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Abstract
A VLSI array processor, consisting of two sets of data-shifters and an

array of AND-gates, is proposed to implement the hardwired midpoint
finding and to support the fast locating of possible symmetric axes of
image patterns. By further analyzing the line segments formed by these
midpoints, the radii and centers of circles in the image can be found. The
circuit of this design is simple and the operation is efficient. This
detection scheme can be extended to the more general cases of ellipses
and patterns with vertical (or horizontal) symmetric axis.
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1. Introduction

In computer vision applications, the circle detection is often needed. An example

of this is the detection of oil tanks or circular installations from the satellite pictures,

while the recognition of circular-shaped parts on the industrial production line is

another example. For circle detection, a popular approach is to use the Hough

transform [1-4] to find out each circle’s center and radius statistically from its

parameter space. The Hough-transform method for circle detection is simple and

robust (under noises). Nevertheless, it is time-consuming for its voting process, which

requires the computation of all the candidate circle centers’ addresses for each edge

point and the increment of all the referred accumulator memory locations. Given an

image of size n x n, the time complexity for circle detection Hough transform would

be of O(n4).

To reduce the processing time, two approaches are generally adopted. One is to

modify the Hough transform (or to use other circle detection schemes), the other is to

apply parallel processing. Quite a few modified versions of Hough transform have

been proposed [5-10][12]. Many of them use edge directions while some combines

the use of other properties of the circle to reduce the complexity of Hough transform’s

voting process. In general, these methods take advantage of certain properties of

circles to reduce the processing time of the image. Nevertheless, with the more

specific analysis on part of extracted image features to reduce the algorithm’s

complexity, it becomes more difficult to perform parallel processing further on these

algorithms. And the chance for further improvement of the processing speed is

usually limited. The paper [11] takes the advantage of symmetry to detect circles and

ellipses. Yet its method is suitable for an image with only few simple patterns. For

pictures with many objects, the locating of all midpoints would take too much time

(unless it is running on specialized parallel hardware) and the finding of symmetric

axes from the “midpoint map” is somewhat complicated.
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In this research, we are interested in finding the circle detection scheme, other

than the Hough transform, that can possibly be performed by parallel processing. For

the scheme found, we are also interested in designing VLSI parallel processor for its

implementation, and for understanding how simple and how efficient its hardware

realization can be.

In this paper, we present the result of the above investigation under which a

design of one-dimensional array processor for locating the centers of circles in the

image is proposed. The proposed parallel hardware processes the image data row by

row (or column by column). The design of this array circuit is quite simple and

suitable to be implemented either as an independent VLSI chip or on the same VLSI

chip of the image memory. By joining appropriate circle verifying algorithm or

verifier hardware, the circles in the given image can be detected in short time. The

performance of this parallel processor and its supporting algorithms is analyzed in this

paper, and is found to have the time complexity within two orders of magnitude n.

Some simulated results of detection are also presented to show the correctness and

efficacy of our image processing scheme.

2. The Proposed Approach

Observing the geometry of a circle, the line of perpendicular bisector of any

chord must pass through the circle center. Based on this property, the intersection of

two perpendicular-bisector lines with respect to two arbitrary non-parallel chords

must be the circle center. In another word, the circle center can be located by finding

the intersection point of such two perpendicular-bisectors. Yet a problem exists that

before the circle is found, we do not know which two edge points in the image form a

chord. Nor we know which two chords belong to the same circle. Thus we can not use

two chords to find a circle center directly.

To solve the problem, we take a statistical approach similar to that of Hough
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transform. For a circle of radius R, there will be about as many as 6*R edge points on

the circle. From the chords formed by the pairing of these edges points, all the

intersection points of their perpendicular-bisectors would fall (near and centered) at

the center of this specific circle. For the random pairing of other chords (formed by

the random pairing of edge points other than from the same circle), their intersection

points would be scattered rather than concentrated at a few circle centers. Thus by

counting the intersection points (of pairs of perpendicular-bisectors for arbitrary

chords) falling at different locations, the locations of circle centers would accumulate

much higher count. Then by locating all the above-threshold local peaks in the

accumulator data array, the circle centers can be found.

