
Workshop on Computer Networks

The Design and Implementation of a Mobile Agent-Based
Framework for Context Aware Computing

Tzu-Han Kao, Yi-Hsiang Chou, Ming-Chun Cheng, Hsin-Ta Chiao,

Shyan-Ming Yuan

Department of Computer and Information Science
National Chiao Tung University,

1001 Ta Hsueh Rd.,
Hsinchu 300, Taiwan.

Email: {gis89539, gis89515, native,
gis84532,smyuan}@cis.nctu.edu.tw

Abstract. With the progress of wireless and mobile network technology, people can access
information via various kinds of handsets or facilities of Information Appliance (IA), while
these facilities range from high-computed ones to low ones. Within the handsets, however,
cellular phones, PDA, Tablet PC enable people to surf the internet and move at same time
in the wireless network environment. Under such circumstance, people can access different
type of internet information, like words, sounds, images or videos, by specific terminal
device at anytime and anywhere. In such case, however, here come two problems: (1) The
movement of users is limited; (2) The users must carry their terminal device with
themselves. In order to solve these problems, we combine both the concepts of pervasive
computing and context awareness to develop a framework possessing mobile agent
paradigm and context data modeling.

Aimed at the present pervasive computing in the wireless network environment, we
propose a Mobile Agent Context Aware Framework– MACAF. In MACAF, we regard
mobile agent system as the fundamental computing platform, and describe three kinds of
context data by RDF - Component Profile, User Device Profile, and User Preference
Profile. In addition, we use dynamic class loader of JAVA and XML parsing techniques so
that when personal mobility and terminal mobility arise, users’ applications can move with
users via two kinds of mobility technique of agent of this system - Agent Migration
Approach (AMA), and State Transfer Approach (STA). This system makes applications
follow users and applications be reconfigured automatically after mobility so as to
accommodate various execution environments to reach the purpose of the context
awareness and the pervasive computing.

Keywords: context awareness, pervasive computing, mobile agent

The Design and Implementation of a Mobile Agent-Based
Framework for Context-Aware Computing

Tzu-Han Kao, Yi-Hsiang Chou, Ming-Chun Cheng, Hsin-Ta Chiao,

Shyan-Ming Yuan

Department of Computer and Information Science, National Chiao Tung University,
1001 Ta Hsueh Rd., Hsinchu 300, Taiwan.

{gis89539, gis89515, native, gis84532, smyuan}@cis.nctu.edu.tw

Abstract. With the progress of wireless and mobile network technology, people can access
information via various kinds of handsets or facilities of Information Appliance (IA), while
these facilities range from high-computed ones to low ones. Within the handsets, however,
cellular phones, PDA, Tablet PC enable people to surf the internet and move at same time
in the wireless network environment. Under such circumstance, people can access different
type of internet information, like words, sounds, images or videos, by specific terminal
device at anytime and anywhere. In such case, however, here come two problems: (1) The
movement of users is limited; (2) The users must carry their terminal device with
themselves. In order to solve these problems, we combine both the concepts of pervasive
computing and context awareness to develop a framework possessing mobile agent
paradigm and context data modeling.

Aimed at the present pervasive computing in the wireless network environment, we
propose a Mobile Agent Context Aware Framework– MACAF. In MACAF, we regard
mobile agent system as the fundamental computing platform, and describe three kinds of
context data by RDF - Component Profile, User Device Profile, and User Preference
Profile. In addition, we use dynamic class loader of JAVA and XML parsing techniques so
that when personal mobility and terminal mobility arise, users’ applications can move with
users via two kinds of mobility technique of agent of this system - Agent Migration
Approach (AMA), and State Transfer Approach (STA). This system makes applications
follow users and applications be reconfigured automatically after mobility so as to
accommodate various execution environments to reach the purpose of the context
awareness and the pervasive computing.

