 

environment and any application has to compete with other applications for system resource. Any 

user job submission or completion can cause that the residual resource capabilities of processors 

change. Therefore, dynamically adapting the workload distribution of applications according to 

resource capability changes is required while executing these applications. Obviously, workload 

distribution is not a trivial job for users even system designers based on the previous reasons. 

Recently, software distributed shared memory (DSM) [1][2][3][4][5][6] has successfully 

provides an easy user interface for network-based computation. With the support of DSM run time 

systems, programmers can make use of shared variables instead of message passing to develop their 

applications on computer network. Consequently, they can concentrate on developing application 
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algorithms but not handling data transfer between processes. The complexity of programming on 

computer network has also been simplified by DSM systems. On the other hand, modern DSM 

systems [7][8][9] support multithreading per node and thread migration to automatically adapt 

workload distribution in order to provide good performance for user applications. Therefore, many 

applications that need massive computation such as image processing, numeric analysis and scenic 

simulation have been implemented on DSM systems. 

However, the past workload distributing methods [10][11][12][13] proposed for DSM 

systems usually only took CPU resource into account. According to these methods, DSM systems 

usually distributed working threads of programs based on the computational power of processors to 

make load balance, thereby expecting the minimal execution time of the programs. They never 

cared about whether processors have enough memory resource to meet thread memory demand. 

However, the cost of memory access is an important factor for program performance in addition to 

computational cost. If processors have not enough physical memory space to caching all the data 

needed by working threads, these processors need to consecutively execute page replacement for 

data caching while executing the threads. Although the processors still can complete the work of the 

threads, however the execution of these threads will be absolutely delayed by the latency of 

executing page replacements. Therefore, load balance cannot necessarily guarantee the minimal 

execution time of programs. Ignoring memory resource consideration, DSM systems probably make 

long-termed wrong decisions in workload distribution, and then degrade program performance due 

to the latency of executing page replacements even when load balance is achieved. 
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This paper is aimed at resolving the problem of workload distribution for software DSM 

systems as previous described. We develop a new workload distributing method for DSM systems in 

this paper. First, we analyze the execution of programs running on DSM systems. Then, we derive a 

set of mathematical formulas for precisely estimating the execution time of programs with 

considering both of CPU resource and memory resource. With these derived mathematical formulas, 

the proposed method can find out good thread distributing ways to effectively adapt workload 

distribution and enhance program performance. We have implemented this new method on a test 

bed called Teamster that is a DSM system built on a cluster of Intelx86 PCs connected with Ethernet 

network. In addition, we have implemented three loop applications, i.e., SOR, Jacobi and Matrix 

Multiplication to evaluate the effectiveness of the proposed workload distributing method. The 

experimental results shows that memory resource consideration indeed is very important for 

workload distribution on DSM systems. In addition, our method is more effective for minimizing 

the execution time of the test programs than the others considering only either CPU resource or 

memory resource. 

The rest of this paper is organized as follows. Section 2 discusses work related to the field of 

DSM workload distribution. Section 3 introduces the proposed method and Section 4 describes the 

implementation of the proposed method. Section 5 discusses the results of performance evaluation. 

Finally, Section 6 gives the conclusions of this paper and our future work. 
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2. Related Work 

       Currently, the DSM systems that support dynamic workload distribution are CVM, JIAJIA 

and Cohesion. CVM [14] focuses on making load balance and reducing data consistency 

communication. In order to accomplish these two goals, CVM distributes program threads onto 

processors based on the computational power of processors and the computational demand of 

threads. Basically, a processor with more computational power is assigned with more program 

threads. In addition, CVM locates on the same node the pairs of threads that show the highest 

degree of mutual data sharing, expecting thereby a maximum communication reduction. On the 

other hand, JIAJIA [15] assumes that processors have enough physical memory space to hold the 

data needed by threads. This system considers only CPU resource while distributing program 

workload. Same as CVM, JIAJIA also distributes program workload onto processors based on the 

computational power of processors. As to Cohesion [16], the job of distributing program workload 

is divided into two phases. One is migration phase and the other is exchange phase. In the migration 

phase, Cohesion estimates the workload of each processor and then migrate threads from the heavily 

loaded node to the lightly loaded node to reduce load imbalance cost. In the exchange phase, 

Cohesion locates on the same node the pairs of threads that show the highest degree of mutual data 

sharing to reduce communication cost via thread exchange. 

