
 1 

Software Variant Managements Based On Architectural 

Introduction 

Wu I-Mei  
wuimei2210@sohu.com  

(Ph. D. candidate of Xi’an Jiaotong University) 

 
Zheng Shouqi   

sqzheng@xjtu.edu.cn    
(Professor of Xi’an Jiaotong University) 

 
Abstract 
The capability of the variant handlings is the groundwork to reach quality attributes of 
software products, such as reusability, adaptability, maintainability, evolvability, and 
so on. Furthermore, reusability, adaptability, and evolvability have great impacts on 
maintainability. Software architecture is one promising solution to them. Upon the 
contributions of the software architecture to the software development, architectural 
introduction is proposed to effectively manage the software variants. First, the 
management mechanism of the software variants (SVMM) and the management space 
of the software variants (SVMS) are proposed. Then, the SVMM based on the 
architectural introduction is illustrated. Three, the activities of it are detailed. One 
successful example of the architectural introduction is also included. 
 
Keywords 
Software architecture, architectural introduction, the variant management, 
architectural design   
 
Submission to ICS2002 
Workshop on Databases and Software Engineering 
The contact author:  
Wu, I-Mei  吳憶梅 
ihwu@ccms.ntu.edu.tw or wuimei2210@sohu.com 
Tel: 886-2-23078910 after Aug. 2 
F3, No. 8, Alley 44, Lane 277, Wan-Da Road, Taipei 108, Taiwan 
臺灣台北市 108 萬大路 277 巷 44 弄 8 號 3 樓 



 2 

1. Introduction 
 
The capability of the variant handlings is the groundwork to reach quality attributes of 
software products, such as reusability, adaptability, maintainability, evolvability, and 
so on. Furthermore, reusability, adaptability, and evolvability have great impacts on 
maintainability. The challenges of software maintenance are based on two issues: the 
organization causes and the technology issues. As to the organization causes, the 
unpleasant situation might occur, that the original personals related left the company 
with no enough documentation kept [1]. It is harder in such a situation where 
surprising changes occurs with lack of the software architecture documentations and 
software architecture recovery required. The technology issues are the effects out of 
the attributes of the computing systems: complex, compatibility issue, and cost, even 
redundancy for the reliability [1]. If only a minority is upgraded, the change will have 
no effect on the resulting system, no matter how good the upgrade. On the other hand, 
if the majority is upgraded and there is a bug, the system will fail. The shorter the life 
cycle of the product, the more frequency the change version. Modifications to the 
software systems tend to be mainly additive. The constant addition of the new features 
leads to a situation where it is hard to control the impact of changes to the system 
architecture and the architecture slowly degrades. As a result, the degradation of 
system architecture and the constant addition of the new features lead to uncontrolled 
growth of the system and the organization that is maintaining it [2]. To manage these 
difficulties, my work focuses on the technology part. I believe that software 
architecture not only contribute to the software productions, but also the software 
maintenance. The software architecture of a program or computing system is the 
structure or structures of the system, which comprise software components, the 
externally visible properties of those components, and the relationships among them 
[3]. In other words, software architecture consists of two types of the ingredients: the 
components and the connectors, which specify the relationships among these 
components. To handle the variants at an architectural level is the significant 
technology for the software maintenance. 
Study on variability covers several perspectives: the impacts of the process on the 
changes of the products, and vice versa [4]; the practical variant handling methods, 
such as tailoring [5], parameterization [6], customization [7], architectural styles as 
adaptors [8], the domain analysis [9], understanding the software or restoring 
consistency [10], scaling component software architecture [11], and so on; 
terminology clarification and variant notions [12]; and so on. Most of them 
concentrate on the specific method for variability. In comparison with them, the 
contributions of this article are the more general approaches to the variant handlings. 



 3 

The management of the software variants based on the architectural introduction is 
demonstrated.  
The following four sections are composed of this composition paper. Section two 
explores the software variant management mechanism and the software variant 
management space. Section three proposes the architectural introduction for the 
software variant management. In section four, the activities of the SVMM based on 
the architectural introduction are represented. Last, one successful example of this 
SVMM, the chess game system, is illustrated. 
 
