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Abstract 

For a large hypercube system, the probability of fault occurrence can be high. 
It is often desired to reconfigure the faulty hypercube that operates in a gracefully 
degraded manner as to retain as many nonfaulty nodes and links as possible. 
Therefore the subcube determination problem is essential that the time for executing a 
parallel algorithm trends to depend on the dimension of the assigned subcube.  

Here, we present three different methods to determine prime subcubes which 
are hypercube function method, Q-map method , and synchronized message passing 
(SMP) method. The basic ideas of these three methods are from the similarities 
between Boolean algebra and hypercube topology. A faulty hypercube system can be 
described by a hypercube function. The hypercube function is similar to the logic 
function of a switching circuit. The nonfaulty subcubes in the system can be obtained 
from the complement of set of faulty nodes by DeMorgan’s law easily. We propose 
the Q-map method which improved from the K-map method of logic circuit to 
provide a easy method for finding subcubes in a small faulty hypercube system. The 
proposed SMP method is a parallel algorithm, which exhibits polynomial time 
complexity with respect to the system’s dimension. This method can deal with node 
failures and link failures. 

Keywords: Hypercube System, Parallel Processing, Fault-Tolerance 

 

1 Introduction 

The hypercube has been studied extensively as an interconnection network 
topology for multi-computer systems [1][2]. Due to their regular structure and low 
diameter, hypercube multi-computers are well suited for parallel processing. These 
advantages have led to numerous experimental and commercial machines including 
the recent development of a system with more 6,000 nodes by NCUBE. Most parallel 
programs developed for the hypercube can be executed on various system sizes, but 
they experience certain slowdowns on a small sized system. The extent of execution 
slowdown trends to grow as the system size decreases. 



 3

For a large hypercube system, the probability of fault occurrence can be high, 
make it necessary to consider the fault-tolerant issue in system design. Fault-tolerant 
techniques suggested for the hypercube system fall into two categories, depending on 
whether or not redundant nodes/links are employed. If redundancy is added, the 
design goal is to keep the system size unchanged in the presence of operational 
failures after reconfiguration by replacing the failed components with spares [3]. On 
the other hand, if no redundancy is involved in a hypercube, fault-tolerance is 
achieved either by utilizing the workable portion of the system to emulate the whole 
machine with certain slowdown, or by reconfiguring the machine into a smaller sized 
system after faults occur. 

Many prior reconfiguration techniques attempt to identify complete fault-free 
subcubes with the maximum possible dimension in a faulty hypercube. Using these 
fault-free subcubes, the faulty hypercube system can obtain minimum performance 
degradation. Tzeng and Lin [4] proposed an efficient centralized algorithm to 
determine maximum fault-free subcubes. It has to run on a single processor with its 
time complexity being O(m2 N), where N(=2n) is the system size, but it can’t 
determinate all possible complete subcubes. Another centralized algorithm for all 
complete subcubes recognition was presented by Burch and Ercal [6], it has time 
complexity of O(n3n) and space complexity of O(3n), where n is the dimensions of 
hypercube. Distributed algorithm is based on parallel multiprocessor system. Chen 
and Tzeng [5] proposed an distributed procedure for locating subcubes in a faulty 
hypercube, the complexity at each candidate node is O(n m2 2 ), where m is the 
numbers of faulty nodes and n is the dimensions of hypercube. Burch and Ercal [6] 
also discuss the parallelization of its centralized algorithm, the run time of the parallel 
algorithm is O(n 2n) and utilizes O( 2n) processors. 

In this paper, we present three different kinds of methods for determinate 
complete subcubes in a hypercube that are hypercube function [7], Q-map, and 
synchronized message passing (SMP). Hypercube function can be regarded as a 
centralized algorithm and based on the complement of faulty nodes and nonfaulty 
nodes. According the information of faulty nodes, we can easily obtain the complete 
subcube of nonfaulty nodes by DeMorgan’s law. Other useful rules for simplifying 
the hypercube function are proposed by Chen and Tzeng [5] ,and Yeh and Chang [7]. 
Q-map a visual method for simplified hypercube function which modified from 
K-map in Boolean algebra. Since the topology of an i j×  K-map is isomorphic to 
an n-dimensional hypercube where n = log2(i j× ). In a 4 4×  Q-map and a 

4-dimensional hypercube, cells in Q-map can represent nodes in hypercube, and walls 
around a cell can be regarded as links of a node. Along the same rules of K-map, we 



 4

can find the complete subcubes in a small faulty hypercube by sight easily. The SMP 
method is a parallel algorithm for all complete subcubes determination. Starting with 
the nodes knowing their own ID, and then pass this information to all it’s neighbors. 
Whereon, if each node receives the information from a healthy neighbor, then it 
compares with its own information and combines itself with its neighbor into a larger 
subcube. This procedure is performed in synchronous for every node in the hypercube. 
It stops when no more larger subcubes can be generated. 