To implement the above scheme, we choose to use only the horizontal chords

and vertical chords instead of the arbitrary pairing of all edge points. There are

several important reasons for doing this. The reasons are listed as follows. (1) The

calculation of the perpendicular-bisector of the horizontal chord or vertical chord is

much simpler and faster than that of an arbitrary chord. (2) With such restriction, the

total number of chords is much reduced. It is reduced by an order of magnitude. (3)

The perpendicular-bisectors of the horizontal chords and vertical chords are vertical

and horizontal, respectively. The calculation of the intersection for horizontal and

vertical lines is much simpler. (4) The calculation of the intersection for horizontal

and vertical lines is more accurate than the general case of arbitrary chords. This is

especially apparent when compared with the case of two chords near parallel. (5)

With the number of chords much reduced and the fact that parallel lines do not

intersect, the total number of perpendicular-bisector’s intersection points due to the

pairing of the horizontal chords and vertical chords is greatly reduced. It is reduced by

two orders of magnitude comparing with respect to the case of the arbitrary chords,

yet it is still large enough to form a good statistical figure for finding the circle

centers.
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With the constraint of using only the horizontal and vertical chords, the edge-

point pairing process can be much simplified. Yet we still need some efficient

algorithm or scheme to obtain all these possible pairings. On the other hand, the

calculation of the perpendicular-bisectors takes advantage of the horizontal and

vertical chords; for that we only need to calculate the midpoint of each chord to

express the line of its perpendicular bisector. Based on the technique often used in

computer graphics [14], the midpoint can be located by adding the coordinates of two

end points and then shift the resultant value to the right for one-bit (to avoid the

division operation).

In our research, an ingenious way to acquire the midpoint coordinates without

using the adder is proposed. Taking advantage of the fact that all chords are either

horizontal or vertical, one of the coordinates of the midpoint has been known in

advance. By shifting two edge points in the same row (or same column) toward each

other, their midpoint position can be detected at the place where these two edge points

meet. We also notice that for all other edge points in the same row of the image, the

above edge-point shifting can be performed (in parallel) at the same time, if they

reside in one row of data buffer and their shifting direction is the same. Thus by

having two copies of the edge-point data in a row, each copy in a set of buffer

registers, we may shift the data in two opposite directions such that any pair of edge

points in the same row can meet to reveal the position of their midpoint.

Each revealed midpoint of an edge-point pair in a row indicates a perpendicular-

bisector of a horizontal chord. Accumulating the count of these revealed midpoints at

each x-coordinate position for all the rows in the image, it gives the circle centers a

profile of their distribution on the x-axis of the image. A similar reasoning holds for

collecting the midpoint count column-wise in the vertical direction. The accumulated

count at each y-coordinate position gives the profile of the circle centers’ distribution

on the y-axis of the image. And from the intersection of these (horizontal and vertical)
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profiles’ peak coordinates, we can locate the center points of all circles in a small set

of possible positions.

To estimate the radius for each circle and to pinpoint the position of each circle

center more accurately, we take the approach of analyzing the midpoint map in this

research. Though further process is needed, it would take only little time relative to

the usual circle detection. Besides, some special parallel hardware can be designed to

facilitate the verification of circles centered at these limited positions. The fast

acquisition of midpoints and the fast locating of circle centers based on our proposed

scheme, speed up the detection of circles much. Its hardware design, the one-

dimensional processor array, is to be illuminated in the next sections.

3. Parallel Hardware for Midpoints Extraction

As mentioned, we propose to use two shift registers to process the image (binary

edge pixel) data in a row. Given an image of n x n pixels, the two shift registers must

have n bits each. While the ‘preset data’ inputs of both shift registers are connected to

a buffer register of n bits used to hold a row (or a column) of data output from the

source edge-map image. For each row (or column) of the image data waiting to be

processed, they must be read into the buffer register. At the beginning of a new row-

processing cycle, the buffered image data will be copied into both shift registers.

Soon after this step, the data in the two registers will be synchronously shifted, one

position per clock pulse, in opposite directions.

The detection of the midpoint of an edge-point pair, (thus the perpendicular

bisector of this chord,) depends on the encounter of the two edge points in our shifting

scheme. To reveal such encounter at the middle position, we use the two-input AND

gate to check the edge data in the coincident (and near-coincident) registers, assuming

that the edge point is represented as 1. Note that for two neighboring pixels, their

midpoint is half way in between the pixels. Hence, for image data of n bits, we will
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need as many as 2n – 3 AND gates for the 2n – 3 possible positions of the midpoint.

The circuits of the n-bit row data buffer, two shift registers and the required AND

gates all together form a processor array. The circuit configuration is depicted in

Figure 1.
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Figure 1.  The circuit array of the proposed parallel processor

In this proposed one-dimensional array processor, the output of the bit position

S1(k) of the left-shifter is designed to AND with the outputs of S2(k-1) and S2(k),

respectively. In another word, the output of the bit position S2(k) of the right-shifter is

to AND with the outputs of S1(k) and S1(k+1), respectively. The AND-gate having

inputs from S1(k) and S2(k) reveals the bisector detection at the pixel coordinate of k.