2. The software variant management mechanism 
 
To elucidate the software variant management mechanisms, I clarify several terms as 
follows: the software variant management (SVM), the software variant management 
space (SVMS), the software variant management mechanism (SVMM), the context of 
the variants, and the context of the variant management. 
1. Software variant management (SVM) is the process of the management of the 

software variants in the context of it so that the software system may be modified 
to meet the changes of the requirements. This process can be comprehended as a 
series of identifying, constraining, and implementing the variants [12]. 

2. SVMS is the space with two dimensions – the levels of the variants handlings 
and the artifacts/phases in the software life cycle as well – to present the software 
variant management mechanism. 

3. SVMM is the method or the guideline to manage the variants at a specific level 
of abstraction. The process-oriented SVMM is the portrait as the profile in the 
SVMS.  

4. The context of variants means the context in which software variants are 
managed during software life cycle. It is usually the artifact of software 
development such as program families, feature category, software architecture, 
and source code. 

5. The context of the variant managements is meta-variant-context, that is, the 
context of the variant managements shows how to form the context of the 
variants. In other words, it is an environment on that the context of the variants 
can be achieved. This environment is composed of all subjects related to the 
activities of the software development, such as the strategy of the software 
development to evaluate if it is worthy to modify the products; the structural 
refinements to separate the commonality with the variants; the initiatives of the 
requirements of the product family like market-orientation or contract-orientation; 
the courses of the development to reuse the important software assets like toolkit, 



 4 

component, framework, API; and so on. It also can be comprehended as the 
context of the flexibility quality attributes, the software development model, such 
as architecture-based development model.  

 
3 The software variant management based on the architectural 

introduction 
 
Software architecture introduction is the technology of partially transformation of 
software architecture to change part of behavior of it. For the most conventional 
process of software production, the phase of code restructure goes after the upfront 
design and some article decouples it into an expansion phase and a consolidation 
phase [13]. However, it frequently happens to feedback as the design modification 
due to the more comprehension of problems, the inspiration of implementation, the 
quality attribute demands and so on. 

Phases of software lifecycle model

Levels of variant handlings

code

object

design pattern

software architecture

product line

system

requirement design implementation integration

Architectural
refinements

code-based
software

transformation

New system
production

Variant objects
transformation

Software
architectural
introduction

Architectural
mapping

Architectural
composition

Quality attribute changes Functional
extending

 
            Figure 1 The architectural introduction as SVMM in SVMS 

Figure 1 portrays SVMM based on architectural introduction in SVMS. The SVMS 
helps us to elicit SVMM and cause us to consider its implications from the 
perspectives of multiple phases of software lifecycle models. For this case, seven 
main subtasks of SVMM are specified: the transformation of variant objects, the 
architectural introduction, the architectural mapping, the architectural refinements, the 
code-based software transformation, the architectural composition and the new system 
production. Taking the architectural introduction method shown in Figure 1 as an 
example, the properties of SVMS are: 
1 SVMS reveals the profile of SVMM, the ongoing activities of variant handlings. 



 5 

2 SVMS depicts how SVMM incorporates with activities of software development. 
3 SVMS specifies the level of variant handlings, which regulates the activities of 

SVMM.  

Phases of software lifecycle model

Levels of variant handlings

code
object

design pattern
software architecture

product line
system

requirement design implementation

System1

QA1 SA1 modules (SP1)

Quality attribute
changes

Phases of software lifecycle model

Levels of variant handlings

code
object

design pattern
software architecture

product line
system

requirement design implementation

System2

QA2 SA2 modules (SP2)

Architectural
introduction

Mapping
between objects

and variables

Software
transformation

 

Figure 2  Extending SVMS of SVMM based on the architectural introduction 
 
Figure 2 shows the extending space of Figure 1, SVMS for SVMM based on 
architectural introduction. The changes of artifacts are explicit in Figure 2 whereas 
Figure 1 is descriptive for the relationships between the adjacent phases. Both figures 
demonstrate the context of variant handlings.  

