
2002 International Computer Symposium (ICS2002)
Workshop on Computer Systems

Title: Equipping the SIMD MAC Operations into embedded

RISC Processors

Authors: L. Wang, Leo Fang and H. Y. Hsu

L. Wang (corresponding author)

(Associate Professor in the Department of Electrical Engineering at

Feng Chia Univ.)

Address: Department of Electrical Engineering,

Feng Chia Univ. Taichung, Taiwan 407, R.O.C.

Email-address: lwang@plum.iecs.fcu.edu.tw

Tel: 886-4-24517250-3838 Fax: 886-4-24516101

Leo Fang (Graphics Driver Engineer in VIA TECHNOLOGIES, INC.)

Address: 2F, No.9, Li-Hsin Rd. V, Science-Based Industrial Park, Hsin Chu,

Taiwan, R.O.C.

Email-address: g8912158@knight.fcu.edu.tw

Tel: 886-3-6667336-338 Fax: 886-3-6667337

H. Y. Hsu (Associate Professor in the Department of Information

Engineering at Feng Chia Univ.)

Address: Department of Information Engineering,

Feng Chia Univ. Taichung, Taiwan 407, R.O.C.

Email-address: hyhsu@fcu.edu.tw

Tel: 886-4-24517250-3756 Fax: 886-4- 24516101

mailto:g8912158@knight.fcu.edu.tw
mailto:hyhsu@fcu.edu.tw

Equipping the SIMD MAC Operations
into embedded RISC Processors

L. Wang+ Leo Fang ++ and H. Y. Hsu +++
+ Department of Electrical Engineering in Feng Chia University

++ VIA TECHNOLOGIES, INC.
+++ Department of Information Engineering Feng Chia University

Email : lwang@plum.iecs.fcu.edu.tw, g8912158@knight.fcu.edu.tw, hyhsu@fcu.edu.tw

Abstract
Because of the variety and popularity of IA products, the techniques of SOC that

satisfy the restrictions of small-size, low-power consumption, and cost effective design

have became the main concern for microprocessor design. However, we observed that

some services that are performed by massive computation like data encryption, video

presentation have merged into the use of low-end IA devices. Thus the research decide to

modified a simple embedded processor to satisfy the demands of the dedicated

applications by equipping the processor with some important hardware features.

The paper targets the applications of multimedia for investigation. By observing the

program behavior of multimedia applications, some important operations be executed

frequently in these programs are introduced. According to the analysis results, the paper

attempt to enhance the execution of MAC operations in a loop by the technique of SIMD

to promote the performance. The parallel SIMD MAC instruction, named PMLAV, can

speedup the execution of multimedia applications efficiently with a minor hardware

overhead.

By simulating the execution of multimedia applications to verify the efficiency of

the added instruction. We have proved that the addition is a cost effective design for

embedded processors.

Keywords: Embedded processor, Information appliances, Multimedia, SIMD,

Instruction set architecture

 1

mailto:lwang@plum.iecs.fcu.edu.tw
mailto:g8912158@knight.fcu.edu.tw
mailto:tcyang@fcu.edu.tw
mailto:hyhsu@fcu.edu.tw

I. Introduction
The dramatic growth of IA(Information Appliances) market has changed the design

trend of computer system. Because of the variety and popularity of IA products, several

design philosophy for computers have been modified. For example, performance is not

the most important consideration for micro-processor design, the techniques of

SOC(System On Chip) that satisfy the restrictions of small-size, low-power consumption,

and cost effective design have dominated the focus of micro-processor design. An

embedded processor is built in the kernel of SOC, to provide the capability for processing

dedicated applications efficiently under restrict hardware constraints.

The emergence of embedded processor was due to the requirement of the IA

applications. The design of an embedded processor must fit the following features:

1. The chip size must small enough to fit IA products. Meanwhile, the limit of power

consumption also makes the processor to be built with simpler hardware.

2. Embedded processor is designed to support some specific applications such as multi-

media [1][2][3] and communication usage efficiently. On the contrary, the

considerations for the applications like text editor and file manipulation are not

important.

