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Abstract

The classical problem of diagnosability is discussed widely and the diagnosability of
many well known networks have been explored. In this paper, we consider the diagnos-
ability of a family of networks, called the Matching Composition Network (MCN); two
components are connected by a perfect matching. The diagnosability of MCN under
the comparison model is showed to be one larger than that of the component, provided
some connectivity constraint. Applying our result, the diagnosability of Hypercubes
Qn, Crossed cube CQn, Twisted cube TQn, and Möbius cube MQn can all be proved
to be n, for n ≥ 4. In particular, we show that the diagnosability of the 4-dimensional
hypercube, Q4, is 4 which is not previously known.
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1 Introduction

With the rapid development of technology, the need for high-speed parallel processing sys-

tems has continued increasing. The reliability of the processors in parallel computing systems

is therefore becoming an important issue. In order to maintain the reliability of a system,

whenever a process (node) is found faulty it should be replaced by a fault-free processor

(node). The process of identifying all the faulty nodes is called the diagnosis of the system.

The maximum number of faulty nodes that the system can guarantee to identify is called

the diagnosability of the system.

In this paper, we consider the diagnosability of the system under the comparison model,

proposed by Malek and Maeng [4, 5]. The diagnosability of some well-known interconnec-

tion networks under the comparison model has been investigated. For example, Wang [11]

showed that the diagnosability of an n-dimensional hypercube Qn is n for n ≥ 5, and the

diagnosability of an n-dimensional enhanced hypercube is n + 1 for n ≥ 6. Fan [3] proved

that the diagnosability of an n-dimensional crossed cube is n for n ≥ 4.

We study the diagnosability of a family of interconnection networks, called the matching

composition networks (MCN), which can be recursively constructed. MCN includes many

well-known interconnection networks as special cases, such as Hypercubes Qn, Crossed cubes

CQn, Twisted cubes TQn and Möbius cubes MQn. Basically, MCN and these mentioned

cubes are all constructed from two graphs G1 and G2 with the same number of nodes, by

adding a perfect matching between the nodes of G1 and G2. We shall call these two graphs

G1 and G2 as the components of MCN.

Our main result is the following. Suppose that the number of nodes in each component is
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at least t + 2, the order (which will be defined subsequently) of each node in Gi is t, and the

connectivity of Gi is also t, i = 1, 2. We prove that the diagnosability of MCN constructed

from G1 and G2 is t + 1, for t ≥ 2. In other words, the diagnosability of MCN is increased

by 1 as compared with those of the components. Using our result, it is straightforward to

see that the diagnosability of Hypercube Qn, Crossed Cube CQn, Twisted Cube TQn and

Möbius cube MQn are n for n ≥ 4. Some of these particular applications are all previously

known results [3, 11], using rather lengthy proofs. Our approach unifies these special cases

and our proof is much simpler. We would like to point out that the diagnosability of the

4-dimensional Hypercube Q4 is 4, which is not previous resolved [11].

The paper is organized as follows:Section 2 introduces the comparison model for diagnosis.

Section 3 provides preliminaries. In Section 4, we present the Matching Composition Network

and discuss its diagnosability. In Section 5, we propose that hypercube Q4 is 4-diagnosable.

Finally, our concluding remarks are offered in Section 6.

2 The Comparison Model for Diagnosis

For the purpose of self-diagnosis of a given system, several different models have been pro-

posed in literature [1, 4, 5, 6, 7, 9, 10]. Preparata, Metze and Chien [6] first introduced

a model, so called PMC-model, for system level diagnosis in multiprocessor systems. In

this model, it is assumed that a processor can test the faulty or fault-free status of another

processor.

The comparison model, called MM model, proposed by Maeng and Malek [4, 5], is consid-

ered to be another practical approach for fault diagnosis in multiprocessor systems. In this

approach, the diagnosis is carried out by sending the same testing task to a pair {u, v} of

processors and comparing their responses. The comparison is performed by a third processor

w that has directed communication link to both processors u and v. The third processor w

is called a comparator of u and v.
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If the comparator is fault-free, a disagreement between the two responses is an indication

of the existence of a faulty processor. To gain as much knowledge as possible about the faulty

status of the system, it was assumed that a comparison is performed by each processor

for each pair of distinct neighbors with which it can communicate directly. This special

case of MM-model is referred to as the MM*-model. Sengupta and Dahbura [8] studied

the MM-model and the MM*-model, gave a characterization of diagnosable systems under

the comparison approach, and proposed a polynomial time algorithm to determine faulty

processors under MM*-model. In this paper, we study the diagnosability of MCN (which

will be defined subsequently) under MM*-model.