 
4 The activities of SVMM based on the architectural introduction  
 
To illustrate the activities of SVMM based on the architectural introduction, this 
section clarifies the five terms first, and then elucidates the five activities profiled in 
Figure 1 for the preparation of the software integrations. 

4.1 Terminology for SVMM based on the architectural introduction 
Five terms are classified here: the variants, the requirement variants, the architectural 
variants, the variant object, and the variant handlings.   
� Variants  
Normally, the variants mean the requirement variants, the changes leading to the 
activities at the requirement stage of software life cycle due to a maintenance-driven 
feedback after circulation, or the likely changes preparative to handling them from the 
perspectives of the requirement engineers. They may be grouped into several 
categories: market-oriented, contract-oriented, and technology-oriented variants; 
predictable and unpredictable; alternative and optional; the variants that determined at 
compile- or run- time; feature variability, hardware platform variability, performances 
and attributes variability; and so on. In this article, I extend the meaning of this term 
for the descriptive proposition of the architecture-leveled variant handlings. The 
variants stand for the changes in any form during the whole software lifecycle. They 
could be the architectural variants and the requirement variants.  



 6 

� Architectural variants 
Architectural variants mean the variants at an architectural level of design as a guide 
to the transformation of a software system. They are classified according to the types 
of the ingredients of the software architecture as the component variants and the 
connector variants.  
� Variant objects 
The variant object, is defined as the changeable or likely changeable parts explicitly 
shown in the artifacts of software development such as the feature expressed in the 
feature category, the entity shown in the entity-relationship diagram, and so on.  
� Variant handlings 
The variant handlings are the procedures of identification and transformation of the 
different kinds of variants, such as the conversion from the requirement changes to the 
architectural redesign, the software transformation under the guidance of the 
architectural redesign, and so on. 

4.2 The activities of the SVMM based on the architectural introduction   
A process of the variant managements at an architectural level is briefly described as 
follows.  
1. Identify the requirement variants and the context of them. 
2. Abstract them as an invariant factor at an architectural level. 
3. Clarify variants at a high level of design. 
4. Convert the variant requirements to variant type in software architecture, such as 

connector variants and component variants.  
5. Accommodate the variants in the context. 
6. Introduce software architecture to expose the variants. 
7. Design an interface for pluggable modules to handle variants. 
8. Identify the relationships among the variants by referring to entity-relationship 

diagram, message delivery sequence, and the feature category such as identical 
relationship, dependency, etc. 

9. Factor out the commonality and modularize the variants. 
10. Identify a new object to transform the variants into another form. 
These processes can be comprehended as the five tasks demonstrated in Figure 1 to 
change the quality attributes as the preparation of the function-extended software 
integration. They are detailed in the rest of this section. 
The transformation of the variant objects prepares for the architectural redesign, 
namely the architectural introduction. The other three activities, transform the variant 
objects from the architectural level into the code level, namely the software 
transformation. 



 7 

4.2.1 The transformation of the variant objects 
The transformation of the variant objects is the first step to manage the variants at an 
architectural level. It can be decoupled into the two subtasks: the analysis of the 
requirement variants and the identification of them at an architectural level.   
The current major technologies of requirement analysis are scenario analysis [14] 
[15][16] [17][18], the domain analysis [13] [19] [20], the feature engineering [21][22] 
[23] and so on. 
To handle the variants at an architectural level is to specify the variant objects visible 
in the software architecture, that is, components and connectors, which will be 
changed to response to the requirement variants. The feasibility of this subtask is on 
the base of the correctness and the availability of the documentations of the software 
architecture. Three cases for the transformation of the variant objects at an 
architectural level are:   
1 The variant objects mapping from the requirement variants are explicitly 
represented at an architectural level. The process of variant handlings for this case is 
instantiation of these variant objects and replacements of them. It is no need for any 
change of software architecture. That is the simplest case.    
2 The partial requirement variants are visible in software architecture. For this case, 
the changes of software architecture have to be done to realize the unseen parts of the 
requirement variants.  
3 The requirement variants are hided in software architecture. The goal of handling 
this situation is to specify the parts related to these variants first, then to evolve them 
to factor these variants out of the original parts.  
In addition to the identification of the change parts, to classify them is another 
approach to the transformation of the variant objects. The derived variant objects 
resulted from the adjustment of the software architecture are typically the pairs of the 
components and the connectors. This is for that the variant connector has to be 
structured while the derived variant component, in case 3, is introduced into software 
architecture. As to case 2, to divide the parts related to the variants might generate the 
new pairs of components and connectors.   