Keywords: context awareness, pervasive computing, mobile agent

1. Introduction
As the proliferation of the Internet, the Internet has played an important role in

people’s life. Logging on line has been already what many people do everyday. Nowadays

most people still log on line by using workstations or personal computers, these machines

are usually fixed in one location. Via these machines, which are capable of connecting to

the Internet, users can choose services they need on the Internet and make a request to the

services.

Recently, the development of wireless network goes to rapidity. Public places, such as

schools, cyber cafes, airports and hotels, are starting to construct wireless network

 2

environment. Being the case, you can also enjoy wireless network in the living room,

bedroom or any other places at your home.

In addition to desktop PCs and laptops, the wireless devices are getting multiform.

Because handsets and PDAs are easy to carry, they will play a significant part in wireless

network in the future. People can access abundant information on the Internet whenever

or wherever they want via heterogeneous wireless devices.

With the development of wireless and mobile network technology, these various

devices, such as PDA, Palm, and mobile phones provide an environment for people to

intercommunicate or access the content of the Internet in anytime or any place. These

operating systems, application execution environments and protocols of these devices are

different strongly, making software designer and user mobility become complicated

increment.

For instance, you may use a desktop PC with Ethernet in a company or a school, and

you may use a PDA or a cellular phone with various standards of wireless network, such as

GPRS, GSM or Bluetooth. Meanwhile, here comes a problem. The cause of this problem is

that the capabilities of wireless devices are different. The differences range from the screen

size, number of color, screen resolution and etc. Of these devices, there will cause

incompatible data between these devices, and this difficulty is inevitably for content

providers to face, for they must provide information for customers with all kinds of

devices.

Based on the phenomenon mentioned above, we enumerate the problems in wireless

network nowadays:

z Wireless environments and devices are heterogeneous

z Lack a universal mechanism to provide ubiquitous computing

z The capabilities of handheld devices are limited

Some researches investigate a concept of context awareness[3][4][5][6] to solve this

problem, including context awareness application and context aware mobile portal. These

applications or systems will sense the changes of users’ preferences or users’ device

capabilities[7][8] to provide appropriate users’ environments.

In this paper directed to the above, we integrate the concept of pervasive computing

and the concept of context awareness[3][4][5][6][13], developing a JAVA-based

framework– MACAF with the mobile agent paradigm[1][2][15] and context data

modeling.

 3

Aimed at the present pervasive computing in the wireless network environment, we

propose a context awareness-possessing framework - MACAF. We regard the mobile agent

system as the fundamental computing platform, and describe three kinds of context data by

RDF - Component Profile, User Device Profile, and User Preference Profile. In addition,

we apply a dynamic class loader of JAVA[14] and XML parsing techniques[19] so that

when personal mobility and terminal mobility arise, users’ applications can move with uses

via two kinds of mobility technique of agent of this system- Agent Migration Approach

(AMA), and State Transfer Approach (STA). Application programmers can write programs

with two characteristics of environmental adaptation and auto-reconfiguration by inheriting

or extending the software objects we developed to achieve the objective of context

awareness and pervasive computing.

The organization of this paper are as follow: in section 2 we brief a few basic

techniques, inclusive of mobile agent, context-awareness and Composite

Capability/Preference Profile (CC/PP)[8] developed by W3C; in section 3, we describe in

detail the system design of MACAF; in section 4, the context data modeling was

introduced; in section 5, we discuss the system interacting procedure of Agent Migration

Approach, State Transfer Approach, and profile change, when agent move in the system;

section 6, we summarize this paper by conclusions and the future works.

2. Background

2.1 Mobile agent

In system perspective, an agent is a software object with internal state that possesses the

following mandatory properties:

z Reactive: senses changes in the environment and acts according to those changes

z Autonomous: has control over its own actions

z Goal-driven: is proactive

z Temporally continuous: is continuously executing

And an agent may possess any of the following orthogonal properties:

z Communicative: able to communicate with other agents

z Mobile: can travel from one host to another

z Learning: adapts in accordance with previous experience

z Believable: appears believable to the end user

 4

Agents can be found in heterogeneous environment such as computer operating

systems, networks, databases, and so on. If we look at all these systems, we will find a

property shared by all agents: they have the ability to interact with their execution

environments and to act asynchronously and autonomously upon it.