In the study of multiprocessor systems, the topology of networks is usually represented

by a graph G = (V, E), where each node v ∈ V represents a processor and each edge

(u, v) ∈ E represents a communication link. The diagnosis by comparison approach can

be modeled by a labeled multigraph, called comparison graph, M = (V, C), where V is the

set of all processors and C is the set of labeled edge. A labeled edge (u, v)w ∈ C, with w

being a label on the edge, connects u and v, which implies that processors u and v are being

compared by w. Under the MM-model, processor w is a comparator for processor u and v

only if (w, u) ∈ E and (w, v) ∈ E. The MM*-model is a special case of the MM model, it is

assumed that each processor w such that (w, u) ∈ E and (w, v) ∈ E is a comparator for the

pair of processors u and v. Obviously, comparison graph M = (V, C) can be a multigraph,

for the same pair of nodes may be compared by several different comparators.

For (u, v)w ∈ C, the output of comparator w of u and v is denoted by r((u, v)w), a

disagreement of the outputs is denoted by the comparison results r((u, v)w) = 1, whereas an

agreement is denoted by r((u, v)w) = 0.

In this paper, we have the following assumptions: (1) All faults are permanent; (2) a

faulty processor produces incorrect outputs for each of its given testing tasks; (3) the output
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of a comparison performed by a faulty processor is unreliable; and (4) two faulty processors

with the same input do not produce the same output.

Therefore, if the comparator w is fault-free and r((u, v)w) = 0, then u and v are both

fault-free. If r((u, v)w) = 1, then at least one of u, v and w must be faulty. The set of all

comparison results of a multicomputer system that are analyzed together to determine the

faulty processors is called a syndrome of the system.

For a given syndrome σ, a subset of nodes F ⊆ V is said to be consistent with σ, if

syndrome σ can be produced from the situation that all nodes in F are faulty and all nodes

in V −F are fault-free. Because a faulty comparator can lead to unreliable result, a given set

F of faulty nodes may produce various syndromes. Let σ∗(F ) = {σ|σ is a syndrome which

can be produced from the situation that all nodes in F is faulty and all nodes in V − F is

fault-free}.

Two distinct sets S1, S2 ⊂ V are said to be indistinguishable if and only if σ∗(S1)
⋂

σ∗(S2) 6=

Ø; otherwise, S1, S2 are said to be distinguishable. And, a system is said to be t-diagnosable

if for every syndrome, there is a unique set of faulty nodes that could produce the syndrome,

provided the number of faulty nodes does not exceed t.

3 Preliminaries

We need some definitions and previous results for further discussion. Let G be a graph with

V (G) represent the node set of G and E(G) the edge set of G. Assume U ⊆ V (G). G[U ]

denote the subgraph of G induced by the node subset U of G and U = V (G)− U .

The vertex connectivity (simply abbreviated as connectivity) of a network G = (V, E),

denoted by κ(G) or κ, is the minimum number of vertices whose removal leaves the remaining

graph disconnected or trivial. Assume that V1, V2 are two disjoint nonempty subsets of V (G).

The neighborhood set of V1 in V2, N(V2, V1), is defined as {x ∈ V2 | there exists a node y ∈ V1
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such that (x, y) ∈ E(G)}. A vertex cover of G is a subset K ⊆ V (G) such that every edge

of E(G) has at least one end vertex in K. A vertex cover set with the minimum cardinality

is called the minimum vertex cover.

Given a graph G, let M be the comparison graph of G. For a node v ∈ V (G), we set

Xv to be the set {u | (v, u) ∈ E(G)}
⋃
{u | (v, u)w ∈ E(M) for some w} and Yv to be

the set {(u, w) | u, w ∈ Xv and (v, u)w ∈ E(M)}. In [8], the order graph of node v, is

defined as Gv = (Xv, Yv) and the order of the node v, denote by orderG(v), is defined as the

cardinality of a minimum vertex cover of Gv. Let U ⊂ V (G). We use T (G, U) to denote the

set {u | (v, u)w ∈ E(M) and w, v ∈ U, u ∈ U}. We observe that T (G, U) = N(U, U) if G[U ]

is connected for U ⊂ V (G) and |U | > 1. This observation can be extended to the following

lemma.

