
 1

Workshop on Computer Systems

Three Methods for Subcube determination
in Faulty Hypercubes

Yao-ming Yeh and Yao-ming Chang

• Yao-ming Yeh and Yao-ming Chang are with the Department of Information and
Computer Education, National Taiwan Normal University, Taipei, Taiwan, R.O.C.

All correspondence should be addressed to Professor Yao-ming Yeh,
Department of Information and Computer Education, National Taiwan Normal
University, 162 Hoping E. Rd., Sec. 1, Taipei, Taiwan, R.O.C.

 2

Three Methods for Subcube determination
in Faulty Hypercubes

Yao-ming Yeh and Yao-ming Chang
Department of Information and Computer Engineering

National Taiwan Normal University

Abstract

For a large hypercube system, the probability of fault occurrence can be high.
It is often desired to reconfigure the faulty hypercube that operates in a gracefully
degraded manner as to retain as many nonfaulty nodes and links as possible.
Therefore the subcube determination problem is essential that the time for executing a
parallel algorithm trends to depend on the dimension of the assigned subcube.

Here, we present three different methods to determine prime subcubes which
are hypercube function method, Q-map method , and synchronized message passing
(SMP) method. The basic ideas of these three methods are from the similarities
between Boolean algebra and hypercube topology. A faulty hypercube system can be
described by a hypercube function. The hypercube function is similar to the logic
function of a switching circuit. The nonfaulty subcubes in the system can be obtained
from the complement of set of faulty nodes by DeMorgan’s law easily. We propose
the Q-map method which improved from the K-map method of logic circuit to
provide a easy method for finding subcubes in a small faulty hypercube system. The
proposed SMP method is a parallel algorithm, which exhibits polynomial time
complexity with respect to the system’s dimension. This method can deal with node
failures and link failures.

Keywords: Hypercube System, Parallel Processing, Fault-Tolerance

1 Introduction

The hypercube has been studied extensively as an interconnection network
topology for multi-computer systems [1][2]. Due to their regular structure and low
diameter, hypercube multi-computers are well suited for parallel processing. These
advantages have led to numerous experimental and commercial machines including
the recent development of a system with more 6,000 nodes by NCUBE. Most parallel
programs developed for the hypercube can be executed on various system sizes, but
they experience certain slowdowns on a small sized system. The extent of execution
slowdown trends to grow as the system size decreases.

 3

For a large hypercube system, the probability of fault occurrence can be high,
make it necessary to consider the fault-tolerant issue in system design. Fault-tolerant
techniques suggested for the hypercube system fall into two categories, depending on
whether or not redundant nodes/links are employed. If redundancy is added, the
design goal is to keep the system size unchanged in the presence of operational
failures after reconfiguration by replacing the failed components with spares [3]. On
the other hand, if no redundancy is involved in a hypercube, fault-tolerance is
achieved either by utilizing the workable portion of the system to emulate the whole
machine with certain slowdown, or by reconfiguring the machine into a smaller sized
system after faults occur.

Many prior reconfiguration techniques attempt to identify complete fault-free
subcubes with the maximum possible dimension in a faulty hypercube. Using these
fault-free subcubes, the faulty hypercube system can obtain minimum performance
degradation. Tzeng and Lin [4] proposed an efficient centralized algorithm to
determine maximum fault-free subcubes. It has to run on a single processor with its
time complexity being O(m2 N), where N(=2n) is the system size, but it can’t
determinate all possible complete subcubes. Another centralized algorithm for all
complete subcubes recognition was presented by Burch and Ercal [6], it has time
complexity of O(n3n) and space complexity of O(3n), where n is the dimensions of
hypercube. Distributed algorithm is based on parallel multiprocessor system. Chen
and Tzeng [5] proposed an distributed procedure for locating subcubes in a faulty
hypercube, the complexity at each candidate node is O(n m2 2), where m is the
numbers of faulty nodes and n is the dimensions of hypercube. Burch and Ercal [6]
also discuss the parallelization of its centralized algorithm, the run time of the parallel
algorithm is O(n 2n) and utilizes O(2n) processors.

In this paper, we present three different kinds of methods for determinate
complete subcubes in a hypercube that are hypercube function [7], Q-map, and
synchronized message passing (SMP). Hypercube function can be regarded as a
centralized algorithm and based on the complement of faulty nodes and nonfaulty
nodes. According the information of faulty nodes, we can easily obtain the complete
subcube of nonfaulty nodes by DeMorgan’s law. Other useful rules for simplifying
the hypercube function are proposed by Chen and Tzeng [5] ,and Yeh and Chang [7].
Q-map a visual method for simplified hypercube function which modified from
K-map in Boolean algebra. Since the topology of an i j× K-map is isomorphic to
an n-dimensional hypercube where n = log2(i j×). In a 4 4× Q-map and a

4-dimensional hypercube, cells in Q-map can represent nodes in hypercube, and walls
around a cell can be regarded as links of a node. Along the same rules of K-map, we

 4

can find the complete subcubes in a small faulty hypercube by sight easily. The SMP
method is a parallel algorithm for all complete subcubes determination. Starting with
the nodes knowing their own ID, and then pass this information to all it’s neighbors.
Whereon, if each node receives the information from a healthy neighbor, then it
compares with its own information and combines itself with its neighbor into a larger
subcube. This procedure is performed in synchronous for every node in the hypercube.
It stops when no more larger subcubes can be generated.