Mobility is an orthogonal property of agents and we never want agents to move

stationary agents. A stationary agent executes only on the system where it begins execution.

In contrast, a mobile agent is not bound to a host where it starts execution. In conclusion, it

has the unique ability to transport itself from the host to another through networking.

Figure 1 illustrates mobile agent paradigm.

Fig. 1. The mobile agent paradigm

2.2 Context-aware computing

One challenge of the mobile distributed computing is to exploit changing

environments with a new class of applications that are aware of the context in which they

are running. Such context-awareness systems can examine computing environments and

make application can re-execute when the execution environments changed.

Three important aspects of context are: where you are, whom you are with, and what

resources are nearby. Context data is not merely the information of users’ locations, but the

other information related to users were involved. Exactly, context data includes information,

such as user’s location, device capabilities, network connectivity, communication

bandwidth and even user’s interpersonal relationship; e.g., whether you are with your

manager or with a co-worker or not.

Device mobility is that a client using his mobile device and move from one local area

network to another, and his mobile device, likes a mobile phone, is carried continually.

User mobility is that a client executes applications or services with a certain device in

one local area network and he can resume his tasks with a different facility in another local

area network after movement.

 5

2.3 Composite Capability/Preference Profile (CC/PP)

CC/PP[8] is derived from earlier work done within the W3C Mobile Access Interest

Group and the WAP Forum's User Agent Profile working group[7]. CC/PP is a general, and

extensible framework for describing users’ preferences and device capabilities. This

information can be collected into a profile and provided by context information servers or

content providers in the Internet.

The CC/PP framework is based on XML/RDF[9][12]. XML/RDF provides the

framework with the basic tools for both vocabulary extensibility, via XML namespaces,

and interoperability. The fundamental of the data modeling for a CC/PP is a tree. The initial

branches are the contextual components or user agents described in the profile. Each major

component may have a collection of properties or preferences. The description of each

component is a sub-tree whose branches are the capabilities or preferences associated with

that component. RDF makes modeling a wide range of data structures possible, including

arbitrary graphs, however it is unlikely that this flexibility will be used in the creation of

complex data models for profiles. A capability can often be described with a single RDF

statement with a simple, atomic value. In situations where this is not sufficient, RDF makes

capabilities with complex, structured values possible. This can be useful when multiple

values are needed. For example, a browser may support multiple versions of HTML. Figure

2 illustrates this tree structure with a few components and properties. Each component has

a type from which its class definition is inherited.

[MyProfile]--component-->[DeviceHardware]---type--->HardwarePlatform

| |
| ------CPU------>"PPC"
| |
| ---ScreenSize-->"320x180"
|
|
----component-->[DeviceSoftware]---type--->SoftwarePlatform
| |
| ---OSName----->"EPOC"
| |
| ---OSVersion-->"2.0"
| |
| ---OSVendor--->"Symbian"
|
|
----component-->[Browser]---type--->BrowserUA

|
----BrowserName------>"Mozilla"
|
----BrowserVersion--->"5.1"
|
----CcppAccept------->[]--type-->Bag

|
---li--->"text/plain"
|
---li--->"text/vnd.wap.wml"

Fig. 2. The components and properties of a CC/PP profile

 6

3. System Architecture
In the environment of our system architecture, we have to make an assumption

beforehand. There is at least one gateway responsible for providing services to users in

each local area network. The gateway plays the most important role in our system

architecture. We design the critical system components in gateways to achieve providing

various services to the users with heterogeneous devices (we call them clients). The

deployment of our system architecture is illustrated in Figure 3.