The rest of this paper is organized as follows. Section 2 summarizes the 
notations and definitions that will be used throughout the paper. Section 3 introduces 
the method which use hypercube functions and useful rules. Section 4 proposes the 
concept of cube map to help us finding prime subcubes. Section 5 presents a parallel 
algorithm for determine all complete subcubes in a faulty hypercube. The comparison 
of three methods and conclusion is followed in Section 6. 

 

2 Preliminaries 

An n-dimensional hypercube, Qn, consists of 2n nodes and nn21−  links. 
Each node has an unique address (b b b bn n−1 2 1L ), bi∈ {0, 1} for i = 1, 2,…, n. The 

ith bit is referred to as ith dimension. Two nodes are connected by a link if and only if 
their addresses differ by exactly one bit, and they are called adjacent to each other. A 
four-dimensional hypercube is depicted in Figure 1. Each subcube in Qn can also be 
uniquely represented as address by a string of n symbols over the set {0, 1, *}, where 

0000 0001

0010 0011

10011000

01110110

1101110001010100

10111010

1110 1111

1
2

3

4

 

Figure 1. A Four-dimensional hypercube with two faulty nodes and a 

two-dimensional subcube 1**0 (bold line). 
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* is a don’t care symbol. Specifically, a k-dimensional subcube Sk has exactly k *s in 
its address, as it involves a collection of 2k cube nodes. As an example, nodes 1000, 
1010, 1100, and 1110 in Qn constitute a two-dimensional subcube addressed by 1**0 
( Figure 1). For each hypercube node, the communication link in dimension i is called 
the ith link of this node. For simplicity, each link is represented by a binary string 
with a “-” symbol in the corresponding dimension. For example, the link between 
nodes 0000 and 0010 is represented by 00-0. With cube address representation, one 
can easily see that the total number of different subcubes in all dimensions (not 
necessarily disjoint) is equal to 3n. 

Let a subcube be represented as a set of Boolean variables, obtained from the 
address of the subcube by replacing bit position i with bi (or bi), if position i is 1 

(or 0), called a dimension variable. Then dropping all *s. For example, a 
2-dimensional subcube 0**1 is represented by b b4 1 , called a cubeterm which is 

composed by two dimension variables. It is defined subsequently. 

DEFINITION 1. A cubeterm is composed by m dimension variables, where 
1≤ ≤m n, and the cubeterm is a (n - m)-dimensional subcube in Qn, denoted as 
x x xm1 2L  where xi can be any dimension variable among b b bn n−1 1L  and 

b b bn n−1 1L . 

We can represent a subcube with respect a given node as its dimension number 
only which is called containment vector. For example, a 2-dimensional subcube 0**1 
with respect to a given node 0101 can be represented as 0101 with (2,3). Using this 
notation, one can reduce the space for storing all information of subcube by every 
node in Qn. 

DEFINITION 2. A containment vector of a m-dimensional subcube Sk in Qn can be 
represented by its dimension number and a node b b bn n−1 1L  which is involved in this 
subcube as b b bn n−1 1L  with (Di), where Di is a set of dimension position of * in Sk, 

and 1≤ ≤i n. 

Subcube determination problem is defined as given a collection of faulty nodes 
and faulty links on an n-dimensional hypercube, find out all possible maximum 
complete subcubes that consists entirely of nonfaulty nodes and links.  

DEFINITION 3. A prime subcube with respect to a given node, say P, is a fault-free 
subcube with involves P but is not contained entirely in any other fault-free subcube 
involving P. 
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Prime subcubes with respect to different nodes could be of different sizes. No 
proper subcube of a prime subcube can be a candidate largest subcube. In other words, 
the prime subcubes with respect to all nonfaulty nodes are the all possible maximum 
complete subcubes in faulty hypercube and are what we expect. 

 

3 Hypercube Functions 

Hypercube algebra [7] is a new notation of hypercube. It can elegantly 
describe the sets of nodes or subcubes in a hypercube, and even the incomplete 
hypercubes [4] [8] of a faulty hypercube. The concept of this method is that the set of 
faulty nodes and the set of nonfaulty nodes are complement in hypercube system. 
Through the known from the set of faulty nodes, we can easily obtain the set of 
nonfaulty nodes by some rules in hypercube algebra. Fortunately, the hypercube 
function of nonfaulty nodes we obtain is all the prime subcubes in the faulty 
hypercube that we want. In the next three paragraphs, we will introduce the functional 
notation, rules for simplifying the functions, and the main method. 

3.1 Hypercube and Truth Table 

A Hypercube function is an expression formed with binary variables, the two 
binary operators + and ⋅, complement, parentheses, and an equal sign. For a given 
value of variables, the function can be either 0 or 1. Consider, for example, the 
Hypercube function of Qn 

F1 (b1,b2,b3,b4) = b b b b4 3 2 1  + b b b b4 3 2 1  + b b b b4 3 2 1  + b b b b4 3 2 1  + b b b b4 3 2 1  + 

b b b b4 3 2 1  + b b b b4 3 2 1  + b b b b4 3 2 1  + b b b b4 3 2 1  + b b b b4 3 2 1  + 

b b b b4 3 2 1+ b b b b4 3 2 1  + b b b b4 3 2 1  + b b b b4 3 2 1  

The above is an example of Hypercube function represented as an algebra 
expression. A Hypercube function may also be represented in a truth table (Table 1) 
and a Hypercube graph (Figure 1). To represent a function in a truth table, we need a 
list of the 2n combinations of 1’s and 0’s of the n binary variables, and a column 
showing the combinations for which the function is equal to 1 or 0. (Note that the 
statement b0 = 1 is equivalent to saying that b0 = 0.) 