While the AND gate joining S1(k) and S2(k-1) is for pixel coordinate of k-0.5 , and

the gate for the pair S1(k+1) and S2(k) stands for the k+0.5 position. Note that in

Figure 1, the shift register bits S1(1) and S2(n) are actually unused.

At the output of each AND gate, there is a block of supporting circuits. The

accumulator of the supporting circuits counts the number of occurrence of the
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midpoint detection. And this implements the perpendicular-bisectors’ statistics

collection over all the rows (or columns) of the whole image. The 2n – 3 blocks of

supporting circuits are also linked to a memory called “midpoint map” that is of size n

x (2n-3) with each cell of single bit. This memory collects the midpoint bits detected

in each row (or column) and forms a map of horizontal (or vertical) midpoint

distribution for the given image.

Beside the midpoint locating, the edge pairing is another issue we have to

address. For any given edge point in a row (or column), we have to find out all its

possible pairing with other edge points in the row (or column). Our proposed dual

shifter scheme not only reveals the midpoint positions, but also performs a

comprehensive edge-point pairing for all edge points in the row (or column) at the

same time. The proof is as follows.

Given an arbitrary edge pixel in a row, it will be duplicated as two copies and

stored at the same position in each of the two shift registers. With the latter shifting

operations, the edge-point copy stored in the left-shifter would pair with all the edge

pixels to its left, meeting them at each pair’s middle position. Similarly, the edge-

point copy stored in the right-shifter would pair with all the edge pixels to its right.

Thus for any one edge point, its pairing (to form a horizontal chord) with all other

edge pixels in the same row will be realized under our dual shifter scheme, and all the

perpendicular-bisectors’ positions will be revealed through the attached AND array.

That means, our proposed parallel processor and the shifting operations would reveal

all the perpendicular-bisectors’ positions for all the possible horizontal chords in the

given row. When operated for the image data in a column, the same argument holds

for the perpendicular bisectors’ positions of all possible vertical chords in the given

column.

As the above two n-bit data shifters are synchronously shifted in opposite

directions, for the n-bit data, it takes less than n/2 shifts for any edge pixel to pass by
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all other pixel data. To be more precise to say, it takes (n-1)/2 shifts for one row (or

one column) of data, if n is an odd number. For an even number of n, then n/2 – 1

shifts are required. If the radii of circles are known to be less than rmax, then for

locating the circle centers only rmax shifts rather than n shifts are needed in the

midpoints finding process for each row (or column).

4.Supporting Hardware for Symmetric Axis Detection

As mentioned, the output of each AND gate connects to a supporting block that

contains an accumulator circuit. Every time after the shift registers are shifted, a new

set of midpoint detection signal will appear at the AND gate outputs, which must be

recorded or accumulated in some way. To design such accumulator circuit, a simple

way is to use only a counter, as shown in Figure 2.

Figure 2.  The accumulator circuit based only on a counter

In the design of Figure 2, the output of AND gate is connected to the ‘enable’

control of counter. While the clock pulse to signal the counter circuit is synchronized

with the clock of the shifter registers (perhaps with some proper phase delay). When

the AND gate output is 1, the counter will be incremented by the oncoming clock
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pulse; while for the case of 0, the counter value will remain unchanged. The counter

can be reset by the CLEAR signal, which is usually issued at the beginning of a new

image frame processing.

Based on the above accumulator circuit, three operations must be accomplished

in each clock cycle of the shifting step. To ensure reliable result, the period of the

shifter’s clock pulse must be longer than the total time required for the data shifting,

the AND-gate response plus the delay of the counter response. Another issue that

concerns us is whether we desire to count the total number of midpoints detected for

the same row of shifter data at the same coordinate position or not. The advantage of

counting every occurrence of midpoint detection is that the multiple bisectors of

concentric circles will be shown in the accumulation. Nevertheless, hazard may occur

when a horizontal line is encountered (continuous edge-points appear as the shifter

data). Accumulating every occurrence of bisector detection, in this special case,

would give a large number of misleading counts. This may obscure the peaks in the

latter peak extraction process, which in turn may largely increase the difficulty of the

circle center detection.

To remedy the problem, we propose to add a latch to the accumulator circuit.