Internet

Router
ComputerServer

Workstation

Router

Laptop

Pocket PC
Tablet PC

ComputerServer

Workstation

Laptop
Pocket PC

Palm

Desktop PC

Desktop PC

UNIX workstation

Gateway

Repository Service

Client

Repository Services

Repository Services

Fig. 3. The system infrastructure of MACAF

Two local area networks in the bottom of Figure 3 are connected with each other via

the Internet. In each local area network, there are three important roles: gateway, client and

repository service. We highlight each of them with different styles of circles. In a local area

network, the gateway is responsible for providing services to the local clients and the

repository service provide resources which gateways need.

Instead of the gateway in the original local area network, the new one should provide

services continually for users when clients move from the original local area network to the

new one.

We figure out explicitly the system architecture proposed by us. From the front-end to

the back-end, our system architecture includes three tiers – Client tier, Gateway tier, and

Repository services tier respectively.

The Figure 4 illustrates:

z The left tier, the Client tier shows the client device components in our system, such

as Client API, User Agent, and Communication Interface.

z The middle tier, the Gateway tier shows the core components in the back-end side of

 7

our system, such as Allocated Agent, Agent Manager, Component Manager, Agent

Pool, etc.

z The right tier, the Repository Services tier shows the core repositories store

contextual components and documents in back-end side of our system, such as

Application Repository Service, Component Repository Service, etc.

 Gateway tier Repository Services tier

Communication Interface

Client API

AP 1 AP 2

Component
Repository

Service

Application

Repository
Service

Profile

Repository
Service

Client tier

Location

Service

User Agent

C
om

m
unication A

gents

Agent

Pool

Agent Manager
Component

Manager

A
ccessing A

gents

. . .

Allocated Agents

Component

Factory

Fig. 4 The system architecture of MACAF

3.1 Gateway Tier

The main function of gateway is to provide personalized and adaptive services to

users’ applications. In other words, the system provides for the clients the most appropriate

content based on the users’ environments.

Communication Agents

Agent Pool

Agent Manager

Component Manager

Application 1

Application 2

Function 1

Function 2

Function 1

Accessing Agents

Allocated Agents

Component Factory

Fig. 5. The components of a gateway

 8

First, we figure out the architecture of a gateway. It possesses these functionalities as

follows:

1. Receiving clients’ requests and serving them

2. Inter-operating among gateways to achieve the cooperation and collaborative services

3. Accessing and proxying repository services in back-end tier

In this paper, the term “agent” means agents in the agent pool and allocated agents, if

not specified. An allocated agent we called is an agent delegated to a client for doing the

client’s job.

The modules in the gateway include the following parts, which are enumerated as follows:

1. Agent Manager

An agent manager is the critical component in the gateway responsible for managing

the agents in agent pools or allocated agents. The inclusions are:

(1) Assigning an agent to serve a client

(2) Collecting the abandon allocated agents back to the agent pool

(3) Maintaining the number of agents in agent pool

(4) Communicating with agent managers in other gateways to move agents between

gateways

(5) Receiving the registration request from clients

(6) Reconfiguring agents for clients to provide personalized service

2. Agent Pool

An agent pool is a data structure in the system memory instead of in the disk.

Furthermore, agents as residents in it prepare to execute for performance consideration.

In this pool, once a client’s registration request is received, an agent initialized before

will be allocated by an agent manager.

3. Allocated Agents

An allocated agent is an agent was assigned to a client by the agent manager to provide

services. Figure 5 illustrated an allocated agent be magnified for explaining intrinsic to

it, and we can point out the following:

(1) Executing client’s applications

(2) Maintaining its clients’ profiles

(3) Each function contains no component or more

(4) Following a client who own it while the client move

4. Component Manager

A component manager is the critical component responsible for managing contextual

 9

components in the component factory and clients’ profiles. The inclusions are:

(1) Supplying agents with contextual components if necessary

(2) Maintaining the number of components in the component pool

(3) Accessing the component repository service and the profile repository service via

the accessing agent

(4) Processing the context data composed of the component profile and the user profile

5. Component Factory

A component factory, like the Agent Pool, is a cache to place contextual components.

Plus, prepared to be composed for performance consideration, contextual components

have been created by the component manager. In the factory, once a client’s request is

received, the requested contextual component is returned.