In the other hand, let us consider a 4-dimensional hypercube with some faulty 
nodes. We can take the item which has F1 (b1,b2,b3,b4) is 0 to be represented as a 

faulty node. Otherwise it is a nonfaulty node. So the above hypercube function 
notates that there are three 2-dimensional subcubes and two 1-dimensional subcubes 
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in this 4-dimentional faulty hypercube. 

 

3.2 Simplifying Rules 

Since the similarities between Boolean algebra and hypercube system, many 
theorems and rules of Boolean algebra can be used here. Besides basic rules which 
are proposed by Yeh and Chang [7] and an advanced rule which is proposed by Chen 
and Tzeng [5] are sometimes appear in pairs, but we only list one of them that we will 
use in the method. These rules are introduced as follows. 

 

 
Rule 1 [DeMorgan’s law] ( )b bi j+  = bi ⋅ bj.  

Rule 2 [Distributive law] bi ⋅ (bj + bk) = bi ⋅ bj + bi ⋅ bk. 
Rule 3 [Absorption] bi ⋅ Si = bi where Si is a sum term which contains bi. 
Rule 4 [Advanced absorption] (bi + bj)⋅ SiSjSk = biSjSk + bjSiSk = 

biSjSk+ bjSi’Sk where bi is in the sun term Si but bj is not, bj is 
in the sum term Sj but bi is not, neither bi and bj is in the sum term 
Sk, and Si’ is sum term Si excluding variable bi. 

 

 

b4 b3 b2 b1 F1 (b1,b2,b3,b4)

1 0 0 0 1 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 1 

1 1 0 0 1 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 1 

b4 b3 b2 b1 F1 (b1,b2,b3,b4)

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 1 

0 1 0 0 1 

0 1 0 1 1 

0 1 1 0 1 

0 1 1 1 0 

Table 1. Truth table for F1 (b1,b2,b3,b4)



 8

( ) ( )b b b b b b b b4 3 2 1 4 3 2 1+ + + ⋅ + + +

b4 b b3 2 b b3 1 bb3 2 b b2 1 bb3 1 bb2 1

( )b b b b bbbb4 3 2 1 4 3 2 1+

DeMorgan’s law

b b b b b4 4 3 2 1⋅ + + +( ) b b b b b3 4 3 2 1⋅ + + +( ) b b b b b2 4 3 2 1⋅ + + +( ) b b b b b1 4 3 2 1⋅ + + +( )

distributive law

absorption law

 
 

 

 

 

3.3 Prime Subcube Determination with Hypercube Function 

In a faulty hypercube, the set of faulty nodes and the set of nonfaulty nodes are 
not only exclusive but also complementary. Using the hypercube function, we can 
obtain a function in sum-of-product(SOP) form which presents the set of faulty nodes 
from it’s address easily. Since we know the complement of Ff (which is the set of 
faulty nodes) is Fp (which is the set of nonfaulty nodes), so we can just complement 
the function Ff and apply the DeMorgan’s law to get the function Ff . The procedure is 
as following. 

1. Listing the function Ff in SOP form according the addresses of faulty nodes. 
2. Complement Ff and apply the rule 1 to transfer it in POS form. 
3. Using rule 2 to expand the expression. 
4. Rule 3 and 4 are employed to reduce the redundant terms in expanding process. 
5. We can obtain the expanded SOP form Fp which is the set of prime subcubes. 

Consider the example in 3.1, the faulty hypercube has two faulty nodes, whose 
addresses are 0000 and 0111 in 4-dimensional hypercube, so the function in SOP 
form is F2 = b b b b4 3 2 1 + b bb b4 3 2 1, then we complement it as F2  = 

( )b b b b b b b b4 3 2 1 4 3 2 1+ . Using the DeMorgan’s law to transform the function into POS 

form. The transformed function has two sum-terms S1 and S2 where S1 = 
( )b b b b4 3 2 1+ + +  and S2 = ( )b b b b4 3 2 1+ + + . Then, we expand the expression by 

distributed rule in four parts such as b4S2, b3S2, b2S2, and b1S2. We can employ 
the two absorption rules to reduce the product. Since b4is in S2 , so b4S2 = b4 by 

rule 3, and b3S2 = b3S2’ = b b3 2 + b b3 1 where S2’ is S2 excluding b4 by rule 4. 