The rest of this paper is organized as follows. Section 2 summarizes the
notations and definitions that will be used throughout the paper. Section 3 introduces
the method which use hypercube functions and useful rules. Section 4 proposes the
concept of cube map to help us finding prime subcubes. Section 5 presents a parallel
algorithm for determine all complete subcubes in a faulty hypercube. The comparison
of three methods and conclusion is followed in Section 6.

2 Preliminaries

An n-dimensional hypercube, Qn, consists of 2n nodes and nn21− links.
Each node has an unique address (b b b bn n−1 2 1L), bi∈ {0, 1} for i = 1, 2,…, n. The

ith bit is referred to as ith dimension. Two nodes are connected by a link if and only if
their addresses differ by exactly one bit, and they are called adjacent to each other. A
four-dimensional hypercube is depicted in Figure 1. Each subcube in Qn can also be
uniquely represented as address by a string of n symbols over the set {0, 1, *}, where

0000 0001

0010 0011

10011000

01110110

1101110001010100

10111010

1110 1111

1
2

3

4

Figure 1. A Four-dimensional hypercube with two faulty nodes and a

two-dimensional subcube 1**0 (bold line).

 5

* is a don’t care symbol. Specifically, a k-dimensional subcube Sk has exactly k *s in
its address, as it involves a collection of 2k cube nodes. As an example, nodes 1000,
1010, 1100, and 1110 in Qn constitute a two-dimensional subcube addressed by 1**0
(Figure 1). For each hypercube node, the communication link in dimension i is called
the ith link of this node. For simplicity, each link is represented by a binary string
with a “-” symbol in the corresponding dimension. For example, the link between
nodes 0000 and 0010 is represented by 00-0. With cube address representation, one
can easily see that the total number of different subcubes in all dimensions (not
necessarily disjoint) is equal to 3n.

Let a subcube be represented as a set of Boolean variables, obtained from the
address of the subcube by replacing bit position i with bi (or bi), if position i is 1

(or 0), called a dimension variable. Then dropping all *s. For example, a
2-dimensional subcube 0**1 is represented by b b4 1 , called a cubeterm which is

composed by two dimension variables. It is defined subsequently.

DEFINITION 1. A cubeterm is composed by m dimension variables, where
1≤ ≤m n, and the cubeterm is a (n - m)-dimensional subcube in Qn, denoted as
x x xm1 2L where xi can be any dimension variable among b b bn n−1 1L and

b b bn n−1 1L .

We can represent a subcube with respect a given node as its dimension number
only which is called containment vector. For example, a 2-dimensional subcube 0**1
with respect to a given node 0101 can be represented as 0101 with (2,3). Using this
notation, one can reduce the space for storing all information of subcube by every
node in Qn.

DEFINITION 2. A containment vector of a m-dimensional subcube Sk in Qn can be
represented by its dimension number and a node b b bn n−1 1L which is involved in this
subcube as b b bn n−1 1L with (Di), where Di is a set of dimension position of * in Sk,

and 1≤ ≤i n.

Subcube determination problem is defined as given a collection of faulty nodes
and faulty links on an n-dimensional hypercube, find out all possible maximum
complete subcubes that consists entirely of nonfaulty nodes and links.

DEFINITION 3. A prime subcube with respect to a given node, say P, is a fault-free
subcube with involves P but is not contained entirely in any other fault-free subcube
involving P.

 6

Prime subcubes with respect to different nodes could be of different sizes. No
proper subcube of a prime subcube can be a candidate largest subcube. In other words,
the prime subcubes with respect to all nonfaulty nodes are the all possible maximum
complete subcubes in faulty hypercube and are what we expect.

3 Hypercube Functions

Hypercube algebra [7] is a new notation of hypercube. It can elegantly
describe the sets of nodes or subcubes in a hypercube, and even the incomplete
hypercubes [4] [8] of a faulty hypercube. The concept of this method is that the set of
faulty nodes and the set of nonfaulty nodes are complement in hypercube system.
Through the known from the set of faulty nodes, we can easily obtain the set of
nonfaulty nodes by some rules in hypercube algebra. Fortunately, the hypercube
function of nonfaulty nodes we obtain is all the prime subcubes in the faulty
hypercube that we want. In the next three paragraphs, we will introduce the functional
notation, rules for simplifying the functions, and the main method.