6. Communication Agent

A communication agent is responsible for wireless networking between clients and

gateways. Several wireless access techniques, such as IEEE802.11, Bluetooth and the

like, are provided. Trough them, agent managers can communicate and allocated agents

can be migrated.

7. Accessing Agent

An accessing Agent is responsible for the communication between the gateway and

repository services by means of wired networks.

3.2 Repository Services Tier

A repository service can be combined with a gateway. In other words, a computer can

be either a gateway or a repository service or both. The main function of repository

services is to provide data to gateways or clients. These data include:

1. Component Repository Service

The component repository service contains all necessary contextual components that

gateway may use. More precisely, a component manager of a gateway request

component repository service to transmit components, and provide them for

applications of agents.

2. Application Repository Service

The application repository service contains all class files of applications which

provided by application developers, and an agent will request it in order to obtain

necessary class files of applications.

3. Profile Repository Service

The profile repository service provides the functionality to make gateways obtain

 10

profiles through it; profiles, in which we defined some attributes to describe

heterogeneous execution environments, is for context-aware computing.

The profile repository service contains two kinds of profiles:

(1) Component Profile: describe the relationship between contextual components and

user profiles。

(2) User Profile: includes User Device Profile and User Preference Profile for

describing the capability of users’ devices and whose preferences respectively.

4. Location Service

In order to trace the location of clients, the location information should be recorded

when clients start to use service or move from some local area network to another.

3.3 Client Tier

Clients mean devices of end-users in which several components are designed for

application developers to program.

In client device, a user agent is the critical component, which is responsible for:

1. Issuing a request to a gateway for registration

2. Maintaining user’s state

3. Providing APIs, which hide the complexity of the low level in users’ devices for

convenience of applications development

3.4 Allocated Agent

Within our system framework, we partition a program into several object units: one

user corresponds to one agent composed of several applications, which are not concrete. An

application, as a matter of fact, is an execution unit conceptually, like Outlook, a necessary

application when we receive e-mails. This Outlook is the very application. In the operation,

we keep tracks of which applications are running at the moment and what functions the

applications have. A function can be regarded as the functions in Outlook, just like e-mail

reading and sending. In our design, an agent is composed of several functions executed in

some applications, all of which are made up of objects and components.

Take the description above as reference. We can observe agent could be composed of

functions, and each function (Function1, Function2…) is composed of different components

(C11, C12, …, Cnk). This partition has three advantages basically:

1. Programs can be composed dynamically and automatically.

2. Only the components of the agent need to be changed.

 11

3. These components can be updated on versions.

Agent

Function 1 Function 2 Function n

......

.

C11 C12 C1iC21 C22 C2jCn1 Cn2 Cnk

Fig. 6. The structure of an allocated agent

4. Context data modeling
In this section, the context data modeling include the component profiles and the user

profiles in our system are discussed in detail.

4.1 Component Profile

Component profile is necessary. It would be applied in the auto-reconfiguration of

allocated agents when users move from one local area network to another. In the scenario,

the context of users’ execution environment varies after mobility. A component profile can

provide the related information, just like the relationship between attributes and contextual

components, for reconfiguration of contextual components in an allocated agent to make a

user execute his application as a consequence. The schema of these profiles is based on

RDF. The part of description in a component profile is illustrated as below, Table 1. From

the left side to the right: the first vertical column is filled in names of contextual

components; the second is attributes corresponding to related contextual components; then

the third is domain of attribute values.