3. For providing good quality of IA services, the processor must process massive multi-

media video and audio data in real time [4].

4. The life cycle of most IA products is much shorter than traditional computers. An

expensive processor core is not acceptable. The fact means that the constraint of

hardware cost is crucial for the design.

The following is a brief survey about the architecture features of some well-known

embedded processors. We can conclude the important features for an embedded processor

by examining these processors:

1) Intel Strong ARM and Xscale family [5]:

The processor is an embedded processor chip launched by Intel on

1998. It is an 32-bits processor which support ARM v4 instruction set

architecture [6] that featuring:

 2

(1) The chip is implemented by super CMOS and low-voltage process

technology to achieve optimal performance/power ratio (MIPS/mW rate).

(2) Its RISC instruction set architecture can achieve highly pipeline execution

rate.

(3) A high memory bandwidth is achieved by a 16K/8K bytes split

instruction/data cache, and a special designed 512-bytes mini-data cache.

In the second generation, Xscale, released on 2000. Besides the

improvements on cache capacity and implementation technology, it

introduced superscalar and SIMD parallel technology [7] into the

processor:

(1) A branch target buffer is added to provide the ability of dynamic

branch prediction.

(2) A co-processor with 6 SIMD instructions to support voice/image

signal processing is equipped into the chip.

(3) A simple memory management circuit is inserted to support the

translation from virtual to physical address.

2) TI OMAP architecture [8]:

The processor was proposed by TI(Texas Instruments) for the 2.5G and

3G wireless applications. The chip uses a basic ARM RISC Processor to

handle the traditional data calculation and program control; an extra DSP is

included for multimedia data and digital signal processing. It’s an embedded

processor with dual kernel engines to offer optimal working efficiency and

power saving ability.

3) NEC V830R architecture [9][10]:

NEC V830R is an embedded multimedia processor for processing the

Real-time audio and video data. It is used for digital TV and multimedia

devices. As shown in figure 1, an extra 64-bits media unit is designed for

elevating the process of multimedia data. It is designed by SIMD

technology with parallelism of 4 to process 16-bits multimedia data in

parallel. The architectural characteristics of NEX V830R includes:

 3

(1) Two-way superscalar with 6 stages pipeline in integer unit.

(2) Media unit can execute data with SIMD features.

(3) A split instruction/data caches both with 16K bytes are built in the

processor.

Figure 1 NEC V830R [10]

From the brief survey described above, we can classify the embedded processors

into two categories: simple RISC embedded processor as a low-end product, and

expensive embedded processor built by a RISC processor conjunction with a high-

performance co-processor as a high-end product. The two types of processors are

designed for different purpose. For example, low-end embedded processor is applied for

the IA devices like cellular phone and personal PDA. The devices are equipped with

simple and cheap elements to support the basic functions of communication. On the other

hand, high-end embedded processor is applied for the devices that are used for

professional and complicate applications. Notebook is an example that built by the high-

end processor to support the functions of multi-media processing and professional CAD

calculation.

From the viewpoint of applications, we observed that some services that are

performed by massive computation like data encryption, video presentation, web-base

computation have merged into the use of low-end IA devices. Although the high-end

 4

embedded processors can support the execution of the applications, the cost and the size

are not acceptable. In order to propose a solution that can balance the requirement of the

usage and the cost of the system. We decide to develop an embedded processor based on

the low-end products that can satisfy the demands of the complex applications by

equipping the processor with some important hardware features.

We target the applications of multimedia as the first step for investigation. By

observing the program behavior of multimedia applications, some important operations

be executed frequently in these programs are introduced. These operations have been

redesigned as added instructions and implemented into a RISC processor core.

ARM7TDMI [11][12] is the embedded processor selected as the base architecture

for the study. The processor is a famous product that share a great part of the IA market.

It is widely used as the processing core of cellular phone, personal PDA, and hand-top

game player. The added instruction proposed by this study has been merged into the

microarchitecture of ARM7 in gate-level design. By simulating the execution of

multimedia applications to verify the efficiency of the added instruction. We have proved

that the addition can improve the performance of the execution of multimedia

applications without complicated hardware overhead.