4.2.2 The architectural introduction 
This activity is to represent the variants at an architectural level. It consists of the two 
subtasks: the selection and design of the software architecture, which is introduced 
into the pre-existing software architecture, and the exposure and the realization of the 
variant objects.  
� Selection and design of software architecture introduced 
The segregation and the integration are the two common techniques for the 
architectural design, that is, to pick up the proper parts for integration. For example, 



 8 

the dynamic connection mechanism out of the implicit invocation pattern [24] 
supports pipe-and-filter architecture with the flexible sequences of the data processing; 
and the parameterization ownership comes from the adaptor software architecture [25]. 
Integration is a way for extending the functionality. The popular communication 
infrastructure facilitates this task, such as CORBA, RMI, and so on.     
� Exposure and realization of the variant objects 
The exposure and the realization of the variant objects are the purposes of the 
architectural introduction. The variant connectors surfacing up to the modular level 
from the programming statement is a typical case of the connector exposure. 
Normally, it is in a form of the invocation or sharing the parameters in the 
object-oriented programming.  
Separation of the commonality and the variants makes the variant component visible. 
The exposure of the variant objects is the force to construct the software systems. For 
instance, the proxy is invented as a media between client and server in the proxy 
pattern, the event dispatcher is introduced between the event source and the event 
handling in the event system, and the state is identified in the state pattern. 
Abstraction is another way to expose the variants in a form of specifying the 
invariants. It lifts up the scope of the views for design, and organizes the variants as 
the subtypes of the modules that redefine the variants. In other words, abstraction 
means the generalization as the representative of the specialization. The requirement 
variants are transformed into the instances of specialization, the variant components, 
linking to the instances of the generalized modules with the variant connectors. 
Localization can be applied also to handle the variants. Architectural introduction 
gathers the scattered variants and transforms their behaviors of them to localize into 
the several modules. The collaboration of abstraction and localization can expose the 
variant objects in more flexible manners.    
Realization of variant objects is to carry out the interactive behaviors among them, 
which are exposed at an architecture level. These behaviors can be interpreted into the 
relationships among the variant components and the variant connectors, such as cause 
and consequence, dependency, and so on. Parameterization is one technique for 
realization of these relationships. Delegation is one application of parameterization 
and conforms the structural principle, the low coupling. Not only achievement of the 
consequences of abstraction, localization, and parameterization, architectural 
introduction but also provides the black-boxed maintenance to increase the reusability 
and to decrease the overhead. This is a vital process for variant handlings.  

4.2.3 The architectural mapping 
The architectural mapping attempts to figure out the relationships of the changes of 
the software system at design. Three subtasks – the regain of the design concepts, the 