Table 1. The schema of Component Profile
Contextual Components Associated Attributes Values

Compression ApplyCompress {yes, no}

 CompressAlgorithm {ZIP, RAR, …}

Uncompression ApplyUncompress {yes, no}

 CompressAlgorithm {ZIP, RAR, …}

Explode Text MaxMsgSize {1024, 1400, …}

 OutputCharSet {US-ASCII, ISO-8859-1}

Convert to Gray ImageCapable {yes, no}

 ColorCapable {yes, no}

 12

Reduce Image Color Bits Per

Pixel

BitsPerPixel {2, 8 , …}

Resize Image ScreenSize {160x160, 640x480, …}

 ResizeImage {yes, no}

Spelling check CheckSpelling {yes, no}

Encrypt Data ApplyEncrypt {yes, no}

 EncryptAlgorithm {RSA, AES, …}

Decrypt Data ApplyDecrypt {yes, no}

 DecryptAlgorithm {RSA, AES, …}

Language Encoding

Transformation

CcppAccept-Language {zh, en, …}

Speech to text VoiceInputCapable {yes, no}

Text to speech TextInputCapable {yes, no}

 SoundOutputCapable {yes, no}

4.2 User Profile

User Profile is composed of two parts - User Device Profile and User Preference

Profile. A user device profile is a document describing the capabilities and the

configuration of a client device. For a client, many profiles about various devices may exist

in the meantime. A user preference profile describes a client’s preferences of applications

or our system configuration about what if users want or not. The main difference between

the user device profile and the user preference profile is that a client can has only one user

preference profile, on the grounds that the number of user device profile is depended upon

the number of devices the user has. Yet the user preference profile is not.

4.2.1 User Device Profile

User Device Profile describes the hardware configuration of Nokia 2160. In this

profile, the default attributes of Nokia 2160 are described. The values of these attributes

may be modified by users; like that the value of Memory showed below is modified from

16 MB to 32 MB, when client’s device differs from the original in this document.

 13

Fig. 7. The RDF graph of User Device Profile

4.2.2 User Preference Profile

User Preference Profile describes clients’ preferences, some of which are the kind of

languages, the availability of users and images, etc. A gateway can provide services

dependent on these preferences. Take Language for example. It is the attribute set to

English meaning that the client prefers to use English in the devices he owns. Another

example is Available. The attribute refers that: if he does prefer communication with others,

then set YES; if he does not, set NO.

Fig. 8. The RDF graph of User Preference Profile

5. The interaction of system components

5.1 The Approach of Agent Mobility

To handle mobility of agents, we propose two approaches – Agent Migration

Approach (AMA) and State Transfer Approach (STA), for the agent reconfiguration

procedure while a client moves to another network and issues a registration request

message. Therefore, the original gateway is requested by the new visited gateway for the

allocated agent of the client.

 14

5.1.1 Agent Migration Approach (AMA)

Agent Migration Approach (AMA) is the first approach applied while a client moves

to a new visited network, and then the allocated agent serving him will be completely

transferred to the visited gateway. This approach facilitates the allocated agent moved,

which needs no reconfiguration. In fact, it can not only eliminate the efforts of

programming, but also avoid spending time on reconfiguration in the new visited gateway.

Figure 9 illustrate this complete approach as follows:

1. The User Agent in the client device receives an advertisement message issued by

Agent Manager 1 of the gateway in the new visited network.

2. The User Agent issues a registration request message to the Agent Manager 1.

3. The Agent Manager 1 issues an entire agent request message to the Agent Manager 2

in original network in order to obtain the entire agent.

4. If the Agent Manager 2 transfers the entire agent, it will issue an entire agent reply

message with entire agent to the Agent Manager 1; otherwise this message will only

include the state of the agent. This procedure will be discussed in the second approach

in next section.

5. After the arrival of the agent, the Agent Manager 1 decides whether the agent should

reconfigure or not, according to its environment configuration. Such being the case, the

agent can conform to the new context in the visited gateway.

6. After the Agent Manager 1’s making sure the agent is ready, it will issue a registration

complete message to the User Agent to confirm the procedure is complete if ok, or a

registration reject message will be returned to the User Agent.

7. Besides the above, the registration procedure fails while the following cases occur, and

then a registration reject message is issued to the User Agent.

(1) The Agent Manager 1 receives the reject message, such as an agent state reject

message.

(2) The timer expires during the time the Agent Manager 1 is waiting for replying from

the Component Manager or the Agent Manager 2.