3.1 Hypercube and Truth Table

A Hypercube function is an expression formed with binary variables, the two
binary operators + and ⋅, complement, parentheses, and an equal sign. For a given
value of variables, the function can be either 0 or 1. Consider, for example, the
Hypercube function of Qn

F1 (b1,b2,b3,b4) = b b b b4 3 2 1 + b b b b4 3 2 1 + b b b b4 3 2 1 + b b b b4 3 2 1 + b b b b4 3 2 1 +

b b b b4 3 2 1 + b b b b4 3 2 1 + b b b b4 3 2 1 + b b b b4 3 2 1 + b b b b4 3 2 1 +

b b b b4 3 2 1+ b b b b4 3 2 1 + b b b b4 3 2 1 + b b b b4 3 2 1

The above is an example of Hypercube function represented as an algebra
expression. A Hypercube function may also be represented in a truth table (Table 1)
and a Hypercube graph (Figure 1). To represent a function in a truth table, we need a
list of the 2n combinations of 1’s and 0’s of the n binary variables, and a column
showing the combinations for which the function is equal to 1 or 0. (Note that the
statement b0 = 1 is equivalent to saying that b0 = 0.)

In the other hand, let us consider a 4-dimensional hypercube with some faulty
nodes. We can take the item which has F1 (b1,b2,b3,b4) is 0 to be represented as a

faulty node. Otherwise it is a nonfaulty node. So the above hypercube function
notates that there are three 2-dimensional subcubes and two 1-dimensional subcubes

 7

in this 4-dimentional faulty hypercube.

3.2 Simplifying Rules

Since the similarities between Boolean algebra and hypercube system, many
theorems and rules of Boolean algebra can be used here. Besides basic rules which
are proposed by Yeh and Chang [7] and an advanced rule which is proposed by Chen
and Tzeng [5] are sometimes appear in pairs, but we only list one of them that we will
use in the method. These rules are introduced as follows.

Rule 1 [DeMorgan’s law] ()b bi j+ = bi ⋅ bj.

Rule 2 [Distributive law] bi ⋅ (bj + bk) = bi ⋅ bj + bi ⋅ bk.
Rule 3 [Absorption] bi ⋅ Si = bi where Si is a sum term which contains bi.
Rule 4 [Advanced absorption] (bi + bj)⋅ SiSjSk = biSjSk + bjSiSk =

biSjSk+ bjSi’Sk where bi is in the sun term Si but bj is not, bj is
in the sum term Sj but bi is not, neither bi and bj is in the sum term
Sk, and Si’ is sum term Si excluding variable bi.

b4 b3 b2 b1 F1 (b1,b2,b3,b4)

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

b4 b3 b2 b1 F1 (b1,b2,b3,b4)

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

Table 1. Truth table for F1 (b1,b2,b3,b4)

 8

() ()b b b b b b b b4 3 2 1 4 3 2 1+ + + ⋅ + + +

b4 b b3 2 b b3 1 bb3 2 b b2 1 bb3 1 bb2 1

()b b b b bbbb4 3 2 1 4 3 2 1+

DeMorgan’s law

b b b b b4 4 3 2 1⋅ + + +() b b b b b3 4 3 2 1⋅ + + +() b b b b b2 4 3 2 1⋅ + + +() b b b b b1 4 3 2 1⋅ + + +()

distributive law

absorption law

3.3 Prime Subcube Determination with Hypercube Function

In a faulty hypercube, the set of faulty nodes and the set of nonfaulty nodes are
not only exclusive but also complementary. Using the hypercube function, we can
obtain a function in sum-of-product(SOP) form which presents the set of faulty nodes
from it’s address easily. Since we know the complement of Ff (which is the set of
faulty nodes) is Fp (which is the set of nonfaulty nodes), so we can just complement
the function Ff and apply the DeMorgan’s law to get the function Ff . The procedure is
as following.

1. Listing the function Ff in SOP form according the addresses of faulty nodes.
2. Complement Ff and apply the rule 1 to transfer it in POS form.
3. Using rule 2 to expand the expression.
4. Rule 3 and 4 are employed to reduce the redundant terms in expanding process.
5. We can obtain the expanded SOP form Fp which is the set of prime subcubes.

Consider the example in 3.1, the faulty hypercube has two faulty nodes, whose
addresses are 0000 and 0111 in 4-dimensional hypercube, so the function in SOP
form is F2 = b b b b4 3 2 1 + b bb b4 3 2 1, then we complement it as F2 =

()b b b b b b b b4 3 2 1 4 3 2 1+ . Using the DeMorgan’s law to transform the function into POS

form. The transformed function has two sum-terms S1 and S2 where S1 =
()b b b b4 3 2 1+ + + and S2 = ()b b b b4 3 2 1+ + + . Then, we expand the expression by

distributed rule in four parts such as b4S2, b3S2, b2S2, and b1S2. We can employ
the two absorption rules to reduce the product. Since b4is in S2 , so b4S2 = b4 by

rule 3, and b3S2 = b3S2’ = b b3 2 + b b3 1 where S2’ is S2 excluding b4 by rule 4.

Figure 2. Converting function of nonfaulty nodes Fp by
complementing function of faulty nodes Ff .