Figure 2. Converting function of nonfaulty nodes Fp by 
complementing function of faulty nodes Ff . 
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Similarly, b2S2 = b2S2’ = bb3 2 + b b2 1, and b1S2 = b1S2’ = bb3 1 + b b2 1. Finally, 

we obtain seven product- terms b4 + b b3 2 + b b3 1 + bb3 2 + b b2 1 + bb3 1 + 

b b2 1 which are the seven prime subcubes 1***, *10*, *1*0, *01*, **10, *0*1, and 

**01 (Figure 2). 

F2 = ( )b b b b b bb b4 3 2 1 4 3 2 1+  

   = ( ) ( )b b b b b b b b4 3 2 1 4 3 2 1+ + + ⋅ + + +  

   = b4 + b b3 2 + b b3 1 + bb3 2 + b b2 1 + bb3 1 + b b2 1 

 

4 Q-Map 

Q-map is a presentation of hypercube and is abbreviated from Cube-map. It is 
a visual method for simplifying hypercube function, which modified from K-map in 
digital logic design. Whereas the connectivity of node addresses in an n-dimensional 
hypercube is alike to a n-bit Gray code, and the principle of Q-map is also relevant to 
it. The main idea behind a Q-map is that it attempts to position the 0s and 1s so that 
logically adjacent cells are also physically adjacent. This makes it easy to recognize 
terms that can be combined into a single, simpler term. The topology of an i j×  
Q-map is isomorphic to an n-dimensional hypercube where n = log2(i j× ). A cell in 

a map is corresponding to a node in a hypercube system. Moreover, a wall(ie., line) 
between two cells of a map is corresponding to a link in hypercube system. Each cell 
in a Q-map is like anode in hypercube, which has an unique address. The address is 
composed according to its row number and column number. For example, consider a 
4 4×  Q-map, address of the cell on left-up corner is 0000 which is combined by 00 
(row number) and 00 (column number), and the address of the cell on right-down 
corner is 1010 which is combined by 10 (row number) and 10 (column number). The 
wall that between cells 0000 and 0001 can represent the 1st dimensional link 000-, and 
the wall between cells 0101 and 1101 is the 4th dimensional link -101. Figure 3a is a 
Q-map for a 4-dimensional hypercube with 2 faulty nodes 0000 and 0111.  

4.1 Drawing Map and Encircling 

Like the usage in digital design, the procedure for finding prime subcubes with 
Q-map is as following. 
1. According the size of hypercube, form a corresponding Q-map. For example, an 

n-dimensional hypercube is corresponding to a i j×  Q-map where n = 
log2(i j× ) that i is row, j is column and j i− ≤1. 

2. Fill 0 in the cells whose corresponding nodes are failure, and fill 1 in the other 
cells. Then, mark an X on the walls whose corresponding links are failure.  



 10

3. Identify all prime subcubes by encircling appropriate maximum-size groups of 
2k cells which is 1, where 1≤ ≤k n. But, these groups can not contain the 
wall with X-mark. 

4. Select a minimum set of groups that contain or cover all the cells which is 1.  

For example, consider the figure 1, a 4-dimensional hypercube with two faulty 
nodes 0000 and 0111. We can draw the corresponding Q-map as the following figure 
3a : 

 

 

 

 

 

According to the above left Q-maps, we can encircle a minimum set of four 
groups which cover all the cells that is 1 such as 1***, **01, *1*0, and *01*. As we 
mentioned in 3.1, a hypercube function can represent a faulty hypercube. So, we can 
further form a hypercube function, b4  + b b3 1  + b b2 1  + bb1 2 , which represents 

one 3-dimensional subcube and three 2-dimensional subcubes. 
 

4.2 Faulty Links in Q-map 

Besides node failures, link failures may also occur in a hypercube system. 
Q-map is extended to handle a hypercube in which both nodes and links could fail. 
Links in a hypercube are represented as the walls among cells in the Q-map. Consider 
a Q-map of a four dimensional hypercube, each cell has 4 walls which are represented 
as the four links connecting with one node. Like the situation of faulty nodes, the 
circle by encircling process can not contain any faulty components, that are nodes and 
links. For example, In figure 3b, there are four faulty links that -100, -101, -111, and 

 (0,0) (0,1) (1,1) (1,0) 

(0,0) 1 1 1 1 

(0,1) 1 1 1 1 

(1,1) 1 1 1 1 

(1,0) 1 1 1 1 

 (0,0) (0,1) (1,1) (1,0)

(0,0) 0 1 1 1 

(0,1) 1 1 0 1 

(1,1) 1 1 1 1 

(1,0) 1 1 1 1 

Figure 3. Two Q-maps : (a) A Q4 with two faulty nodes 0000 and 
0111. (b) A Q4 with four faulty links -100, -101, -111, and -110. 

X X X X
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-110. We easily encircle two circles that cover all available nodes but without faulty 
links. So, the original Q4 is partitioned into two subcubes that 0*** and 1*** by these 
faulty links. 

 

5. Synchronized Message Passing (SMP) Method 
Another approach to find the prime subcube is the tabular method. This method 

is similar to the method proposed by Quine and McCluskey [9] which is widely used 
in digital logic design. This method can deal with large number of Boolean variables. 
Here, we present a parallel algorithm which stems from the idea of the tabular 
method to find the prime subcube in any size of faulty hypercube. The basic idea of 
this method is to form a larger subcube from two small subcubes 
dimension-by-dimension repeatedly by synchronized message passing. Although it 
is more complex than two previous methods but the advantage of this method is that 
it can process any size of faulty hypercube. 