 15

Agent Manager 1User Agent Agent Manager 2

return

advertisement

registration
get agent

return agent

local

remote
reconfigure agent

Fig. 9. The sequence diagram of Agent Migration Approach

5.1.2 State Transfer Approach (STA)

State transfer approach (STA) is the second approach applied while a client moves to

the new visited network, and then the user’s state of the allocated agent serving him will be

transferred to the gateway in the new destination. The main contrary to AMA is that this

approach only transfers the minimal information– the user’s state to leverage the

reconfiguration of the agent in the transferring throughput sensitivity. By doing so, the

usage of bandwidth between gateways can be reduced.

Figure 10 illustrate this complete approach as follows:

1. The User Agent in the client device receives an advertisement message issued by the

Agent Manager 1 of the gateway in the new visited network.

2. The User Agent issues a registration request message to the Agent Manager 1.

3. The Agent Manager 1 issues an agent state request message to the Agent Manager 2

in original network in order to obtain the state of the agent.

4. If the Agent Manager 2 provides, it will issue an agent state reply message with this

agent state; otherwise an agent state reject message will be returned to the Agent

Manage 1.

5. After receiving the agent state reply message with the state, the Agent Manager 1 will

initiate the reconfiguration procedure.

6. At the beginning of this procedure, it issues a component request message to obtain

the contextual components from the Component Manager in order to assemble these

components with state into an entire agent.

7. When the Component Manager receives the component request message, it will

return these requested components as possible as it can.

8. When the Agent Manger 1 receives the component reply message, it will assemble

these received components and the state.

9. After the Agent Manager 1’s making sure the agent is ready, it will issue a registration

 16

complete message to the User Agent to confirm the procedure is complete if ok, or a

registration reject message will be returned to the User Agent.

10. Besides the above, the registration procedure fails while the following cases occur, and

then a registration reject message is issued to the User Agent.

(1) The Agent Manager 1 receives the reject message, such as the agent state reject

message

(2) The timer expired during the time the Agent Manager 1 is waiting for replying from

the Component Manager or the Agent Manager 2.

Agent Manager 1User Agent Agent Manager 2

return

advertisement

registeration
get agent

return state

Component
Manager

get components

return components local

remotereconfigure agent

Fig. 10. The sequence diagram of State Transfer Approach

5.2 User Profile Change

The handling process of user profiles change, differing from cases stated in last

section, is the adaptation mechanism to start the agent reconfiguration procedure to make

each client’s application run continually. However, it occurs when their user profiles

change due to the operation of users’ running applications, such like changing preferences.

There can be two repository services applied to the reconfiguration procedure. First, the

profile repository service provides the functionality to access user profiles in this

mechanism; second, component repository service provides contextual components for the

agent reconfiguration procedure.

Figure 11 illustrates a user profile of a client changed, when he set some preference of

an application function. Then, the agent reconfiguration procedure will start in order to

conform to new context.

The detailed following steps:

1. The User Agent issues a profile change request message to the Allocated Agent.

2. While the Allocated Agent receives the profile change request message, it will start

the agent reconfiguration procedure.

 17

3. In the commencement, the Allocated Agent will issue a profile update request

message to the Profile Repository Service.

4. The Profile Repository Service will return a profile update reply message with the

profile requested.

5. When the Allocated Agent receives this profile, it will check what component is needed

for the agent reconfiguration procedure. Then, it will issue a component request

message to the Component Manager.

6. When the Component Manager receives this message, it will issue a component reply

message with the requested components to the Allocated Agent. Then, it will

reconfigure.

7. After the Allocated Agent’s making sure it is ready, it will issue a profile update

complete message to the User Agent for confirming the procedure is complete if ok, or

a profile change reject message will be returned to the User Agent.

8. Besides the above, the following case occurs: the Profile Change Procedure fails, and a

profile change reject message will be issued to the User Agent.

(1) The Allocated Agent receives the reject message, such as the profile update reject

message.