This paper is organized as: Section 2 analyses the characteristics of multimedia

applications and introduces the idea for enhancing the performance is then proposed.

Section 3 introduces the instruction format and pipeline architecture of the added parallel

SIMD [13][14][15] instruction, the consideration for hardware implementation is also

included in the section. The simulation results shown in the section 4 exhibits the

efficiency of this research, and a concluding remark is made in the section 5.

II. An observation for multimedia applications

For upgrading the execution performance of multimedia applications from the

viewpoint of instruction set architecture, the behavior characteristics of related

applications must be analyzed first.

The benchmarks used for analysis are:

 5

1. Colorspace: It is a functional program to converse the colors of an image.

2. Composite: It is an image composition function that can generate a new image from

two or more images.

3. Convolve: It is a filtering program for voice or image data.

4. Edge detection: It is a function that drawing the edges in a picture.

We analysis the 4 benchmarks and conclude the common characteristics as

described below:

1. The data be processed in the multimedia program is smaller than 32-bits, most of

them are 8-bits pixels and 16-bits audio data.

2. Most of instructions be executed in a multimedia program are contributed from a

small kernel. For example, there are totally 2556285 instructions be executed in the

Convolve benchmark to filter a 226K bytes image. 95.8% of these instructions are

executed from a kernel function, nv_filt(), which is a small function with repeated

loops.

3. The most frequently used operations in the applications are multiply, add, and

multiply-accumulate(MAC). For example, the processing of sampling and filtering

voice data in DSP use convolution function frequently. The function is a series of

MAC operations as shown below:

 yn =Σwixn+i =ΣWkXk，n

As another example, the DCT(Discrete Cosine Transform)/IDCT(Inverse Discrete

Cosine Transform) algorithms used in voice and graphic data compression/

decompression are both completed by multiply and repeated MAC operations:

y(k) =α(k)Σx(n)cos(π(2n+1)k / 2N)，k = 0，1，…，N-1

x(n) =Σα(k) y(k) cos(π(2n+1)k / 2N)，n = 0，1，…，N-1

α(k) = √1/N，k = 0 ;α(k) = √2/N，k≠0

According to the analysis results, this study attempt to enhance the execution of

 6

MAC operations in a loop by the technique of SIMD to promote the performance. By

examining the ISA(Instruction Set Architecture) and microarchitecture of ARM7TDMI,

we find that the parallel SIMD MAC instruction, named PMLAV, can speedup the

execution of multimedia applications efficiently with a minor hardware overhead.

The operation of PMLAV is shown in Figure 2. Unlike the operation of MAC

instruction, PMLAV will treat a 32-bits data as a couple of 16-bits multimedia data and

execute them in parallel. Although the parallelism degree is only increased to two, the

performance will be improved evidently for the applications.

Figure 2 Operation of PMLAV

We take a simple benchmark -- Dot, as an example to show the improvement:

Assuming there are two arrays: a[3]={1,2,3} and b[3]={4,5,6}, are defined for the Dot

operation, the C language codes of the operation are list below:

#include<stdio.h>

int main(void)

{

 short a[3]={1,2,3},b[3]={4,5,6};

 int sum=0;

 int i;

 for(i=0;i<3;i++)

 7

 {

 sum+=(a[i]*b[i]);

}

 printf("sum=%d",sum);

 return 0;

}

The assembly codes of the for loop created by the integrated developing

environment compiler, ADSv1_1, are shown below:

Mem. Address Object Codes Assembly Codes Line

0x000080d8: e28d200c ADD r2,r13,#0xc………..1

0x000080dc: e0822080 ADD r2,r2,r0,LSL #1…...2

0x000080e0: e28d3004 ADD r3,r13,#4……….….3

0x000080e4: e0833080 ADD r3,r3,r0,LSL #1…... 4

0x000080e8: e1d220f0 LDRSH r2,[r2,#0]………...5

0x000080ec: e1d330f0 LDRSH r3,[r3,#0]………...6

0x000080f0: e0211293 MLA r1,r3,r2,r1……….…7

0x000080f4: e2800001 ADD r0,r0,#1…………….8

0x000080f8: e3500003 CMP r0,#3…………….….9

0x000080fc: bafffff5 BLT 0x80d8……………..10

The four instructions in the front of codes, line 1 to line 4, are executed for the

calculation of the memory address. The following two instructions, line5 and line 6, will

then load the contents of arrays into the dedicated registers for the MAC operation. When

the MAC operation is completed as shown in line 7, the instructions in line 8 to line 10

are executed to control the execution flow of the loop.

As shown in the following assembly codes, by modifying the operand fields of

instructions in line2 and line4 to increase the displacement of the array, and load two data

 8

at a time by replacing the LDRSH instructions to LDR instructions in line5 and line6.

The PMLAV instruction list in line 7 will execute 2 MAC operations simultaneously and

lead the iterative execution of this code segment be reduced from three to two:

 Line Assembly Codes

1 ADD r2,r13,#12

2 ADD r2,r2,r0,LSL #2 /*Displacement changed to 4

3 ADD r3,r13,#4

4 ADD r3,r3,r0,LSL #2 /*Displacement changed to 4

5 LDR r2,[r2,#0]

6 LDR r3,[r3,#0] /*LDRSH is replaced by LDR

7 PMLAV r1,r3,r2,r1 /*MLA is replaced by PMLAV

8 ADD r0,r0,#1

9 CMP r0, #2 /*Number of loop executed changed to 2

10 BLT 0x80d8

The idea of SIMD has widely adopted in the design of high-end processors. Intel’s

MMX technology, NEC V830R multimedia processor, Intel’s Xscale processor are

examples that use the technique of SIMD to improve the processing of multimedia data.

It is noted that although the idea of SIMD proposed in this paper is the same as the

processors list above, the design goal is quite different. A complete SIMD circumstance

to execute operations in parallel is not adequate to the design of a low-end embedded

processor because of the hardware constraints. This study focus on the selection of the

most frequently executed operations from the multimedia applications, and equips the

SIMD feature to support these operations for a RISC processor with minor hardware

modification. In the following section, we will introduce the details of the hardware

manipulation for the PMLAV instruction.

III. The consideration for hardware implementation

 9

In order to add the feature of parallel MAC operation, PMLAV, into the core of

ARM7 processor, the architecture of ARM7 is examined at first. The datapath of ARM7

is shown in Figure 3, besides the circuit for thumb, it can be divided into seven parts:

1. Register Bank: There are thirty-two 32-bits data registers and six status registers in

the bank. All registers have two read ports and one write port to access data except

R15. R15 is the program counter with three read ports and two write ports.

Figure 3 The microarchitecture of ARM7[11]

2. Multiplier: The processor can multiply or multiply-accumulate 32-bits integer data

by means of Booth’s algorithm. The multiplier can realize 32*8 multiplication every

cycle and achieve the 32-bits multiplication in four cycles.

3. Barrel Shifter

 10

4. ALU: The processor performs arithmetic and logic calculations in the ALU unit.

5. Address Register and Incrementer: The address register and incrementer are used to

latch the memory address and produce the content of the next program counter.

6. Write/Read Data Registers: The write/read data registers are two latch interfaces for

store and load operations.

7. Instruction Decoder: The control unit of the processor.

The pipeline of ARM7 is arranged to be three stages as list below:

1. Fetch Stage: The instruction be dedicated by R15 is fetched into the instruction

decoder.

2. Decode Stage: The executed instruction is decoded to create the control signals for the

following execution cycles.

3. Execute Stage: It is the most complex stage with multiple cycles. The operations of

this stage are proceed according to the sequence of register reading,

shifting, ALU calculating, to register write.