Lemma 1 Let U be a subset of V (G) and G[Ui], 1 ≤ i ≤ k, be the connected components of

G[U ] such that U =
k⋃

i=1

Ui. Then T (G, U) =
k⋃

i=1

{U, Ui) | |Ui| > 1}.

0

1 2

3

4

5 6

7

Figure 1: Example for T (G, U) of Q3.

In Fig. 1, taking Q3 as an example, we have T (G, U) = {4, 5, 6, 7}, where U = {0, 1, 2, 3}.

The next lemma follows directly from the definition of connectivity of G.

Lemma 2 [2] Let G be a connected graph and U be a subset of V (G). Then |N(U, U)| ≥

κ(G) if |U | ≥ κ(G), and |N(U, U)| = |U | if |U | < κ(G).
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There are several different ways to verify a system to be t-diagnosable under the com-

parison approach. In this paper, we need three theorems given by Sengupta and Dahbura

[8]. The first two are necessary and sufficient conditions for ensuring distinguishability, the

third one is a sufficient condition for verifying a system to be t-diagnosable.

Theorem 1 [8] For any two distinct subsets S1,S2 of V (G) is a distinguishable pair if and

only if at least one of the following conditions is satisfied: (See Fig. 2)

(i) ∃i, k ∈ V − S1 − S2 and ∃j ∈ (S1 − S2)
⋃

(S2 − S1) such that (i, j)k ∈ C,

(ii) ∃i, j ∈ S1 − S2 and ∃k ∈ V − S1 − S2 such that (i, j)k ∈ C, or

(iii) ∃i, j ∈ S2 − S1 and ∃k ∈ V − S1 − S2 such that (i, j)k ∈ C.

V

(i)

S2S1

(i)
(iii)(ii)

Figure 2: Description for distinguishability.

Theorem 2 [8] A system G is t-diagnosable if and only if (1) orderG(v) ≥ t for any node

v in G and (2) at least one of the conditions of Theorem 1 is satisfied for each distinct pair

of sets S1, S2 ⊂ V such that |S1| = |S2| = t.

Theorem 3 [8] A system G with N nodes is t-diagnosable if

(1) N ≥ 2t + 1;

(2) orderG(v) ≥ t for any node v in G;
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(3) |T (G, U)| > p for each U ⊂ V (G) such that |U | = N − 2t + p and 0 ≤ p ≤ t− 1.

According to the above three theorems, we observe that condition (3) of Theorem 3

restricts G satisfying the first condition of Theorem 1 and ignores conditions 2 and 3. Hence,

we present a hybrid theorem to test whether a system is t-diagnosable.

Theorem 4 A system G with N nodes is t-diagnosable if and only if

(1) N ≥ 2t + 1;

(2) orderG(v) ≥ t for any node v in G;

(3) for any two distinct subsets S1, S2 ⊂ V (G) such that |S1| = t and |S2| = t

either (a) |T (G, U)| > p, where U = V (G)− (S1
⋃

S2), and |S1
⋂

S2| = p

or (b) S1 and S2 satisfy condition (ii) or (iii) of Theorem 1.

Proof: Conditions (1) and (2) are same as conditions (1) and (2) of Theorem 3, and

condition (3) includes condition (3) of Theorem 3 and all cases of Theorem 1. Consider

condition (3.a). S1 and S2 are distinct subsets of V (G) with |S1| = |S2| = t, U = V (G) −

(S1
⋃

S2), and |S1
⋂

S2| = p. Then 0 ≤ p ≤ t − 1 and |U | = N − 2t + p. If |T (G, U)| > p,

it implies that S1 and S2 satisfy condition (i) of Theorem 1. Combining condition (3.a) and

(3.b), by Theorems 1 and 2, this theorem follows. 2

4 Diagnosability of Matching Composition Networks

Now, We define the Matching Composition Network(MCN) as follows. Let G1 and G2 be

two graphs with the same number of nodes. Let L be an arbitrary perfect matching between

the nodes of G1 and G2; i.e., L is a set of edges connecting the nodes of G1 and G2 in a one

to one fashion, the resulting composition graph is called a Matching Composition Network

(MCN). For convenience, G1 and G2 are called components of the MCN. Formally, we use
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the notation G(G1, G2; L) (simply abbreviated as G1L2) to denote a MCN, which has node

set V (G(G1, G2; L)) = V (G1)
⋃

V (G2) and edge set E(G(G1, G2; L)) = E(G1) ∪ E(G2) ∪ L.