 9

Similarly, b2S2 = b2S2’ = bb3 2 + b b2 1, and b1S2 = b1S2’ = bb3 1 + b b2 1. Finally,

we obtain seven product- terms b4 + b b3 2 + b b3 1 + bb3 2 + b b2 1 + bb3 1 +

b b2 1 which are the seven prime subcubes 1***, *10*, *1*0, *01*, **10, *0*1, and

**01 (Figure 2).

F2 = ()b b b b b bb b4 3 2 1 4 3 2 1+

 = () ()b b b b b b b b4 3 2 1 4 3 2 1+ + + ⋅ + + +

 = b4 + b b3 2 + b b3 1 + bb3 2 + b b2 1 + bb3 1 + b b2 1

4 Q-Map

Q-map is a presentation of hypercube and is abbreviated from Cube-map. It is
a visual method for simplifying hypercube function, which modified from K-map in
digital logic design. Whereas the connectivity of node addresses in an n-dimensional
hypercube is alike to a n-bit Gray code, and the principle of Q-map is also relevant to
it. The main idea behind a Q-map is that it attempts to position the 0s and 1s so that
logically adjacent cells are also physically adjacent. This makes it easy to recognize
terms that can be combined into a single, simpler term. The topology of an i j×
Q-map is isomorphic to an n-dimensional hypercube where n = log2(i j×). A cell in

a map is corresponding to a node in a hypercube system. Moreover, a wall(ie., line)
between two cells of a map is corresponding to a link in hypercube system. Each cell
in a Q-map is like anode in hypercube, which has an unique address. The address is
composed according to its row number and column number. For example, consider a
4 4× Q-map, address of the cell on left-up corner is 0000 which is combined by 00
(row number) and 00 (column number), and the address of the cell on right-down
corner is 1010 which is combined by 10 (row number) and 10 (column number). The
wall that between cells 0000 and 0001 can represent the 1st dimensional link 000-, and
the wall between cells 0101 and 1101 is the 4th dimensional link -101. Figure 3a is a
Q-map for a 4-dimensional hypercube with 2 faulty nodes 0000 and 0111.

4.1 Drawing Map and Encircling

Like the usage in digital design, the procedure for finding prime subcubes with
Q-map is as following.
1. According the size of hypercube, form a corresponding Q-map. For example, an

n-dimensional hypercube is corresponding to a i j× Q-map where n =
log2(i j×) that i is row, j is column and j i− ≤1.

2. Fill 0 in the cells whose corresponding nodes are failure, and fill 1 in the other
cells. Then, mark an X on the walls whose corresponding links are failure.

 10

3. Identify all prime subcubes by encircling appropriate maximum-size groups of
2k cells which is 1, where 1≤ ≤k n. But, these groups can not contain the
wall with X-mark.

4. Select a minimum set of groups that contain or cover all the cells which is 1.

For example, consider the figure 1, a 4-dimensional hypercube with two faulty
nodes 0000 and 0111. We can draw the corresponding Q-map as the following figure
3a :

According to the above left Q-maps, we can encircle a minimum set of four
groups which cover all the cells that is 1 such as 1***, **01, *1*0, and *01*. As we
mentioned in 3.1, a hypercube function can represent a faulty hypercube. So, we can
further form a hypercube function, b4 + b b3 1 + b b2 1 + bb1 2 , which represents

one 3-dimensional subcube and three 2-dimensional subcubes.

4.2 Faulty Links in Q-map

Besides node failures, link failures may also occur in a hypercube system.
Q-map is extended to handle a hypercube in which both nodes and links could fail.
Links in a hypercube are represented as the walls among cells in the Q-map. Consider
a Q-map of a four dimensional hypercube, each cell has 4 walls which are represented
as the four links connecting with one node. Like the situation of faulty nodes, the
circle by encircling process can not contain any faulty components, that are nodes and
links. For example, In figure 3b, there are four faulty links that -100, -101, -111, and

 (0,0) (0,1) (1,1) (1,0)

(0,0) 1 1 1 1

(0,1) 1 1 1 1

(1,1) 1 1 1 1

(1,0) 1 1 1 1

 (0,0) (0,1) (1,1) (1,0)

(0,0) 0 1 1 1

(0,1) 1 1 0 1

(1,1) 1 1 1 1

(1,0) 1 1 1 1

Figure 3. Two Q-maps : (a) A Q4 with two faulty nodes 0000 and
0111. (b) A Q4 with four faulty links -100, -101, -111, and -110.

X X X X

 11

-110. We easily encircle two circles that cover all available nodes but without faulty
links. So, the original Q4 is partitioned into two subcubes that 0*** and 1*** by these
faulty links.

5. Synchronized Message Passing (SMP) Method
Another approach to find the prime subcube is the tabular method. This method

is similar to the method proposed by Quine and McCluskey [9] which is widely used
in digital logic design. This method can deal with large number of Boolean variables.
Here, we present a parallel algorithm which stems from the idea of the tabular
method to find the prime subcube in any size of faulty hypercube. The basic idea of
this method is to form a larger subcube from two small subcubes
dimension-by-dimension repeatedly by synchronized message passing. Although it
is more complex than two previous methods but the advantage of this method is that
it can process any size of faulty hypercube.