In this paper, we add the new PMLAV instruction to enhance the execution of

multimedia applications. The instruction format of PMLAV is designed based on the

format reserved in ARM’s ISA, The operation codes 010S and 011S in bit 20 to bit 23 of

the ARM instruction format are two reserved instructions that can be used for the

PMLAV instruction as exhibited in figure 4:

Figure 4 PMLAV instruction format

In original pipeline arrangement for MLA instruction, there are 6 cycles are required

to complete the operations of MLA as shown in figure 5. It means that if we can arrange

the execution of PMLAV into the 6 cycles, there will be no extra latency created from the

view of pipeline. As a matter of fact, due to the characteristic of Booth algorithm used in

 11

the multiplier, the cycles spent for the execution of PMLAV is not increased but reduced

to 4 cycles without lengthening the cycle time.

Figure 5 MLA pipeline and RAW latency

Figure 6 32*32 Multiplier [16]

The main difference between the PMLAV and MLA instructions is on the function

of multiply that PMLAV multiply two pairs of 16-bits data in parallel and MLA proceed

the multiplication as one pair of 32-bits data. The multiplier proposed by I. J. Huang and

Y. L. Hung [16] is designed to speed up the execution of ARM7’s multiplication by using

 12

a improved Booth algorithm. It is used as the basis for the design of PMLAV. Figure 6 is

the block diagram of the multiplier.

The multiplier is organized with four 8-bits multiplier, there are multiplier row-1 to

row4, and conducts four cycles to complete 32×32 bits multiplication. The details of this

multiplier are examined by the research and some modifications are made for PMLAV

instruction. Because of the limitation of the paper length, only two parts that play the

crucial roles for the design are introduced in this paper. Figure 7 and figure 9 show the

internal circuits of Booth encoder and Append_1. The elements circled by dotted line in

the figures are added hardware for achieving SIMD function. For controlling the

execution, the control unit is requested to send a SD control signal to select the function

of original multiplication or SIMD parallel multiplication.

Figure 7 Circuit designed for Booth encoder

1. Booth encoder

The Booth encoder separates the 32-bits multiplicand into four 8-bits data, send

different 6-bits of them in each cycle to the circuits of multiplier row-1 to row-4 in

parallel. It will direct the four multipliers to perform the correct function according to

 13

the definition list in figure 8. By adding an AND gate to perform the sign extension for

the 16-bits data and a two-to-one multiplexer to select the bits for original

MLA/multiply instructions and the bits for PMLAV instruction in the second cycle, the

modification is completed.

Figure 8 The directors for the multiplier-row

2. Append_1

As shown in figure 9, the circuits in the left part of the figure will count the timing

and send the enable signals to the four latches to latch the corresponding bits from the

Booth partial result created by the four multipliers in each cycle. As mentioned above,

while executing the PMLAV instruction, the operations can be completed within two

cycles. During the first cycle, latch1 and latch3 will be enabled simultaneously.

Similarly, latch2 and latch4 will be enabled simultaneously in the second cycle. So we

add two OR gates to help the enabling of latches. The two added two 2-to-1

multiplexers, MUX B and MUX D, are inserted to select the 8 bits Booth partial result,

and send them to latch3 and latch4. Furthermore, an OR gate is added to help the

selection for whether the output of the 66-bits data are the final result or the temporal

data that must be fed back.

 14

Figure 9 Circuit designed for Append_1

The whole modifications for the multiplier are completed by adding fourteen 2-to-1

multiplexers, one 4-to-1 multiplexer, one 8-to-1 multiplexer, four AND gates, three OR

gates, and five NOT gates. It shows that the feature of added PMLAV instruction can be

equipped into the ARM processor by adding a few logical gates. In the next section, the

performance improvement gained by the added instruction is evaluated via simulation.

IV. Performance Evaluation
This research has develop a ARM7 simulator for performance evaluation. As

shown in figure 10, by fetching the assembly codes produced by the ARM developer suit,

the simulator can simulate the execution of ARM7 and report the simulation results such

as the number of cycles for program’s execution, the number of times for each

instructions, the usage rates for all registers, etc.. It is noted that because of the

modification is done by hand, only the kernel loops of benchmarks are modified for

simulation. By replacing the MAC instructions in the loops with the proposed PMLAV

instructions, and modifying the related load and compare instructions to maintain the

 15

semantics. The codes are then simulated by the same simulator to statistic the related data

for comparison.