See Fig. 3.

What we have in mind is the following: Let G1 and G2 be two t-connected networks with

the same number of nodes and orderGi
(v) ≥ t for any node v in Gi,where i = 1, 2, and let

L be an arbitrary perfect matching between the nodes of G1 and G2. Then the degree of

any node v in G(G1, G2; L) as compared with that of node v in Gi for i = 1, 2, is increased

by 1. We expect that diagnosability of G(G1, G2; L) is also increased to t + 1. For example,

Hypercube Qn+1 is constructed from two copies of Qn adding a perfect matching between

the two and the diagnosability is increased from n to n + 1 for n ≥ 5. Other examples

such as Twisted cube TQn+1, Crossed cube CQn+1, Möbius cube MQn+1 are all constructed

recursively using the same method as above.

v

G1 G2

v' v"

Figure 3: Description of orderG1L2
(v).

Theorem 5 Let G1 and G2 be two networks with the same number of nodes, and t be a

positive integer. Suppose that orderGi
(v) ≥ t for any node v in Gi, where i = 1, 2. Then

orderG1L2
(v) ≥ t + 1 for node v in G(G1, G2; L).

Proof: See Fig. 3. Let v be a node of G(G1, G2; L). Without loss of generality, we

assume that v ∈ V (G1), v
′

∈ V (G2) and (v, v
′

) ∈ L. Of course, node v
′

is connected to
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at least one node v
′′

in V (G2). Let G(v, G1) and G(v, G(G1, G2; L)) be the order graph

of v in graph G1 and G(G1, G2; L), respectively. We observe that G(v, G1) is a proper

subgraph of G(G1, G2; L), both v
′

and v
′′

are in the latter, none of them in the former,

and (v
′

, v
′′

) is an edge in G(G1, G2; L). Therefore, every vertex cover of the order graph

G(v, G(G1, G2; L) contains a vertex cover of the order graph G(v, G1). Besides, any vertex

cover of G(v, G(G1, G2; L)) has to include at least one of v
′

and v
′′

. Thus, orderG1L2
(v) ≥

orderGi
(v) + 1 for any node v in G1L2 and Gi, where i = 1, 2, repectively. This completes

the proof. 2

We need the following lemma later in Theorem 6.

Lemma 3 [3] Let G be a t-connected network, and orderG(v) ≥ t for any node v in G.

Suppose that U is a subset of nodes of V (G) with |U | ≤ t. Then |T (G, U)| = |U |.

Proof: By assumption |U | ≤ t and κ(G) ≥ t, we prove the lemma by two cases; the first

for |U | < κ(G) and the second for |U | = κ(G).

If |U | < κ(G), by Lemma 1 and Lemma 2, |T (G, U)| = |N(U, U)| = |U |. This case holds.

Now, suppose that |U | = κ(G). We observe that, adding any node v of U to U , the

induced subgraph G[U
⋃
{v}] forms a connected graph. It implies that every node v of U is

adjacent to every connected components of G[U ]. We claim that the subgraph induced by

U contains a connected component A with cardinality at least 2 (See Fig. 4(a)). Then, the

connected component A is adjacent to all nodes in U and, so |T (G, U)| ≥ |U |.

Now, we prove the claim. Suppose on the contrary that every connected component

of the subgraph induced by U is an isolated node. Let v be an arbitrary node in U , and

let Gv = (Xv, Yv) be the order graph of v in G. Then U − {v} is a vertex cover of Gv,

because every connected component of G[U ] is an isolated node v. Since |U | ≤ t, we have

|U − {v}| ≤ t− 1. Therefore, the cardinality of a minimum vertex cover of the order graph
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Gv is at most t − 1. This contradicts to the hypothesis of orderG(v) ≥ t for any node v in

G. So G[U ] has a connected component A with cardinality at least 2 (See Fig. 4(b)). This

proves the claim, and the lemma follows. 2

(a)  G

A

v

v'

v"

U

v

A v"

v'

(b) v is connected to A

U

U

U

Figure 4: Example of the T (G, U) when |U | = t .