        In addition to the DSM studies, some researches of distributed systems have discussed the 

problem of workload distribution. Peris [17] analyzed the influence of physical memory size on 

system performance. He proposed a stochastic model to predict the execution cost of parallel 
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programs including memory access cost. His study shows that wrong workload distribution will 

increase overhead of memory accesses and then degrade system performance. However, the 

proposed model is difficult to make it practical. On the other hand, Zhang [18] proposed making use 

of CPU load index and memory load index for workload distribution. When a new user job is 

created on a machine, a CPU-based policy is used for workload distribution if memory load index 

shows that this machine has enough memory resource capability to support the user job. Otherwise, 

a memory-based policy is added into workload distribution. This job will be migrated to another 

machine that can support enough memory resource or blocked in a waiting queue until local node 

can provide enough memory resource for its memory demand based this memory-based policy. 

Although this method considers memory resource into workload distribution, its aim is to promote 

the utility of system resource and throughput. However, the main purpose of workload distribution 

on DSM systems is to minimize the execution time of user applications. In addition, the working 

threads of user programs usually have to cooperate with each other to complete the work of the 

same programs. Therefore, Zhang’s method is not suitable to apply to DSM systems. 

As the above description, the previous DSM methods always considered the computation 

time and communication time of programs while distributing program threads onto processors. They 

never were concerned with the problem of whether processors have enough physical memory space 

for caching the data needed by threads. On the other hand, the other methods proposed for 

distributed systems are not suitable for DSM systems. Therefore, it is necessary to study how to 

develop an effective method to resolve the problem of workload distribution for DSM systems. 

 

6



3. The Proposed Workload Distributing Method 

DSM applications can be categorized into three kinds. They are fork-join, run-to-complete 

and iterative [19]. These three different kinds of applications have different execution characteristics. 

Consequently, it is necessary to design different workload distributing methods for these three 

different kinds of applications. Since working threads of iterative applications usually repeat the 

same things, this program characteristic is helpful to predict thread behavior and adapt workload 

distribution to enhance program performance. Therefore, we focus on resolving the problem of 

workload distribution for iterative applications running on DSM systems in this paper.  

We analyze the execution of iterative DSM applications and derive a set of mathematical 

formulas in this paper. Using these derived formulas, the proposed working distributing method can 

precisely predict the execution time of programs running with a candidate thread distributing way, 

and then decide if this thread distributing way is helpful to minimize the execution time of programs. 

Then, the proposed method can search good thread distributing ways for DSM systems to 

effectively enhance the performance of user programs. Our analysis, the derived formulas and the 

algorithm of adapting workload distribution are described as follows. 

 

3.1 Analysis 

In DSM, an iterative problem is usually partitioned into a number of threads. Then, these 

threads are distributed onto processors for parallel execution. When the threads finish their work in 

the current iteration, they have to join at a barrier before entering the next iteration. Let T(x,k) 
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represent the time that node x executes its local threads in the kth iteration. The execution time of 

the kth iteration and the total execution time of the program can be estimated as Eq(1) and Eq(2), 

respectively. Since iterative threads usually have regular behavior and data access pattern, T(x,k) 

theoretically will keep the same value in each iteration if system status and the mapping of threads 

onto processors do not change. Consequently, T(x,k) can be simplified as T(x) and the total 

execution of program can be simply predicted as Eq(3). 