5.1 Tabular Method and Subcube Joining

The tabular method uses a series of subcube table, which are 0-cube table,
1-cube table, 2-cube table and so on. Each cube table contains three columns:
“group”, “address”, and “mark”. Where “address” is the node address of each
subcube, and “group” is to identify the subcubes which have the same weight (i.e.,
the address of the subcube contains the same number of 1’s). The column “mark” is
to identify the subcubes that can be combined into larger subcube. The procedure of
the tabular method is fairly simple. We can start from 0-cube table, which contains
all available 0-dimensional subcubes (i.e., these subcubes are also non-faulty
individual nodes). The procedure tries to join them into larger subcubes by checking
each entry of the adjacent groups. Then 1-cube table is created to store the resulting
1-cubes. This process continues iteratively until no larger subcubes can be created.

The main idea of the procedure is to repetitively apply join operation on the
entries of i-cube table until no join operation can be applied. .The join operation on
i-cube table is defined by two steps: Step 1 is to find and mark two available
subcubes that belong to adjacent group respectively and whose addresses are one bit
differ on dth dimension. Then Step 2 is to create a new entry on (i+1)-cube table
whose address is copied from the address of the subcube being joined with a “*”
placed on the dth dimension of the subcube with the same representation, and attach
the next available table. For example, for a hypercube with 5 dimension, from

 12

1-cube table, two 1-cubes 0010* and 1010* from G1 and G2 can be joined in to a
2-cube *010* in the 2-cube table.

The algorithm is described as following.
1. Form a table Ti = T0 (i.e., 0-cube table) from all available nodes. Each entry is

arranged by the weight of node address. All entries in Ti are divided into groups
G0, G1, …, Gm, where Gh contain all nodes with exactly h 1’s in their address,
0≤ ≤h m.

2. Scan Ti and compare each entry E’ of Gh with each entry E” of Gh+1, for all h
where 0≤ ≤h m. If the addresses in E’ and E” are different on only one
dimension, then mark off both entries. Then a new entry E (whose address is
copied from the address of E’ and E” with a “*” replaced on that different
dimension)is formed. Check if the new entry E is already in Ti+1 before it is
inserted into Gh of table Ti+1.

3. If Ti+1 is not empty, change i to i+1 and repeat Step 2. If Ti+1 is empty, the
unmarked entries remained in all tables are the prime subcubes of the faulty
hypercube.

For example, let us discuss the hypercube function F1 mentioned in Section 3.1
(see Table 1). From the above algorithm, we first form a 0-cube table T0 from all
nodes except two faulty nodes 0000 and 0111. The entries in T0 are divided into
groups according to the number of 1’s in their address. In Table 2a, there are 4 groups
G1, G2, G3, and G4. Then we scan T0 and compare each node address in G1 and G2 .
And we find that 0001 and 0011 are different on only dimension 2, so we mark off
these two entries. A new entry, which has address 00*1, is created from them. Since
00*1 is new to 1-cube table T1, therefore this entry is added into group G1 in table T1,
Similarly, 0001 and 0101 can be joined to 0*01 , 0010 and 0011 can be joined to 001*.
When comparing G1 and G2, go on to compare G2 and G3, G3 and G4 in T0. From the
above algorithm, after no join operation can be applied to all cube table, we can
obtain seven unmarked subcubes, which are *0*1, **01, *01*, **10, *10*, *1*0, and
1*** (see Table 2c, 2d). Since these subcubes can not be combined into larger
subcubes, in other words, they are the prime subcubes.

 13

Tabular method is better than previous two methods that it can handle larger
dimensional hypercube and can be implemented in program very easily. However,
Tabular method has some drawbacks comparing with other methods. Tabular method
needs space complexity of O(3n) to record all possible subcubes of Qn, and there are
some overheads of redundant comparisons so it runs in O(n3n) time. If we simply
transfer it to a parallel version algorithm with an n-dimensional hypercube, every
nodes still needs to maintain O(3n) space and runs in O(n2n) time [6]. In next
section, we will present a parallel algorithm with n-dimensional hypercube and it only

Group address mark

G1 00*1

0*01

*001

001*

0*10

*010

010*

01*0

*100

100*

10*0

1*00

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

G2 *011

*101

*110

10*1

1*01

101*

110*

11*0

1*10

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

G3 1*11

11*1

111*

ˇ

ˇ

ˇ

Group address mark

G1 *0*1

**01

01

**10

10

*1*0

10**

1*0*

1**0

ˇ

ˇ

ˇ

G2 1*1*

1**1

11**

ˇ

ˇ

ˇ

Group address mark

G1 1***

Group address mark

G1 0001

0010

0100

1000

ˇ

ˇ

ˇ

ˇ

G2 0011

0101

0110

1001

1010

1100

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

G3 0111

1011

1101

ˇ

ˇ

ˇ

G4 1111 ˇ

Unmarked subcubes are

Prime Subcubes.

Table 2a T0

0-cube table

Table 2c T2

2-cube table

Table 2d T3

3-cube table

Table 2b T1

1-cube table

 14

needs O(2n) space maintained by every nonfaulty nodes and runs in O(n2) time.