 9 

mapping between the objects and the parameters, and the rules of the semantic 
matches – achieve it. 
� Regaining design concepts 
It is for regaining the design concepts of the original system, such as the pre-existing 
software architecture, the logical functionality, and the algorithms. To specify the 
parts that have changed followed by the architectural redesign, to overview the related 
documentation such as the class diagrams, the scenario diagrams and the flow charts, 
and to understand the correspondent code, uncover the design initiative. The 
examination task of this reengineering process is to ensure that redesign will be 
consistent with the logical functionality and the design concepts of the original 
system.     
� Mapping between objects and variables 
To formulate the components and the connectors in architectural introduction in terms 
of the objects and the variables prepares for the code-based software transformation. 
The relationships between them could be implicit mapping or explicit mapping like 
the straightforward one-to-one mapping or the indirect mapping. The implicit 
mapping, for example, is conditional statements in code and state pattern could be 
introduced with polymorphism in an object level. As to the straightforward one-to-one 
mapping refactorings is applicable and the indirect mapping needs the mediate 
parameter to associate them. In the object-oriented programming, the mediate 
parameters might be the attributes or the fields of the class and this class implements 
the component/connector in architectural introduction. The simple mapping between 
these mediate parameters and the variables in the original code could help the reuse of 
algorithms in the original code. Generally, the architectural mapping increases the 
visibility of these objects and these variables.  
� Examining by the rules of the semantic matches 
It is to ensure the mapping process compliant with the rules of the semantic matches, 
which is required among the elements to assure that the computations will together 
satisfy the behavioral and resource utilization requirements of the system. First, the 
rules of the semantic matches have to be set. Clarify the factors of the semantic 
matches, the constraints of the original software architecture and the dynamic 
properties in the design concepts such as in the object-oriented programming creation, 
the invocation and abolishment of objects, the concurrent issue, the data coherent 
issue for sharing, and so on, on the one hand; and compare them with the derived 
components/connectors and their relationships in the goal software architecture on the 
other hand. The representation of these factors in code could be implicit or explicit. 
For the implicit case, the architectural introduction needs to expose them as the 
components/connectors at an architectural level to turn them into the latter. Then, 



 10

examine the derived parts related to the changes by the rules of the semantic matches. 
Make a list for the comparison results, and check them by the rules. The previous 
subtask, the mapping between the objects and the variables, helps to figure out these 
comparisons. 

4.2.4 The architectural refinements 
This activity is to represent and to accommodate the variants at an object level. Not 
only the functional decompositions but also the quality-oriented separations are 
applied here. These separation rules, for example, separations of interface and 
implementation; separations of data type definition, data holding, and data processing; 
separations of object and its states; separation of modules with different use 
restrictions; separation of tailorable (or extensible) parts; and so on. These separations 
can convert the vague architecture-level modular relationships into the more specific 
forms. The static object-level modular relationships are is-a, and has-a; and the 
dynamic ones are link-to, associate-with, and create-a. These derived modules and 
their relationships facilitate mapping to the object-oriented programming.   

4.2.5 The code-based software transformation 
The code-based transformation is to represent the variants at a code level by taking 
the outcomes of the previous activities into the effects. The subtasks of this activity 
are retrieving the diffusion of the source code, mapping and reusing the algorithm, 
and handling the signature mismatches.  
� Retrieving the diffusion of the source code 
The complexity of the software system restrains the code-based software 
transformation. One issue for the difficulty is the diffusion of the source code. It is 
still a challenging problem even though with the support of the modularization to 
localize the related code. For example, the super class does not hold the information 
of the subclasses so that it is not code-based traceable. The dynamic binding makes 
this problem worse. Four methods can be applied here. Documentation and the 
comments in line are commonly used for the solution to it. Refactorings also make the 
software easier to understand in the more self-explanative way. The thoughtful use of 
the class modifiers is another approach to hindrance of the malfunctioned diffusion of 
the source code. Software architecture is an effective way to modularize and localize 
the source code at a high level of abstraction. 
� Mapping and reusing the algorithms 
This subtask is for the allocation of the functionality into the instances of the 
components/connectors in the software architecture. Consult the architectural 
mapping results and the diffusion of source code first, and factor out the algorithms 
out of the original code then according to the relationships of the objects and the 
variables related to architectural mapping. The horizontal or vertical decomposition 



 11 

enables the implementation of these subtasks.     
� Handling the signature mismatches 
The signature mismatches, which refer to the agreements on the form of the data that 
flows among matched elements, come after mapping and reusing the algorithms due 
to the side effects of them. It could be simply done by the programming skills. For 
instance, the subclass needs to be modified to respond to the changes of the super 
class, the same situation as the invoker object to the object invoked, and so on. 
Refactorings at a parameter level perform this kind of work, such as renaming the 
method, adding or deleting the method, changing the class modifier and the method 
modifier, and so on. 
 