The new circuit, as shown in Figure 3, has the output of the AND gate connected to

the latch, while the output of the NOR-gate formed latch is connected to the ‘enable’

terminal of the counter. Every time a new row of data is loaded into the two shift

registers, a ‘clear’ signal will issued to reset all the latches in the accumulator circuits

array. At the end of the row processing (after performing all the necessary data

shifting for the row), a clock pulse will be given to counter, which in turn will

increment the counter value by one if the latch output is 1. And as the former design,

the counter can be reset by the CLEAR signal, which is usually issued at the

beginning of a new image frame processing.

With the new circuit and operation scheme, the counter is incremented for the
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midpoint detection only once per row of the shifter data. After processing all rows (or

columns) of the image frame, the memory of “midpoint map” indicates the horizontal

(or vertical) midpoint distribution, while the values in the accumulator array give the

horizontal (or vertical) profile of the midpoint distribution. The peaks in the

horizontal (or vertical) profile indicate the x-coordinates (or y-coordinates) of the

most probable vertical (or horizontal) symmetric axes.

Figure 3.  The accumulator circuit with latch-buffered detection

5. Circle Center Estimation and Circle verification

Based on the proposed array processor, the midpoint map of the given edge

image can be generated. The horizontal midpoint map can be obtained by connecting

the row output of the image memory to the array’s input data buffer, while the vertical

one can be obtained from the same hardware as well by connecting the input to the

column output of the image memory. An example of the midpoint map after

processing the image of Figure 4(a) is shown. In Figure 4(b), the red ink shows the

CLK
CLREN

CLEAR

CLOCK

8
Accumulator

clear

counter



12

horizontal midpoints while the blue one indicates the vertical midpoints. The

histogram profiles of the two midpoint maps, obtained from the data of the

accumulator array, give the possible locations of the vertical and horizontal

symmetric axes, respectively. Figure 4(c) shows only those midpoints that contribute

to the peaks in these two profiles.

The locations of peaks in the profiles indicate the coordinates of the horizontal

and vertical symmetric axes detected from the patterns in the given image. For a circle,

the circle center must be at the cross point of a horizontal and a vertical symmetric

axis. Thus to find circles, we check only the cross points between the two sets of

peak-coordinates of the midpoint profiles. If a cross point is within both a vertical

symmetric axis in the horizontal midpoint map and a horizontal symmetric axis in the

vertical midpoint map, then this cross point can be a candidate circle center.

To detect the circle, we also need to find its radius and verify the existence of

this circle in the image. There are two schemes adopted to estimate the radius in our

design. With the first scheme, we trace the symmetric axes in four directions starting

from the cross point, and record the length of each traced line segment. To avoid the

missing points caused by noise, the gap of one or two pixels is allowed in the line

tracing. From the lengths of the four line segments, we take the most consistent value

(with more than one occurrence) as the radius to verify the circle in the image. In

another case when all the four lengths are different, then we take the smallest two

values as two candidate radii of the circle. It may also happen that two length values

both occur twice. In this case, both values will be adopted as the candidate radius.

In order to save processing time, our algorithm verifies the above candidate

circles by first checking the existence of edge points at dozen specific angles along

the circle locus. If the edge points appear at the majority of these positions, then all

the remaining locus points will be checked. Through the detailed checking, as the

candidate circle locus shows a large percentage of edge-point count, the existence of
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the circle with the specific center and radius can be confirmed.

Yet chances exist that some circles remain undetected. For example, the smaller

concentric circle in Figure 4(a) is still hidden from the above detection. By removing

all the edge points of the confirmed circles from the original image, two new midpoint

maps can be generated using the same parallel hardware (i.e., our proposed array

processor). The new midpoints taken at the new profiles’ peak coordinates are marked

in yellow ink as shown in Figure 4(d). Repeating the previous process for the new

midpoint maps, the remaining circles can be detected further.

For applications that have many circles enclosing or overlapping each other, we

may adopt another scheme in determining the radius. The algorithm checks the

possible radius of a circle by first tracing a few selected rays out of the cross point.

The rays are selected at specific angles such as 0º, 30º, 45º, 60º, 90º et al. so that the

x- and y-coordinates of the checking points can be easily calculated for specific radius.

The checking process goes on with the incremental radius until the maximum possible

radius or the length of its symmetric axis is reached. During the process, whenever the

checking points for a specific radius can find enough matching edge points in the

image, the circle of that radius will be checked in details to verify its existence. In this

way, no circles can be missed in the detection.

To verify the existence of a circle in the image, we count the number of edge

points along the calculated locus of the circle. When the total number of counts

exceeds a certain percentage of the maximum possible counts, the circle is confirmed.