5.2 Methodology of SMP

We first assume that the fault model is a fail-stop processor. When a node is
faulty, it will not perform any incorrect actions and simply ceases functioning.
Synchronized message passing method is a parallel algorithm to determine all
subcubes in hypercube with faulty nodes and/or links. The idea of SMP is to pass a
message to their neighbors through the same dimensional link synchronously by all
nonfaulty nodes. It is shown as figure 4. By receiving those messages from dimension
1 to n, each nonfaulty node will know how its neighborhood is. Nodes then gradually
gather the global view by exchanging local information to each other iteratively.
Before we introduce the algorithm, the data structure of passing message and some
essential ideas will be presented in next two paragraphs.

Subcubes of a n-dimensional hypercube can be represented as a n-tuple of 0, 1,
*, where * signifies “don’t care.” For example, 0*1* contains 0010, 0011, 0110, and
0111. With this representation, one can clearly see that the total number of different
subcube in all dimensions is equal to 3n. However, for implementing in the SMP
method, every node only needs to maintain the information that the subcubes which
contain itself in the process. So, to keep all the 3n possible subcubes is not
necessary. With definition 2, a subcube can also be described to a given node with
some dimension numbers which is called containment vector. Using this dimensional
representation, only 2n possible combinations are needed. Therefore, each node
needs space of O(2n) to record the all possible combinations of available dimensions.
This array will be regarded as information for exchanging and merging to neighbors
in the algorithm.

111

000

1
111

000

2

111

000

3

Figure 4. Nodes synchronously exchanged message
through the same dimensional link.

 15

Algorithm 1 : SMP
begin

message←nil ;
for i = 1 to d do

for j = 1 to d do
sent { message } through dimension j ;
receive { message }’ through dimension j ;
compare { message } with { message }’ ;
select the same vectors from two messages ;
for all same vectors,

if (vector + j) > the vector then
mark the character and add (character + j) to the queue ;

end if
end for

message ← queue ;
result ← characters without mark ;
if (queue = nil) then exit;
end for

end

Procedure of SMP method is executed by every available node synchronously.
Table 5 shows how the algorithm 1 works on a 4-simensional hypercube with two
failed nodes 0000 and 0111. For presenting intelligibly, the message in each step is
represent in dimensional notation not the bit array we use in algorithm. At the
beginning of the algorithm, each available node hold a null message () which means
the original individual one. There is a nested loop in the algorithm that the inner loop
denote the dimensions of a hypercube and the outer loop control the largest dimension
of subcube which is combined. During the inner loop, nodes send message to
neighbors from small dimension to large one and wait to receive others which like
figure 4. Then, compare the message that select the same containment vectors and
check if they can be combined in to a larger one. If yes, mark it off and generate a
new term added in to the next array, else leave it to the result array. After finishing
the inner loop, next array will be regard as new message and iterate this process in
outer loop until no larger subcubes are generated. When the algorithm accomplish,
each node will hold a result array which records the prime subcube involving the node
itself. As an example illustrated in table 5, two prime subcubes involving node 0001
are (2, 4) and (3, 4) that are *0*1 and **01, and three subcubes involving node 1010
are (1, 4), (3, 4), and (1, 2, 3) that are *01*, **10, and 1***.

During the SMP algorithm, the comparison of two messages needs much time,
so it takes O(2n) time to scan the containment vectors and selects the same ones.

 16

Then, the assembling process has to check that if two vectors could be merged to
create a new one.

However, in the SMP algorithm, the message exchanging is frequent and the
message sometimes contains more than one containment vectors. Moreover, it will
take a lot of time during the subcube merging process which need to compare two set
of containment vectors and decide if they can be merged to a new containment vector.
Hence, for saving the communication cost and quickly processing in SMP algorithm,
we propose a subcube vector which is a only 2n bits array to maintain all the
containment vectors which are encoded to a number, called location number. The
encoding process of containment vectors is quite simple that each vector was
transferred to this number which is regarded as a bit position as following.

Location number = 0 if containment vector is empty, ie. ().
 = 2 1Di−∑ otherwise.

DEFINITION 4. A subcube vector is a 2n bits array Sm[i], where i is from 0
to2n-1, with respect to a given node m that records its all 2n possible containment
vectors in Qn. The bit value in subcube vector is 1 if this bit position is equal to the
location number, otherwise, the value is 0.

For example, consider a node 011100 which is involved in three subcubes that
01*1*0, 0**10*, and 01***0 in a Q6, i.e. the containment vectors are (2,4), (1,2,5),
and (2,3,4) respectively. We can transfer them to three location numbers such that
2 21 3+ = 10, 2 2 20 1 4+ + = 14, and 2 2 21 2 3+ + = 19 by encoding process.
Finally, we set 10th, 19th, 14th, bit to 1 in the subcube vector which is a 26 bits array
(Figure 5).

Furthermore, we propose an auxiliary vector called dimension vector to
accelerate the merging process and the definition is as following,

DEFINITION 5. A dimension vector is a 2n bits array Di[j], where j is from 0
to2n-1, with respect to a given dimension i in Qn.