5 Example and conclusion 
 
The SVMM based on the architectural introduction is successfully validated in one 
example, the chess game system, which is the software system for the multiple 
players and the multiple games at the same time via Internet. The server/client 
architecture is exploited in this system. I evolved this architecture into over a hundred 
Java classes (12K lines of code, 486KB) in the software development environment 
JBuilder3 to meet flexibility to extending its functionality. Figure 3 shows the 
functional allocation diagram. 

GUI
Service
provider

Communication
mechanism

Service
strategy

Shutdown
handling

Port

Chess
rule

Service
despondence

Service
request

Port Communication
mechanism

Application software at client sideChess game server

 
Figure 3 The functional allocation diagram of the chess game system 

Server

SConnection

ServerSender

ServerListener

ClientListener

ClientSender

Client

ServerListener ServerSender SConnection

ClientSender ClientListener Client

Server Client

Client

Client

Message delivery

(a) Generic software architecture (b) Software architecture
 

Figure 4 The original software architecture of the chess game system 



 12

Server

ServerState

SConnection

ServerSender

ServerListener

ClientListener

ClientSender

Client

InitialState ConnectionState
ProtocolInterface

Protocol

SMeaage

SMessageTypeInterface

SMessageType

IniEx IniNx ConEx ConNx

ServerSenderInterface

CMeaage

CMessageType

Strategy

PlayerAttribute

BlackboardController

File

FileState

NonExist
Exist

ClientServer
 

Figure 5 The software architecture of the chess game system  
after the architectural introduction 

 
Figure 4 and 5 respectively show the software architecture before and after the 
architectural introduction. The variant requirements of this example are: the flexible 
handlings of the service response according to the service strategy, the current on-line 
players’ roles, and the types of the service requests; the changeable shutdown 
handlings; the extendable service supports; the adaptable graphic user interfaces; and 
so on.  
This article illustrates one high-level SVMM based on the architectural introduction 
capable of exposing the variants and realizing their relationships at an architectural 
level, and provides the framework of the process-oriented variant handlings. It 
manages the software variants at a high level of abstraction and granularity and guides 
the other variant management mechanisms such as the parameterization, the 
localization, and the object-oriented design for the variant handlings at other low 



 13

levels. It opens a way for the further study on the variant management at an 
architectural level.  
 
References 
[1] Lui Sha, Ragunathan Rajkumar, Michael Gagliard. A software architecture for 

dependable and evolvable industrial computing systems. Software Engineering 
Institute, Carnegie Mellon University Technical Report: CMU/SEI-TR-95-005. 
1995. 

[2] A. Karhinen, J. Kuusela, Structuring Design Decisions for Evolution; 
source: Second International ESPRIT ARES Workshop, Spain, 1998, 
Proceedings; Lecture Notes in Computer Science 1429, Development 
and evolution of software architectures for product families; Springer, 
Frank van der Linden (Ed.) Page 223~234. 1998. 

[3] Len Bass, Paul Clements, Rick Kazman. Software architecture in practice. MA: 
Addison-wesley. 1998. 

[4] Shih-Chien Chou, Jen-Yen Jason Chen. Process program change control in a 
process environment. Software: practice and experience, 30(3): 175~197. 2000. 

[5] R. Slagter, M. Biemans, H. ter Hofte. Evolution in use of groupware: facilitating 
tailoring to the extreme. Seventh International Workshop on Groupware 
Proceedings. 2001. Page 68~73. 2001. 

[6] Las Palmas de Gran Canaria. Software architectures for product families: 
International Workshop IW-SAPF-3. 15~17. March, 2000. 