5.1 Tabular Method and Subcube Joining 

The tabular method uses a series of subcube table, which are 0-cube table, 
1-cube table, 2-cube table and so on. Each cube table contains three columns: 
“group”, “address”, and “mark”. Where “address” is the node address of each 
subcube, and “group” is to identify the subcubes which have the same weight (i.e., 
the address of the subcube contains the same number of 1’s). The column “mark” is 
to identify the subcubes that can be combined into larger subcube. The procedure of 
the tabular method is fairly simple. We can start from 0-cube table, which contains 
all available 0-dimensional subcubes (i.e., these subcubes are also non-faulty 
individual nodes). The procedure tries to join them into larger subcubes by checking 
each entry of the adjacent groups. Then 1-cube table is created to store the resulting 
1-cubes. This process continues iteratively until no larger subcubes can be created.  

The main idea of the procedure is to repetitively apply join operation on the 
entries of i-cube table until no join operation can be applied. .The join operation on 
i-cube table is defined by two steps: Step 1 is to find and mark two available 
subcubes that belong to adjacent group respectively and whose addresses are one bit 
differ on dth dimension.  Then Step 2 is to create a new entry on (i+1)-cube table 
whose address is copied from the address of the subcube being joined with a “*” 
placed on the dth dimension of the subcube with the same representation, and attach 
the next available table. For example, for a hypercube with 5 dimension, from 
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1-cube table, two 1-cubes 0010* and 1010* from G1 and G2 can be joined in to a 
2-cube *010* in the 2-cube table. 

The algorithm is described as following. 
1. Form a table Ti = T0  (i.e., 0-cube table) from all available nodes. Each entry is 

arranged by the weight of node address. All entries in Ti are divided into groups 
G0, G1, …, Gm, where Gh contain all nodes with exactly h 1’s in their address, 
0≤ ≤h m. 

2. Scan Ti and compare each entry E’ of Gh with each entry E” of Gh+1, for all h 
where 0≤ ≤h m. If the addresses in E’ and E” are different on only one 
dimension, then mark off both entries. Then a new entry E (whose address is 
copied from the address of E’ and E” with a “*” replaced on that different 
dimension)is formed. Check if the new entry E is already in Ti+1 before it is 
inserted into Gh of table Ti+1. 

3. If Ti+1 is not empty, change i to i+1 and repeat Step 2. If Ti+1 is empty, the 
unmarked entries remained in all tables are the prime subcubes of the faulty 
hypercube. 

For example, let us discuss the hypercube function F1 mentioned in Section 3.1 
(see Table 1).  From the above algorithm, we first form a 0-cube table T0 from all 
nodes except two faulty nodes 0000 and 0111. The entries in T0 are divided into 
groups according to the number of 1’s in their address. In Table 2a, there are 4 groups 
G1, G2, G3, and G4. Then we scan T0 and compare each node address in G1 and G2 . 
And we find that 0001 and 0011 are different on only dimension 2, so we mark off 
these two entries. A new entry, which has address 00*1, is created from them. Since 
00*1 is new to 1-cube table T1, therefore this entry is added into group G1 in table T1, 
Similarly, 0001 and 0101 can be joined to 0*01 , 0010 and 0011 can be joined to 001*. 
When comparing G1 and G2, go on to compare G2 and G3, G3 and G4 in T0. From the 
above algorithm, after no join operation can be applied to all cube table, we can 
obtain seven unmarked subcubes, which are *0*1, **01, *01*, **10, *10*, *1*0, and 
1*** ( see Table 2c, 2d). Since these subcubes can not be combined into larger 
subcubes, in other words, they are the prime subcubes. 
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Tabular method is better than previous two methods that it can handle larger 
dimensional hypercube and can be implemented in program very easily. However, 
Tabular method has some drawbacks comparing with other methods. Tabular method 
needs space complexity of O(3n) to record all possible subcubes of Qn, and there are 
some overheads of redundant comparisons so it runs in O(n3n) time. If we simply 
transfer it to a parallel version algorithm with an n-dimensional hypercube, every 
nodes still needs to maintain O(3n) space and runs in O(n2n) time [6]. In next 
section, we will present a parallel algorithm with n-dimensional hypercube and it only 

Group address mark

G1 00*1 

0*01 

*001 

001* 

0*10 

*010 

010* 

01*0 

*100 

100* 

10*0 

1*00 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

G2 *011 

*101 

*110 

10*1 

1*01 

101* 

110* 

11*0 

1*10 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

G3 1*11 

11*1 

111* 

ˇ 

ˇ 

ˇ 

Group address mark 

G1 *0*1 

**01 

*01* 

**10 

*10* 

*1*0 

10** 

1*0* 

1**0 

 

 

 

 

 

 

ˇ 

ˇ 

ˇ 

G2 1*1* 

1**1 

11** 

ˇ 

ˇ 

ˇ 

Group address mark

G1 1***  

Group address mark

G1 0001 

0010 

0100 

1000 

ˇ 

ˇ 

ˇ 

ˇ 

G2 0011 

0101 

0110 

1001 

1010 

1100 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

ˇ 

G3 0111 

1011 

1101 

ˇ 

ˇ 

ˇ 

G4 1111 ˇ 

Unmarked subcubes are 

Prime Subcubes. 