19 1014

...
63 62 61 012

00001000100001000 ...

(2, 4)
(1, 2, 5)
(2, 3, 4)

= 1010

= 1410

= 1910

2 2 2 22 1 4 1 1 3− −+ = +

2 2 2 2 2 21 1 2 1 5 1 0 1 4− − −+ + = + +

2 2 2 2 2 22 1 3 1 4 1 1 2 3− − −+ + = + +

Figure 5. Subcube vector of node 011100 with (2,4),
(1,2,5), and (2,3,4) in Q6.

 17

Di[j] = 1 if j mod 2i < 21i−
 = 0 otherwise

The dimension vector is fixed of each dimension for accelerating the merging
process. For example, the following table shows the four dimension vectors of Q4:

Dimension Dimension vector Hexadecimal number

D1 [0101010101010101] 5555

D2 [0011001100110011] 3333

D3 [0000111100001111] 0F0F

D4 [0000000011111111] 00FF

Using these improved data structure such that subcube vector and dimension
vector, one can lower not only the space and communication complexity but also the
time significantly. The origin comparison operation needs O(2n) time to scan and
select, but it only need a O(1) time to perform a bitwise operation. Moreover, the
merging operation also be reduced to two bitwise operation which run in O(1) time.
The modified SMP algorithm with subcube vector is listed as following.

Algorithm 2: SMP with subcube vector
/* n is dimension of the overall hypercube.
 S denotes subcube vector which is a 2n boolean array, initialized to 0.
 Dj denoted dimension vector of dimension j.
 TEMP, NEXT are temporary array,
 RESULT is the output array, all initialized to 0. */
begin

if (I am non-faulty) then S[0] ← 1
else exit;
end if
for i = 1 to n do

RESULT ← RESULT | S
for j = 1 to n do

sent S through dimension j ;
receive Sj’ through dimension j ;
TEMP ←S & Sj’ & Dj ;
RESULT ← RESULT ⊕ TEMP ;
NEXT ← NEXT | (TEMP << 2j) ;

end for
S ← NEXT ;
if (NEXT = 0) then exit;
NEXT ← 0

end for
end

Note: &, |, ⊕, and << means the operation AND, OR, XOR, and LEFT SHIFT
respectively.

Table 3. Dimension vectors of Q4.

 18

The SMP method can handle a hypercube in which both nodes and links
failure. Since the basic idea of our method is to pass message through links, if there is
a faulty link connecting to a available node, we can just cancel the operation of
message passing through the faulty dimension. Although its neighbor of that
dimension will regard it a faulty node, other neighbor nodes of other dimension will
still continue the process of subcube assembling. This method can still work for link
failure without modification.

5.3 Complexity Analysis

Basically, we present a parallel algorithm and run on a n-dimensional
hypercube system, it contains two loops which are nested ,a messages comparison
operation, and an assembling process in the nested loop. Since using certain bitwise
operations such as AND, OR, XOR, and SHIFT to achieve the comparison and
merging mechanisms, it needs only O(1) time when the adequate bandwidth for the
2n bit arrays are given that two arrays can be operated in constant time. Since the
inner loop is form 1 to n and the outer loop is from 1 to n in the worst case (no faulty
nodes and links), n2 time iteration is needed for this nested loop. Through the
analysis above, we can obtain a run time complexity as below:

O(1) × n2 = O(n2)
Although the SMP algorithm run in O(n2) time, the output of each node is still the
subcube vector which is needed to transfer into containment vector. Therefore
additional decoding operation will take O(2n) time that the overall run time
complexity will be

O(n2) + O(2n) = O(2n) = O(P)
where P = 2n, is the number of processor of Qn.

Another important consideration is the communication cost of the algorithm.
We use the subcube vector which is a 2n bits array as message of every available
node for exchanging each other. Thus, O(2n) bit communication cost is needed in
this algorithm.

A similar algorithm for subcube recognition was proposed by Burch and Ercal
[6], it needs O(3n) space complexity and takes O(n3n) time complexity by the linear
version, and the further parallel version ran in O(n2n) time complexity on an
n-dimensional hypercube.

6 Comparison and Conclusion

In this paper, we present three methods for prime subcube determination which

 19

are Hypercube Function, Q-map, and SMP Method. The original concepts of these
three methods are all from the hypercube algebra. We summarize the difference of
features and uses in the following listing.

1. Fault Tolerance

Lets first analyze the fault tolerance about them. Hypercube function we present
in the paper can only deal with the failed nodes in a hypercube. Chen and Tzeng [5]
has propose a similar algorithm which is a distributed version can be extended to
tolerate the failed links. But, the time complexity is depended on the number of faulty
component and the degree of a hypercube. Since Q-map can complete represent nodes
and links of a hypercube, subcubes can be determined correctly by the encircling
process. SMP is a parallel algorithm which is modified from the tabular method also
can tolerate the failed nodes and links by it’s originally idea.