The threshold depends on the noise level we allow and the completeness of the circle

desired. As to the fast addressing of all checking points based on the given circle

center and radius, the Bresenham’s circle algorithm can be used [14]. Considering the

small round-off errors in the image processing and the determination of radius and

circle center, the verification process can be proceeded by varying the center location

and radius size slightly in order to have more accurate detection. Figure 4(e) shows
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the detection of circles based on the first radius selection scheme. For the ellipses in

Figure 4, the radius based on the short axis (horizontal axis) is tested; and as a correct

result, no circle is detected.

6. Detection of Ellipses and Symmetric Patterns

The detection of ellipses having symmetric axis parallel to the coordinate axis is

similar to that of circles except that one more parameter is added. From the horizontal

and the vertical symmetric axis analysis, the cross point is used as the center of ellipse

while the length of the long axis and the short axis may be revealed. Using the

“midpoint ellipse algorithm”, the locus of the ellipse to be verified can be calculated

efficiently. And counting the number of edge points along the calculated locus gives

the percentage of locus matching. This, in turn, indicates if the ellipse exists or not.

Figure 4(f) shows the detection of the two ellipses.

For the more general detection of arbitrary ellipse, we may base on the two

midpoint maps (produced by our array processor) to find the ellipse’s two symmetric

axes (not necessary horizontal or vertical in their directions). Following the method in

paper [11], the ellipse can be detected.

For the general patterns with vertical or horizontal symmetric axis, the midpoint

map produced by our array processor provides the clue. The clue of vertical or

horizontal line segment in the midpoint map indicates the probable existence of such

patterns. We may acquire all the edge-point pairs that produce the line segment by

back tracing and then keep only those edge points that form continuous shape. The

back tracing can be performed either by software or by specialized parallel hardware

(by adding some provision to our array processor). If some group of edge points

remains after the above filtering, the symmetric pattern(s) are detected.

7. Simulated Results and Performance Analysis
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In addition to experimental result of Figure 4, we have also tested our scheme on

the computer-generated patterns of Figure 5(a) and real image of coins in Figure 6(a).

Figure 5(d) shows successful detection of the overlapping circles as well as the

enclosed circle. With the support of hue differentiation, Sobel operation, and thinning,

all the circles in the coin’s color image can be detected. Note that there is a pair of

concentric circles and one of the coins occludes another coin. Though the circle of the

occluded coin is not complete, it can still be detected by our symmetry scheme.

The advantage of our proposed array processor is that no matter how complex

the image is, the generation of two midpoint maps takes only about n2 shifts or less (if

we know the maximum size of circles in advance). In the current VLSI technology, a

shift-AND cycle of 20 nanoseconds can be easily achieved. Thus for an image of 512

x 512, it takes about 0.5 ms to generate the two midpoint maps for an image. The

remaining steps depend on how many objects are in the image. Taking the test of

Figure 5 as an example, there are 36 cross points checked yet only 7 of them are

required to find the radius. Based on our first radius-selection scheme, only seven

(center, radius) pairs are invoked to verify the circles. And all the seven circles are

confirmed (detected). For the test on coins, there are 16 cross points checked and only

4 of them are required to find the radius. Based on our first radius-selection scheme,

only four (center, radius) pairs are invoked and four circles are confirmed. And from

our priori knowledge that there may be concentric circles, we regenerate the two

midpoint maps (costing 0.5 ms) after removing the edge points of the four confirmed

circles. With one cross point and only one (center, radius) pair to check, the last circle

is verified. All the five circles are detected correctly.

With the support of our proposed array processor, the time spent for circle

detection is quite limited. The time spent in tracing the real circle’s locus in our

experiment is unavoidable and the time overhead spent in roughly checking the wrong
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circle locus is only a small percentage. While the time required by each pair of

midpoint maps is only 0.5 ms. It takes total time within several milliseconds for most

of the multiple circle and ellipse detection.

8. Conclusion

This paper presents a design of VLSI array processor that facilitates the

generation of the midpoint maps and the fast locating of the symmetric axes for the

given image patterns. Based on the extracted vertical and horizontal symmetric axes,

most circles in the image can be detected. With the formation of midpoint line

segments, the ellipses can be detected as well unless the image is too complicated.

From the midpoint maps, the symmetric patterns with vertical or horizontal

symmetric axis can also be revealed. The algorithms we apply here share a common

ground of using the horizontal and vertical midpoint maps, while our parallel

hardware design offers such a basis with very high efficiency in processing speed.

And this is the major contribution of this paper.

So far, our proposed array processor can not support the detection of symmetric

patterns with arbitrary symmetric axis. And this can be a topic for future research.
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