Table 2a T0 

0-cube table 

Table 2c T2 

2-cube table 

Table 2d T3 

3-cube table 

Table 2b T1 

1-cube table 
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needs O(2n) space maintained by every nonfaulty nodes and runs in O(n2) time. 

5.2 Methodology of SMP 

We first assume that the fault model is a fail-stop processor. When a node is 
faulty, it will not perform any incorrect actions and simply ceases functioning. 
Synchronized message passing method is a parallel algorithm to determine all 
subcubes in hypercube with faulty nodes and/or links. The idea of SMP is to pass a 
message to their neighbors through the same dimensional link synchronously by all 
nonfaulty nodes. It is shown as figure 4. By receiving those messages from dimension 
1 to n, each nonfaulty node will know how its neighborhood is. Nodes then gradually 
gather the global view by exchanging local information to each other iteratively. 
Before we introduce the algorithm, the data structure of passing message and some 
essential ideas will be presented in next two paragraphs. 

 

 

 

 

Subcubes of a n-dimensional hypercube can be represented as a n-tuple of 0, 1, 
*, where * signifies “don’t care.” For example, 0*1* contains 0010, 0011, 0110, and 
0111. With this representation, one can clearly see that the total number of different 
subcube in all dimensions is equal to 3n. However, for implementing in the SMP 
method, every node only needs to maintain the information that the subcubes which 
contain itself in the process. So, to keep all the 3n possible subcubes is not 
necessary. With definition 2, a subcube can also be described to a given node with 
some dimension numbers which is called containment vector. Using this dimensional 
representation, only 2n possible combinations are needed. Therefore, each node 
needs space of O(2n) to record the all possible combinations of available dimensions. 
This array will be regarded as information for exchanging and merging to neighbors 
in the algorithm. 
 

 

111

000

1
111

000

2

111

000

3

 

Figure 4. Nodes synchronously exchanged message 
through the same dimensional link. 
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Algorithm 1 : SMP 
begin 

message←nil ; 
for i = 1 to d do 

for j = 1 to d do 
sent { message } through dimension j ; 
receive { message }’ through dimension j ; 
compare { message } with { message }’ ; 
select the same vectors from two messages ; 
for all same vectors, 

if ( vector + j ) > the vector then  
mark the character and add ( character + j ) to the queue ; 

end if 
end for 

message ← queue ; 
result ← characters without mark ; 
if ( queue = nil ) then exit; 
end for 

end 

 

Procedure of SMP method is executed by every available node synchronously. 
Table 5 shows how the algorithm 1 works on a 4-simensional hypercube with two 
failed nodes 0000 and 0111. For presenting intelligibly, the message in each step is 
represent in dimensional notation not the bit array we use in algorithm. At the 
beginning of the algorithm, each available node hold a null message ( ) which means 
the original individual one. There is a nested loop in the algorithm that the inner loop 
denote the dimensions of a hypercube and the outer loop control the largest dimension 
of subcube which is combined. During the inner loop, nodes send message to 
neighbors from small dimension to large one and wait to receive others which like 
figure 4. Then, compare the message that select the same containment vectors and 
check if they can be combined in to a larger one. If yes, mark it off and generate a 
new term added in to the next array, else leave it to the result array. After finishing 
the inner loop, next array will be regard as new message and iterate this process in 
outer loop until no larger subcubes are generated. When the algorithm accomplish, 
each node will hold a result array which records the prime subcube involving the node 
itself. As an example illustrated in table 5, two prime subcubes involving node 0001 
are (2, 4) and (3, 4) that are *0*1 and **01, and three subcubes involving node 1010 
are (1, 4), (3, 4), and (1, 2, 3) that are *01*, **10, and 1***. 

During the SMP algorithm, the comparison of two messages needs much time, 
so it takes O(2n) time to scan the containment vectors and selects the same ones. 
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Then, the assembling process has to check that if two vectors could be merged to 
create a new one.  

However, in the SMP algorithm, the message exchanging is frequent and the 
message sometimes contains more than one containment vectors. Moreover, it will 
take a lot of time during the subcube merging process which need to compare two set 
of containment vectors and decide if they can be merged to a new containment vector. 
Hence, for saving the communication cost and quickly processing in SMP algorithm, 
we propose a subcube vector which is a only 2n bits array to maintain all the 
containment vectors which are encoded to a number, called location number. The 
encoding process of containment vectors is quite simple that each vector was 
transferred to this number which is regarded as a bit position as following. 

Location number =   0       if containment vector is empty, ie. ( ). 
              = 2 1Di−∑    otherwise. 