ARM Developer
Suite

AARRMM AAsssseemmbbllyy

CCooddee

Simulator

Modified

Assembly

C source
code

Profiling Data 1 Profiling Data 2

Evaluate the Performance

Figure 14 Compiling and simulation procedure of ARM

The function of Dot described in section II is first simulated for evaluation.

Because of the execution of Dot function is dominated by the for loop with MAC

operation inside, we can expect that the performance improvement can reach to 50%, it is

an ideal situation for the benchmark. Table 1 is the number of instructions be executed

and the number of execution cycles for the two versions of Dot function. It shows that the

instructions be executed can be reduced by 33% and lead a speedup to 1.48. It is

consistent with the expectation of the study.

Table 1 Simulation results produced by Dot function

 16

Dot function Original version Enhanced version

Total instructions executed 31 21

Total cycles for execution 71 48

The four multimedia applications, Colorspace, Composite, Convolve, and Edge

detection, introduced above are then simulated, the simulation results are exhibited in

Table 2.

Table 2 Simulation results produced by the four benchmarks

Colorspace

Original program

executed without the

enhancement

Kernel executed

without the

enhancement

Kernel executed

with the PMLAV

enhancement

Total instructions

executed 1178260 833735 717012

Total cycles for

execution 2757827 2084556 1816093

Convolve

Original program

executed without the

enhancement

Kernel executed

without the

enhancement

Kernel executed

with the PMLAV

enhancement

Total instructions

executed 2556285 816795 686109

Total cycles for

execution 4858823 1552840 1278399

Composite

Original program

executed without the

enhancement

Kernel executed

without the

enhancement

Kernel executed

with the PMLAV

enhancement

Total instructions

executed 956281 822402 666146

 17

Total cycles for

execution 2409782 2072453 1731815

Edge detection

Original program

executed without the

enhancement

Kernel executed

without the

enhancement

Kernel executed

with the PMLAV

enhancement

Total instructions

executed 3254512 867870 749840

Total cycles for

execution 7810828 2084700 1789625

From the table, we can find that the execution of the kernel loops share an evident

ratio of the total execution time. The execution ratio of the kernel loops ranges from 27%

to 86%. By replacing the MAC operations with the parallel PMLAV instructions to

enhance the execution of the kernel. The performances for the kernels are improved from

15% to 21% and lead the execution of the whole benchmarks to gain the improvements

from 11% to 20%.

V. Concluding Remarks
The study notice that some applications that are performed by massive computation

like data encryption, video presentation are going to be merged into the use of low-end

IA devices such as cellular phone and personal PDA. Although the high-end embedded

processors can support the execution of the applications, the cost and the size are not

acceptable. The paper dedicates that by carefully embedding some important features of

high-end or ILP [17] or SIMD processors into a RISC embedded processor, the

performance of the applications can be improved without inducing a heavy hardware

overhead.

We target the applications of multimedia for investigation. By observing the

program behavior of multimedia applications, the MAC operation is filtered for

enhancing. The new instruction, PMLAV, is proposed that can multiply and accumulate

two multimedia data in parallel. The paper shows that by adding a few logical gates into

 18

the processor core to provide the feature of PMLAV instruction, the instruction will

improve the performance of multimedia applications by 10% to 20%. It is noted that the

operation of multiply instruction could be equipped with the same parallel feature

without extra overhead since the modification of multiplier is done. However, the

efficiency of the addition needs to be further investigated.

The idea is also being used to enhance the efficiency of the data encryption

algorithms. In the other study held by the same research, a special table lookup

instruction is proposed that can improve the performances of the encryption algorithms

from 12% to 34%. The instruction can be applied by modifying the function of shifter in

ARM7 with a few hardware overhead, too. Both investigation results prove that the

performance of an embedded processor can be improved by equipping the special

designed instructions from the view of ISA.