I(k)=Max{T(x,k) | x = 1..M, M is the number of execution nodes}  Eq(1) 

∑
=

=
N

k
kITEP

1
)(.. , N is the number of iterations.  Eq(2) 

ITNTEP *.. = ,  Eq(3) 

where IT is Max{T(x) | x = 1..M, M is the number of execution nodes} 

 

Basically, can be divided into three parts. They are computation time, communication 

time and memory time as shown in Eq(4). Computation time ( i.e.,T ) is the time that node x 

executes the computational work of local threads. Communication time (i.e., ) is the time 

that node x communicates with other nodes for data sharing between threads. Memory time (i.e., 

) is the time that node x executes page replacements to cache the data accessed by its local 

threads.  

( )xT

( )xcomp

( )xTcomm

( )xTmem

T(x)= Tcomp(x)+ Tcomm(x) + Tmem(x)   Eq (4) 
 

Let be the set of threads running on node x, be the computation time of thread j running on 

node x, be the time of executing page replacements for caching the data accessed by thread j on 

xS jx
compt

jx
memt
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node x. Then, and  can be further derived as Eq(5) and Eq(6). ( )xTcomp

( ) ∑
∈

=
ixSj

x

( ) ∑
∈

=
xSj
tx

f
Sj

jx

x

×∑
∈

( )xTmem

( ) (tx spi+

jx
compcomp tT    Eq(5) 

jx
memmemT     Eq( 6) 

Moreover, the time of executing page replacement for caching the data needed by working threads 

can be further divided into two parts according to our analysis. One is the time of scanning physical 

memory to search least-recently used (LRU) data pages and then swapping out the data pages from 

physical memory to disk. Another is the time of swapping in the data pages needed by threads from 

disk to physical memory. Therefore, Eq(6) can be further derived as follows. 

( ) )( )xtxT spomem =  Eq(7) 

jxf ：the number of page replacements that node x executes for caching the data needed by thread j. 

( )xtspo ：the average time of searching LRU data pages and swapping out the data pages on node x. 

( )xtspi ：the average time of swapping in pages on node x. 

 

In this paper, we assume there is no data sharing between threads to simplify our work and 

put our attention to the influence of memory resource on workload distribution. Therefore, we omit 

 while implementing the proposed workload distributing method on a test bed. ( )xTcomm

  

3.2 The Algorithm of Adapting Workload Distribution 

      First, the workload-distributing algorithm of the proposed method searches the node with the 

most value of T(x) and the node with the least value of T(x) to respectively be source node and 
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destination node by using the previous formulas. Then, it sets the length of program critical path as 

the most value of T(x). Second, it simulates to migrate one thread from source node to destination 

node and estimate the length of program critical path again. If the length of program critical path is 

not reduced, the algorithm will stop adapting workload distribution. Otherwise, it continues 

migrating threads from source node to destination node until the length of program critical path 

cannot be reduced further. Then, it searches a new pair of source node and destination node and 

repeats the previous operations. After finishing this workload-distributing algorithm, a new thread 

distributing way, that is a set of numbers of threads assigned onto each processor, can be gained and 

used to adapt program workload distribution via thread migration. 

 

4. Implementation 

We have implemented the proposed workload distributing method on a test bed, called 

Teamster. We took advantage of the information mechanism used by Teamster to collect the 

information necessary for workload distribution such as the computational power of processors, the 

computational demand of threads, the amount of available physical memory space on each 

processor, thread access pattern and so on. Using the collected information and the proposed method, 

Teamster dynamically adapts program workload distribution to minimize the execution time of 

programs. The details about system characteristics, information connection and the architecture of 

workload distribution are described as follows.   
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4.1 System Overview 

     Teamster [20] is a user-level DSM system built on a cluster of Intel 80x86 PCs connected 

with Ethernet network. This DSM system provides a single and global address space for user 

applications to prevent data address translation between nodes. In addition, Teamster supports 

multiple memory consistency protocols, i.e., sequential and eager released to manage data 

consistency in order to reduce data-consistency communication. On the other hand, Teamster 

supports multiple processors per node and multithreading per node to execute user programs. 

Moreover, it makes use of a diffusion reorganization mechanism to dynamically add nodes into or 

delete nodes from program execution, and migrate user threads from one node to another. The main 

purpose of this support is to increase the utility of system and enhance program performance.  