2. Visuality and programmability

We secondly consider the visuality and programmability about these methods.
Since Q-map is designed a method that easily be operated by vision and handed work,
the visuality is certainly well. However, the encircling operation graphical method is
disadvantageous to represent in data structure and programming. The hypercube
function is operated like other mathematical expressions, simplifying rules can be
easily applied in the program. As we know, one of the characteristics of tabular and
SMP method is that they can be implemented in program very easily. Therefore, the
hypercube function and SMP have the better programmability.

3. Scalability

Finally, Q-map method is adapted to the four and under dimensional hypercube
but not recommended when the dimension of hypercube is higher than six. SMP is a
parallel algorithm that can deal with higher dimensional hypercube by nodes
themselves. The hypercube function can processes the large hypercube but the
function will be copious when the numbers of dimension are very large.

 20

Group Group 0 Group 1 Group 2 Group 3 Group 4

node id 0000 0001 0010 0100 1000 0011 0101 0110 1001 1010 1100 0111 1011 1101 1110 1111

initial faulty () ˇ () ˇ () ˇ () ˇ () ˇ () ˇ () ˇ () ˇ () ˇ () ˇ faulty () ˇ () ˇ () ˇ () ˇ

j = 1 (1) ˇ (1) ˇ (1) ˇ (1) ˇ (1) ˇ (1) ˇ (1) ˇ (1) ˇ (1) ˇ (1) ˇ (1) ˇ (1) ˇ

j = 2 (2) ˇ (2) ˇ (2) ˇ (2) ˇ (2) ˇ (2) ˇ (2) ˇ (2) ˇ (2) ˇ (2) ˇ (2) ˇ (2) ˇ

j = 3 (3) ˇ (3) ˇ (3) ˇ (3) ˇ (3) ˇ (3) ˇ (3) ˇ (3) ˇ (3) ˇ (3) ˇ (3) ˇ (3) ˇ

i = 1

j = 4 (4) ˇ (4) ˇ (4) ˇ (4) ˇ (4) ˇ (4) ˇ (4) ˇ (4) ˇ (4) ˇ (4) ˇ (4) ˇ (4) ˇ

j = 1 (1,4) (1,4) (1,2) ˇ

(1,3) ˇ

(1,4) (1,4) (1,2) ˇ

(1,3) ˇ

(1,2) ˇ

(1,3) ˇ

(1,4)

(1,2) ˇ

(1,3) ˇ

(1,4)

 (1,2) ˇ

(1,3) ˇ

(1,4)

(1,2) ˇ

(1,3) ˇ

(1,4)

(1,2) ˇ

(1,3) ˇ

(1,2) ˇ

(1,3) ˇ

j = 2 (2,4) (2,4) (2,3) ˇ (2,4) (2,4) (2,3) ˇ

(2,4)

(2,3) ˇ (2,3) ˇ

(2,4)

 (2,3) ˇ

(2,4)

(2,3) ˇ (2,3)

(2,4) ˇ

(2,3) ˇ

j = 3 (3,4) (3,4) (3,4) (3,4) (3,4) (3,4) (3,4) (3,4)

i = 2

j = 4

j = 1 (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)

j = 2

j = 3

i = 3

j = 4

Seven prime subcubes are determined such that *0*1, **01, *01*, **10, *10*, *1*0, and 1***.

Table 5. Illustration of SMP algorithm on a faulty hypercube with two
faulty nodes 0000 and 0111. Duplicated terms were omitted.

 21

References
【1.】J. Squire and S. M. Palais, “Programming and design considerations of a

highly parallel computer,” in Proc. AFIP Spring Joint Comput. Conf., vol. 23,
pp. 395-400, 1963.

【2.】Y. Saad and M. H. Schultz, “Topological Properties of Hypercubes,“ IEEE
Trans. Computers, vol. 37, no. 7, pp. 867-872, July 1988.

【3.】J. Bruck, R. Cypher, and C.-T. Ho, “Fault-Tolerant Meshes and Hypercubes
with Minimal Numbers of Spares,” IEEE Trans. Computers, vol.41, no.5,
pp.1,089-1,104, Sep 1993.

【4.】N.-F. Tzeng and G. Lin, “Efficient Determination of Maximal Incomplete
Subcubes in Hypercubes with Faults,” IEEE Trans. Computers, vol.45, no.11,
pp.1303-1308, Nov 1996.

【5.】H.-L. Chen, N.-F. Tseng. “Subcube Determination in Faulty Hypercubes.”
IEEE Trans. Computers, vol.46, no.8, pp.871-879, Aug 1997.

【6.】H. J. Burch and F. Ercal. “A Fast Algorithm For Complete Subcube
Recognition.” Proc. of IEEE 1997 Int’l Symp. Parallel Architectures,
Algorithms and Networks, pp.85-90, 1997.

【7.】Y. M. Yeh and Y. M. Chang. “Hypercube Algebra”
【8.】Katseff, “Incomplete Hypercube,” IEEE Trans. Computers, vol.37, no.5,

pp.604-608, May 1988.
【9.】John P. Hayes. “Introduction to Digital Logic Design.” Addison-Wesley,

Reading, MA, pp.279-330, 1993.