DEFINITION 4. A subcube vector is a 2n bits array Sm[i], where i is from 0 
to2n-1, with respect to a given node m that records its all 2n possible containment 
vectors in Qn. The bit value in subcube vector is 1 if this bit position is equal to the 
location number, otherwise, the value is 0. 

For example, consider a node 011100 which is involved in three subcubes that 
01*1*0, 0**10*, and 01***0 in a Q6, i.e. the containment vectors are (2,4), (1,2,5), 
and (2,3,4) respectively. We can transfer them to three location numbers such that 
2 21 3+  = 10, 2 2 20 1 4+ +  = 14, and 2 2 21 2 3+ +  = 19 by encoding process. 
Finally, we set 10th, 19th, 14th, bit to 1 in the subcube vector which is a 26  bits array 
(Figure 5). 

 

 

 

Furthermore, we propose an auxiliary vector called dimension vector to 
accelerate the merging process and the definition is as following, 

DEFINITION 5. A dimension vector is a 2n bits array Di[j], where j is from 0 
to2n-1, with respect to a given dimension i in Qn. 

19 1014

...
63 62 61 012

00001000100001000 ...

(2, 4)
(1, 2, 5)
(2, 3, 4)

= 1010

= 1410

= 1910

2 2 2 22 1 4 1 1 3− −+ = +

2 2 2 2 2 21 1 2 1 5 1 0 1 4− − −+ + = + +

2 2 2 2 2 22 1 3 1 4 1 1 2 3− − −+ + = + +  

Figure 5. Subcube vector of node 011100 with (2,4), 
(1,2,5), and (2,3,4) in Q6. 
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Di[j] = 1    if j mod 2i < 21i−  
     = 0     otherwise 

The dimension vector is fixed of each dimension for accelerating the merging 
process. For example, the following table shows the four dimension vectors of Q4: 

Dimension Dimension vector Hexadecimal number 

D1 [0101010101010101] 5555 

D2 [0011001100110011] 3333 

D3 [0000111100001111] 0F0F 

D4 [0000000011111111] 00FF 

 

 

Using these improved data structure such that subcube vector and dimension 
vector, one can lower not only the space and communication complexity but also the 
time significantly. The origin comparison operation needs O(2n) time to scan and 
select, but it only need a O(1) time to perform a bitwise operation. Moreover, the 
merging operation also be reduced to two bitwise operation which run in O(1) time. 
The modified SMP algorithm with subcube vector is listed as following. 
 

Algorithm 2: SMP with subcube vector 
/* n is dimension of the overall hypercube. 
  S denotes subcube vector which is a 2n boolean array, initialized to 0. 
  Dj denoted dimension vector of dimension j. 
  TEMP, NEXT are temporary array,  
  RESULT is the output array, all initialized to 0. */ 
begin 

if ( I am non-faulty ) then S[0] ← 1 
else exit; 
end if 
for i = 1 to n do 

RESULT ← RESULT | S 
for j = 1 to n do 

sent S through dimension j ; 
receive Sj’ through dimension j ; 
TEMP ←S & Sj’ & Dj ; 
RESULT ← RESULT ⊕ TEMP ; 
NEXT ← NEXT | ( TEMP << 2j ) ; 

end for 
S ← NEXT ; 
if ( NEXT = 0 ) then exit; 
NEXT ← 0 

end for 
end 

Note: &, |, ⊕, and << means the operation AND, OR, XOR, and LEFT SHIFT 
respectively. 

Table 3. Dimension vectors of Q4.
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The SMP method can handle a hypercube in which both nodes and links 
failure. Since the basic idea of our method is to pass message through links, if there is 
a faulty link connecting to a available node, we can just cancel the operation of 
message passing through the faulty dimension. Although its neighbor of that 
dimension will regard it a faulty node, other neighbor nodes of other dimension will 
still continue the process of subcube assembling. This method can still work for link 
failure without modification. 

 

5.3 Complexity Analysis 

Basically, we present a parallel algorithm and run on a n-dimensional 
hypercube system, it contains two loops which are nested ,a messages comparison 
operation, and an assembling process in the nested loop. Since using certain bitwise 
operations such as AND, OR, XOR, and SHIFT to achieve the comparison and 
merging mechanisms, it needs only O(1) time when the adequate bandwidth for the 
2n bit arrays are given that two arrays can be operated in constant time. Since the 
inner loop is form 1 to n and the outer loop is from 1 to n in the worst case (no faulty 
nodes and links), n2  time iteration is needed for this nested loop. Through the 
analysis above, we can obtain a run time complexity as below: 

O(1) × n2  = O(n2 ) 
Although the SMP algorithm run in O(n2 ) time, the output of each node is still the 
subcube vector which is needed to transfer into containment vector. Therefore 
additional decoding operation will take O(2n) time that the overall run time 
complexity will be 

O(n2 ) + O(2n) = O(2n) = O( P ) 
where P = 2n, is the number of processor of Qn. 

Another important consideration is the communication cost of the algorithm. 
We use the subcube vector which is a 2n bits array as message of every available 
node for exchanging each other. Thus, O(2n) bit communication cost is needed in 
this algorithm. 