 

4.2 Information Collection 

The information necessary for the proposed workload distributing method can be classified 

into static information and dynamic information. Static information includes CPU power, available 

physical memory space and the average time of executing page replacements. The static information 

of working machines is collected before the setup of DSM systems. On the other hand, dynamic 

information consists of the computation time of each thread, the data access pattern of threads and 

the residual memory capability of each processor. The dynamic information is collected during 

program execution. Since Teamster is built on user level, it is easy to modify this run time system to 

collect the dynamic information. We make use of a mechanism called active correlation track [21] 
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to collect the data access pattern of threads. We can know the working sets of threads and derive the 

amount of thread memory demand with the access pattern of threads. In addition, we make use of 

system primitive such as se to fetch the system information of residual physical memory space. 

Then, we can predict the memory time of thread j on node x according to the memory demand of 

thread j, the residual memory resource capability of node x and the average time of executing page 

replacements on node x.  

On the other hand, the computation time of a thread is measured as the time that this thread 

arrives at the end of iteration. When a thread is fetched form the local queue to execute, the start 

time is recorded. After this thread reaches the end of iteration, the arrival time also is recorded. Then, 

the computation time of this thread is estimated as the interval between the start time and the arrival 

time. Since the computational capability of processors is non-identical, the computation time of a 

thread is different from node to node. When a thread j is migrated from node x to node y, the 

computation time of this thread on node y, i.e., can be estimated as  

where  and are the computational power factors of node x and y. 

jy
compt yx

jx
comp powerpowert /*

xpower ypower

The above method may include the time of requiring remote pages and executing page 

replacements into the computation time of threads. Fortunately, the thread scheduling of Teamster is 

non-preemptive. Consequently, the time of requiring remote page and executing page replacements 

can be measured. Then, we can get rid of the time from the computation time of threads. 
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4.3 The Architecture of Workload Distribution 

      The implementation of the proposed workload distributing method adopts a central 

architecture. That is, there is a root node is responsible for coordinating with the other nodes to 

adapt workload distribution of user programs. After initiating an iterative application, the root node 

distributes working threads to processors for execution. Then, each node begins to execute local 

threads and collect the information necessary for workload distribution. When a node finishes the 

work of its local threads, this node sends a barrier arrival message tailed with the local connected 

information to the root node. After receiving the arrival messages and the collected information 

from all the execution nodes, the root node searches a new thread distributing ways according to the 

algorithm of adapting workload distribution and then broadcast the searching result. Based on this 

new thread distributing way, the processors exchange threads by using the mechanism of thread 

migration to adapt workload distribution of the executed program. Finally, all the working threads 

are resumed to execute for the next iteration. 

      Basically, it is ideal to perform the adaptation of workload distribution at the end of each 

iteration. However, the cost of adapting workload distribution is too big. In order to reduce this cost, 

our current implementation is to perform the mechanism of adapting workload distribution only 

once during program execution. A compromise method is to develop a stochastic policy to trigger 

the adaptation of workload distribution. 
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5. Performance Evaluation 

We have implemented three iterative applications, i.e., SOR, Jacobi and Matrix 

Multiplication to evaluate the effectiveness of considering memory resource into workload 

distribution. These three applications were executed on 4 Xeon-500Mhz PCs connected with 

100Mbps fast Ethernet network. The parameters of these three applications are listed in Table 1. 

Table 2 is the amount of physical memory space provided by each node for executing these three 

applications, respectively. In addition, we ran each application with three different workload 

distributing methods, i.e., cpu-based, memory-based and cpu&memory-based. The cpu-based 

method considers only CPU resource but ignores memory resource. In contrast, the memory-based 

method distributes threads according to the amount of physical memory space that each processor 

can provide for executing DSM applications. Basically, a processor having more free physical 

memory space is assigned with more threads based on the memory-based method. Finally, the 

cpu&memory-based method is our workload distributing method. Table 3 is the number of threads 

assigned onto each processor while respectively applying these three methods for the test 

applications. The experimental results are shown from Figure 1 to Figure 3. 