We are now ready to state and prove a theorem about the diagnosability of Matching

Composition Network under the comparison model. As an illustration, the conditions of the

following theorem are applicable to some well-known interconnection networks, such as Qn,

CQn, TQn and MQn for n = t ≥ 3.

Theorem 6 For t ≥ 2, let G1 and G2 be two graphs with the same number of nodes N ,

where N ≥ t + 2. Suppose that orderGi
(v) ≥ t for any node v in Gi and the connectivity

κ(Gi) ≥ t, where i = 1, 2. Then MCN G(G1, G2; L) is (t + 1)-diagnosable.

Proof: Since |V (G1)| = |V (G2)| = N , 2N ≥ 2(t + 2) > 2(t + 1) + 1. By Theorem 5,

orderG1L2
(v) ≥ t + 1 for any node v in G1L2. It remains to prove that G(G1, G2; L) satisfies

condition 3 of Theorem 4.

Let S1 and S2 be two distinct subsets of V (G) with the same number t + 1 of nodes ,

and let |S1
⋂

S2| = p, then 0 ≤ p ≤ t. In order to prove this theorem, we will prove that S1

and S2 are distinguishable, i.e., they satisfy either condition (3.a) or (3.b) of Theorem 4.
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Let G = G(G1, G2; L), U = V (G) − (S1
⋃

S2), then |U | = 2N − 2(t + 1) + p. Let

U = U1
⋃

U2 with Ui = U
⋂

V (Gi) and Ui = V (Gi)−Ui, i = 1, 2. Without loss of generality,

we assume that |U1| ≥ |U2|. Let |U1| = n1, |U2| = n2, n1 + n2 = 2(t + 1)− p, and n1 ≤ n2.

Since 0 ≤ n1 ≤ 2(t+1)−p

2
. The maximum value of n1 is equal to t + 1 when p = 0 and

n2 = t + 1. According to different values of n1 and n2, we divide the proof into two cases.

The first case n2 ≤ t which implies n1 ≤ t. The second case n2 > t, and this case is further

divided into three subcases n1 < t, n1 = t and n1 > t.

Case 1: n1 ≤ t and n2 ≤ t.

By Lemma 3, we have |T (G, U)| ≥ |T (G1, U1)| + |T (G2, U2)| = |U1| + |U2| = n1 + n2 =

2(t + 1)− p. We know that 0 < p ≤ t, |T (G, U)| ≥ 2(t + 1) − p > p and condition (3.a) of

Theorem 4 is satisfied.

Case 2: n2 > t.

We discuss the case as three subcases, (2a)n1 < t, (2b)n1 = t and (2c)n1 > t.

Subcase 2a: n1 < t.

Since κ(G1) ≥ t and |U1| = n1 < t, G[U1] is connected. By lemma 1 and lemma 2,

T (G1, U1) = N(U1, U1) = n1. There are n1 and n2 nodes in U1 and U2, respectively, and

n2 = 2t + 2 − p − n1 (See Fig. 5). If all the nodes in U1 are adjacent to some n1 nodes in

U2, there are still at least n2 − n1 = 2t + 2− p− 2n1 nodes in U2 such that each of them is

adjacent to some node in U1 under the matching L. So, |T (G, U)| ≥ |T (G1, U1)|+(n2−n1) =

n1 + (n2 − n1) = n2. Because n2 > t ≥ p, the proof of this subcase is complete.

Subcase 2b: n1 = t.

We know that n1 + n2 = 2(t + 1)− p, 0 ≤ p ≤ t, n2 > t and n1 = t, the only two valid

values for n2 are t + 1 and t + 2. n2 = t + 1 implies p = 1, and n2 = t + 2 implies p = 0. By
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G2

U2
U1

G1

1U 2U

Figure 5: Illustration of Subcase2a.

Lemma 3, |T (G1, U1)| = |U1| = t ≥ 2 > p for p = 0 or 1. Then the subcase holds.

Subcase 2c: n1 > t.

Observing that 0 ≤ n1 ≤
2(t+1)−p

2
, where 0 < p ≤ t and n2 ≥ n1 > t, so n1 = n2 = t + 1.