A similar algorithm for subcube recognition was proposed by Burch and Ercal 
[6], it needs O(3n) space complexity and takes O(n3n) time complexity by the linear 
version, and the further parallel version ran in O(n2n) time complexity on an 
n-dimensional hypercube. 
 
6 Comparison and Conclusion 

In this paper, we present three methods for prime subcube determination which 
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are Hypercube Function, Q-map, and SMP Method. The original concepts of these 
three methods are all from the hypercube algebra. We summarize the difference of 
features and uses in the following listing. 

1. Fault Tolerance 

Lets first analyze the fault tolerance about them. Hypercube function we present 
in the paper can only deal with the failed nodes in a hypercube. Chen and Tzeng [5] 
has propose a similar algorithm which is a distributed version can be extended to 
tolerate the failed links. But, the time complexity is depended on the number of faulty 
component and the degree of a hypercube. Since Q-map can complete represent nodes 
and links of a hypercube, subcubes can be determined correctly by the encircling 
process. SMP is a parallel algorithm which is modified from the tabular method also 
can tolerate the failed nodes and links by it’s originally idea.  

2. Visuality and programmability 

We secondly consider the visuality and programmability about these methods. 
Since Q-map is designed a method that easily be operated by vision and handed work, 
the visuality is certainly well. However, the encircling operation graphical method is 
disadvantageous to represent in data structure and programming. The hypercube 
function is operated like other mathematical expressions, simplifying rules can be 
easily applied in the program. As we know, one of the characteristics of tabular and 
SMP method is that they can be implemented in program very easily. Therefore, the 
hypercube function and SMP have the better programmability.  

3. Scalability 

Finally, Q-map method is adapted to the four and under dimensional hypercube 
but not recommended when the dimension of hypercube is higher than six. SMP is a 
parallel algorithm that can deal with higher dimensional hypercube by nodes 
themselves. The hypercube function can processes the large hypercube but the 
function will be copious when the numbers of dimension are very large.  
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Group Group 0 Group 1 Group 2 Group 3 Group 4 

node id 0000 0001 0010 0100 1000 0011 0101 0110 1001 1010 1100 0111 1011 1101 1110 1111 

initial faulty ( ) ˇ ( ) ˇ ( ) ˇ ( ) ˇ ( ) ˇ ( ) ˇ ( ) ˇ ( ) ˇ ( ) ˇ ( ) ˇ faulty ( ) ˇ ( ) ˇ ( ) ˇ ( ) ˇ 

j = 1   (1) ˇ (1) ˇ (1) ˇ (1) ˇ (1) ˇ  (1) ˇ (1) ˇ (1) ˇ  (1) ˇ (1) ˇ (1) ˇ (1) ˇ 

j = 2  (2) ˇ  (2) ˇ (2) ˇ (2) ˇ  (2) ˇ (2) ˇ (2) ˇ (2) ˇ  (2) ˇ (2) ˇ (2) ˇ (2) ˇ 

j = 3  (3) ˇ (3) ˇ  (3) ˇ  (3) ˇ (3) ˇ (3) ˇ (3) ˇ (3) ˇ  (3) ˇ (3) ˇ (3) ˇ (3) ˇ 

i = 1 

j = 4  (4) ˇ (4) ˇ (4) ˇ  (4) ˇ (4) ˇ (4) ˇ (4) ˇ (4) ˇ (4) ˇ  (4) ˇ (4) ˇ (4) ˇ  

j = 1   (1,4) (1,4) (1,2) ˇ

(1,3) ˇ

(1,4) (1,4)  (1,2) ˇ 

(1,3) ˇ 

(1,2) ˇ

(1,3) ˇ

(1,4) 

(1,2) ˇ

(1,3) ˇ

(1,4) 

 (1,2) ˇ

(1,3) ˇ

(1,4) 

(1,2) ˇ

(1,3) ˇ

(1,4) 

(1,2) ˇ

(1,3) ˇ

(1,2) ˇ 

(1,3) ˇ 

j = 2  (2,4)  (2,4) (2,3) ˇ (2,4)  (2,4) (2,3) ˇ 

(2,4) 

(2,3) ˇ (2,3) ˇ

(2,4) 

 (2,3) ˇ

(2,4) 

(2,3) ˇ (2,3) 

(2,4) ˇ

(2,3) ˇ 

j = 3  (3,4) (3,4)    (3,4) (3,4) (3,4) (3,4)    (3,4) (3,4)  

i = 2 

j = 4                 

j = 1     (1,2,3)    (1,2,3) (1,2,3) (1,2,3)  (1,2,3) (1,2,3) (1,2,3) (1,2,3) 

j = 2                 

j = 3                 

i = 3 

j = 4                 

Seven prime subcubes are determined such that *0*1, **01, *01*, **10, *10*, *1*0, and 1***. 

 

 

 

Table 5. Illustration of SMP algorithm on a faulty hypercube with two 
faulty nodes 0000 and 0111. Duplicated terms were omitted. 
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