[7] Yu Chye Cheong, Akkihebbal L. Ananda, Stan Jarzabek. Handling variant 
requirements in software architectures for product families. Second International 
ESPRIT ARES Workshop. Springer. Page 188~196. 1998. 

[8] Don Batory, Yannis Smaragdakis, Lou Coglianese. Architectural styles as 
adaptors. 1999. http://www.cs.utexas.edu. 

[9] J. Meekel, T. B. Horton, C. Mellone. Architecting for Domain Variability. 
Second International ESPRIT ARES Workshop. Springer. Page 205~213. 1998. 

[10] David Garlan, Walter Tichy, Frances Paulisch. Summary of the Dagstuhl 
Workshop on Software Architecture. Software engineering notes, 20(3): 63~83. 
July 1995. 

[11] Workshop on Compositional Software Architectures Workshop Report; ACM 
SIGSOFT May 1998, Software engineering Notes 23(3): 44-63. 1998. 

[12] J. van Gurp, J. Bosch, M. Svahnberg. On the notion of variability in software 
product lines. Proceedings. Working IEEE/IFIP Conference on Software 
Architecture. Page 45~54. 2001.   

[13] Brian Foote, William F. Opdyke. Lifecycle and refactoring patterns that support 



 14

evolution and reuse. Proceedings of pattern languages of program design, 
PLoP ’94. Page 239~257. 1994.  

[14] Rick Kazman, S. Jeromy Carriere, Steven G. Woods. Toward a discipline of 
scenario-based architectural engineering. Annals of software engineering. 2000. 
http://www.cgl.uwaterloo.ca/~rnkazman/  

[15] Rick Kazman, Gregory Abowd, Len Bass. Scenario-based analysis of software 
architecture. IEEE software, 13(6): 47~55. Nov. 1996.  

[16] Galal Hassan Galal. Scenario-based software architecting. ECOOP’ 99 
Workshop on object-oriented architectural evolution. 1999. 
http://www.emn.fr/borne/ECOOP99/  

[17] Rick Kazman, Gregory Abowd, Len Bass. Scenario-based analysis of software 
architecture. IEEE Software, 13(6): 47~55. November 1996.  

[18] Jan. Bosch. Design and use of software architectures: adopting and evolving a 
product-line approach. Addison-Wesley, 2000.  

[19] Paul C. Clements. From domain models to architectures. Workshop on Software 
Architecture, USC Center for Software Engineering, 1994. 
http://www.sei.cmu.edu/publications/articles/from-domain-mods-archs.html  

[20] Don Batory. Issues in domain modeling and software system generation. 
OOPSLA'95 position paper for panel on objects and domain engineering. 1995. 
http://www.cs.utexas.edu.  

[21] C. Reid Turner, Alfonso Fuggetta, Luigi Lavazza, et. al. A conceptual basis for 
feature engineering. Journal of Systems and Software, 49(1): 3~15. Dec. 15, 
1999.  

[22] Robert W. Krut. Integrating 001 tool support into the feature-oriented domain 
analysis methodology. Software Engineering Institute, Carnegie Mellon 
University Technical Report: CMU/SEI-93-TR-011. 1993.  

[23] Kwanwoo Lee, Kyo C. Kang, Wonsuk Chae, Byoung Wook Choi. Feature-based 
approach to object-oriented engineering of applications for reuse. Software: 
practice and experience, 30(9): 1025~1046. July 2000.  

[24] Mary Shaw, David Garlan. Software Architecture：Perspectives on an emerging 
discipline. NJ: Prentice Hall.1996.  

[25] E. Gamma, R. Helm, R. Johnson, et al. Design patterns: elements of reusable 
object-oriented software. MA: Addison-Wesley. 1995.   

[26] Frank Buschmann, Regine Meunier, Hans Rohnert. Pattern-Oriented Software 
Architecture: A System of Patterns. New York: Wiley. 1996. 

 