It also implies p = 0. Here, we will prove that the subcase satisfies either condition (3a) or

condition (3b) of Theorem 4.

First, if the subgraph induced by U contains a connected component A1 with cardinality

at least 2 (See Fig. 6) and it is adjacent to some node in U . Then |T (G, U)| > 0 = p, and

condition (3.a) of Theorem 4 is satisfied.

Otherwise, every connected component of U contains a single node only. We know that

S1 and S2 are distinguishable if there exists a path 〈u1 → u → u2〉 such that u ∈ U , and

u1, u2 ∈ S1 − S2 or u1, u2 ∈ S2 − S1. If p = 0, it implies S1
⋂

S2 = φ, any node u in G[U ]

with degree more than 2 must be connected to at least two nodes in S1 or S2 (See Fig. 6).

By Theorem 5, orderG1L2
(v) ≥ t + 1 for any node v in G1L2, therefore deg(v) ≥ t + 1 for any

node v. Since t ≥ 2, condition (3.b) of Theorem 4 is satisfied.

Hence, the subcase holds. 2
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u'

u1'u2'
u3'

G1

U1

S1

u

u1 u2
u3

A1

G2

U2

S2

Figure 6: Example of Subcase 2c.

Corollary 1 Let G1 and G2 be two graphs with the same number of nodes N . Suppose that

both G1 and G2 are t-diagnosable and have connectivity κ(G1) = κ(G2) ≥ t, where t ≥ 2.

Then MCN G(G1, G2; L) is (t + 1)-diagnosable.

5 Hypercube Q4 is 4− diagnosable

In [11], D. Wang has proved that the diagnosability of hypercube-structured multiprocessor

systems under the comparison model is n when n ≥ 5. However, the diagnosability of Q4 is

not known to be 4. We now prove it.

We observe that Q3 is 3-connected, orderQ3
(v) = 3 for any node v in Q3, and the number

of nodes of Q3 is 8, 8 ≥ t + 2 = 5 for t = 3. It is well-known that Q4 can be constructed

from two copies of Q3 by adding a perfect matching between these two copies. Therefore,

by Theorem 6, Q4 is 4-diagnosable.

However Q3 is not 3-diagnosable. In Fig. 7, there is a Q3, let S1 = {0, 5, 7} and

S2 = {2, 5, 7}. Then, by Theorem 1, S1 and S2 are not distinguishable as shown in the next

figure.

As we observe that most of the related results on diagnosability of multiprocessors systems
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(a)  Q3   (b)  Q3   

0

1 2

3

4

5 6

7

4 3 1 6

0 7 5 2
S1 S2

Figure 7: S1 = {0, 5, 7} and S2 = {2, 5, 7} are not distinguishable.

[3, 11] are based on a sufficient theorem, namely Theorem 3. Not satisfying this sufficient

condition, such as hypercube Q4, it does not necessarily imply that it is not 4-diagnosable.

Therefore, we propose a hybrid condition, 3(a) and 3(b) of Theorem 4, to check the di-

agnosability of multiprocessor systems under the comparison model. It is a necessary and

sufficient condition and it is more powerful to use. Applying our Theorem 4 and Theorem

6, we show that the diagnosability of Q4 is indeed 4.

6 Conclusion

In this paper, we propose a necessary and sufficient theorem to verify the diagnosability of

multiprocessor systems under the comparison-based model. The conditions of this theorem

include all the cases of the original necessary and sufficient condition stated in Theorem 1.

Therefore, it is more suitable for verifying the diagnosability of a system. Then we propose

a family of interconnection networks which are recursively constructed, called matching

composition networks.

Each member G(G1, G2; L) of this family are constructed from a pair G1 and G2 of

lower dimensional networks with the same number of nodes, joining by a perfect matching

L between the two. Applying Theorem 6 in this paper, we show that the diagnosability of

G(G1, G2; L) is one larger than those of the G1 and G2, provided some regular conditions

stated in Theorem 6.
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Many well-known interconnection networks, such as the Hypercubes Qn, the Crossed

cubes CQn, the Twisted cubes TQn, and the Möbious cubes MQn, belong to our proposed

family.

We note here that these special cases all satisfy the condition of Theorem 6 for n ≥ 4.

Thus, their diagnosabilities are n, for n ≥ 4. In particular, the diagnosability of the 4-

dimensional hypercube Q4 is 4.
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