 

 
Problem size 

(double) 
Thread 
number 

Memory demand 
per thread (Mbytes) 

Loop count 

SOR 6144x6144 32 9 5 
Jocobi 6144x6144 32 9 5 

MatrixMultiplication 3072x3072 32 6.75 5 
Table 1. The parameters of test applications 
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Unit: Mbyes Node 0 Node 1 Node 2 Node 3 

SOR 400 36 45 72 
Jocobi 400 36 45 72 

MatrixMultiplication 400 27 33.75 54 
Table 2. The amount of physical memory space provided by each processor for test applications\ 

 
 

(node0, node1, node2, node3) Cpu-based Memory-based CPU&memory based 

SOR (8,8,8,8) (15,4,5,8) (14,5,5,8) 
Jocobi (8,8,8,8) (15,4,5,8) (11,6,6,9) 

MatrixMultiplication (8,8,8,8) (15,4,5,8) (10,7,7,8) 
Table 3. The number of threads distributed onto each processor 
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Figure 1. The experimental result of SOR 
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Figure 2. The experimental result of Jacobi 
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Figure 3. The experimental result of Matrix Multiplication 
 
 

The experimental results of the three applications have a common situation, which is the 

computation time of four execution nodes is the same while using the cpu-based method. Although 

load balance is achieved, however the execution time of the three applications is not necessarily 

reduced by load balance. Since node 2 and node 3 have not enough physical memory space for 

thread memory demand, the memory time of these two nodes delay the completion of the test 

applications although node 1 and node 4 have finished their work more early than node 2 and node 3. 

The main reason for this result is the cpu-based method cares about only load balance but ignore 

whether processors are able to provide enough physical memory space for meeting thread memory 

demand. By contrast, the memory-based method results in that four execution nodes have no 

memory time in the three test programs since the number of threads assigned to a processor is 

dependent on the amount of physical memory space that this processor can provide for DSM 

applications. However, this result has different effect on the performance of the test programs. 
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Compared to the cpu-based method, the memory-based method minimizes the execution time of 

SOR but increases the execution time of Jacobi and Matrix Multiplication. The main reason is that 

node 0 is assigned with much more workload than the other three nodes. Consequently, if the 

execution time of the test programs can be minimized is dependent on whether the loss from load 

imbalance can be compensated by the gain from no memory time. Obviously, the consideration of 

CPU resource is more important than the consideration of memory resource for the Jacobi and 

Matrix Multiplication programs. Compared with the previous two methods, the cpu&memory based 

method minimizes the execution time of the three test programs. That is because this method 

considers not only CPU resource but also memory resource while estimating the execution time of 

programs. Therefore, Teamster can make better decisions in workload distribution for executing the 

test programs by using this method compared to the other two methods. Making a short summary, 

our experimental results shows that simultaneously considering both of CPU resource and memory 

resource is more effective for minimizing the execution time of programs than considering either 

one of these two factors. 

 

6. Conclusions and Future Work 

      In this paper, we point out the importance of considering memory resource into workload 

distribution to the performance of DSM programs. On the other hand, we analyze the execution of 

DSM programs and develop a new workload distributing method for DSM systems according to our 

analysis. In addition, we have implemented the proposed workload distributing method on a test bed, 
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i.e., Teamster, and developed a set of applications to evaluate the effectiveness of considering 

memory resource into workload distribution. Our experimental results shows that memory resource 

into workload distribution indeed is significant for the performance of DSM programs. The 

proposed workload distributing method simultaneously taking CPU resource and memory resource 

into account is more effective for reducing the execution time of programs running on DSM systems 

than the other methods considering only either CPU resource or memory resource. 

     The workload distributing method proposed in this paper does not take communication time 

of processors into account. However, this factor is also very important to the performance of DSM 

systems. We will combine this factor with computation time and memory time to develop an 

advanced workload-distributing method for DSM systems in the future. 
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