References
[1] Wong, S.; Cotofana, S.; Vassiliadis, S., “Multimedia enhanced general-purpose

processors”, 2000 IEEE International Conference on Multimedia and Expo, ICME

2000, Volume: 3, Page(s): 1493-1496.

[2] Diefendorff, K.; Dubey, P.K., “How multimedia workloads will change processor

design”, Computer, Volume: 30 Issue: 9, Sept. 1997, Page(s): 43-45.

[3] Conte, T.M.; Dubey, P.K.; Jennings, M.D.; Lee R.B.; Peleg, A.; Rathnam, S.;

Schlansker, M.; Song, P.; Wolfe, A., “Challenges to combining general-purpose and

multimedia processors”, Computer, Volume: 30 Issue: 12, Dec. 1997, Page(s): 33-37.

[4] Lee, R.B., “Multimedia extensions for general-purpose processors”, IEEE Workshop

on SIPS 97 - Design and Implementation., 1997, Page(s): 9 –23.

[5] Intel Corporation, “The Intel○R Microarchitecture and Its Role in the Intel○R Internet

ExchangeTM Architecture”, http://developer.intel.com/design/iio/papers/273429.htm.

[6] David Seal, “Architecture Reference Manual”, 2nd Edition, Addison Wesley Longman

Inc, 2000.

[7] D. A. Patterson and J. L. Hennessy, “Computer Architecture: A Quantitative

Approach”, 2nd Edition, San Mateo, California: Morgan Kaufmann, 1996.

 19

http://developer.intel.com/design/iio/papers/273429.htm

[8] “OMAPTM Technology Overviews”, Document Number: SWPY001, TI White Paper,

Issued: Dec. 2000 Copyright Texas Instruments Ltd.(TI), 2000.

[9] Suzuki, K.; Arai, T.; Nadehara, K.; Kuroda, I., “V830R/AV: embedded multimedia

superscalar RISC processor”, IEEE Micro, Volume: 18 Issue: 2, March-April 1998,

Page(s): 36-47.

[10] Kuroda, I.; Murata, E.; Madehara, K.; Suzuki, K.; Arai, T.; Okamura, A., “A 16-bit

parallel MAC architecture for a multimedia RISC processor”, IEEE Workshop on

Signal Processing Systems, 1998, Page(s): 103-112.

[11] Steve Fuber, “ARM System Architecture”, Addison Wesley Longman Inc, 1996.

[12] “ARM7TDMI Technical Reference Manual”, ARM Limited 2001.

[13] Holmann, E.; Yoshida, T.; Yamada, A.; Mohri, A., “A media processor for

multimedia signal processing applications”, IEEE Workshop on Signal Processing

Systems, SIPS 97 - Design and Implementation., 1997, Page(s): 86 –96.

[14] Chia-Lin Yang; Sano, B.; Lebeck, A.R., “Exploiting parallelism in geometry

processing with general purpose processors and floating-point SIMD instructions”,

IEEE Transactions on Computers, Volume: 49 Issue: 9, Sept. 2000, Page(s): 934 –

946.

[15] Gustin, V.; Bulic, P., “Extracting SIMD parallelism from 'for' loops”, International

Conference on Parallel Processing Workshops, 2001, Page(s): 23 –28.

[16] I. J. Huang; Y. L. Hung,“Cost-Effective Microarchitecture Optimization of the

ARMTDMI Microprocessor ” , Proceedings of the International Computer

Symposium, Taiwan, December 2000.

[17] B. R. Rau; J. A. Fisher, “Instruction-Level Parallel Processing: History, Overview,

and Perspective”, Journal pf Supercomputing, Feb. 1993, Vol. 7, No. 1/2, Jan.

Page(s): 9-50.

 20

	Tel: 886-4-24517250-3838 Fax: 886-4-24516101
	Email-address: g8912158@knight.fcu.edu.tw

	Tel: 886-3-6667336-338 Fax: 886-3-6667337
	Email-address: hyhsu@fcu.edu.tw

	Tel: 886-4-24517250-3756 Fax: 886-4- 24516101
	Figure 6 32*32 Multiplier [16]
	Original version