(2) The timer expired during the time the Allocated Agent is waiting for replying from

the Component Manager or the Repository Service.

Occupied AgentUser Agent
Component

Manager

return

change profile

return components

get components

Profile
Repository

service

update profile

return

reconfigure agent local

remote

Fig. 11. The sequence diagram of profile change procedure

6. Conclusion and Future Works
In this paper, we propose the framework for pervasive computing in wireless network

based on mobile agent paradigm, defining three kinds of profiles to be the description of

the context data– Component Profile, User Device Profile, and User Preference Profile

respectively. Moreover, by XML parsing techniques and the loading techniques of dynamic

 18

class loader in JAVA, agent can be reconfigured automatically to be adapted to new

environments when personal mobility and terminal mobility arise. We also propose two

approaches, Agent Migration Approach (AMA) and State Transfer Approach (STA), to

provide programs development choice for program designers.

At the present time, we propose two ways of agent mobility, AMA and STA separately.

We cannot exactly judge which one is the best absolutely, nevertheless, we will measure

their performance depended on the size of agent, the numbers and size of components, etc,

in some scenarios. Afterward, through the analysis of the two approaches of agent mobility,

we can strengthen our system to decide what approach to be performed automatically and

intelligently.

In the future, we will make further exploration into several distributed issues, for

example, the security issue, the fault tolerance issue and the load balance issue in the

gateway.

As to the future research, we can integrate the Web Service [11] and MACAF, or apply

MACAF to GPRS and UMTS toward reaching the objective of pervasive computing

wherever and whenever proper.

References

[1] Danny B. Lange, Mitsuru Oshima, Programming and deploying Java mobile agents

with Aglets, Addison-Wesley, 1998.

[2] IBM Aglets, http://aglets.sourceforge.net.

[3] Kovacs, E., Rohrle, K., Schiemann, B.,”Adaptive mobile access to context-aware
services”, Agent Systems and Applications 1999 and Third International Symposium on
Mobile Agents. Proceedings. First International Symposium on 1999 Page(s): 190 –201.

[4] Prototyping Context-Aware Mobile Applications,
http://www.cc.gatech.edu/fce/cyberguide /pubs/chi96-cyberguide.html.

[5] A System Architecture for Context-Aware Mobile Computing,
http://citeseer.nj.nec.com/schilit95system.html.

[6] B. Schilit, N. Adams, and R.Want, “Context-Aware Computing Applications”, Proc. of
Workshop on Mobile Computing Systems and Applications, pp. 85-90, 1995

[7] WAP User Agent Profile Specification, http://www.wapforum.org/what/technical/SPEC-
UAProf -19991110.pdf.

[8] CC/PP, http://www.w3.org/Mobile/CCPP/, http://www.w3.org/TR/CCPP-struct-vocab/,
http://www.w3.org/TR/2000/ WD-CCPP-ra-20000721/.

[9] RDF, http://www.w3.org/RDF/, http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/.

[10] Grasshopper, http://www.grasshopper.de/.

[11] Web Services, http://java.sun.com, http://www.ibm.com.

 19

http://aglets.sourceforge.net/
http://www.cc.gatech.edu/fce/cyberguide /pubs/chi96-cyberguide.html
http://citeseer.nj.nec.com/schilit95system.html
http://www.wapforum.org/what/technical/SPEC- UAProf -19991110.pdf
http://www.wapforum.org/what/technical/SPEC- UAProf -19991110.pdf
http://www.w3.org/Mobile/CCPP/
http://www.w3.org/TR/CCPP-struct-vocab/
http://www.w3.org/TR/2000/ WD-CCPP-ra-20000721/
http://www.w3.org/RDF/
http://www.w3.org/TR/1999/REC-rdf-syntax- 19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax- 19990222/
http://www.grasshopper.de/
http://java.sun.com/
http://www.ibm.com/

[12] T. Bray, J. Paoli, C. Sperberg-McQueen, et al, Extensible Markup Language (XML)
1.0, 2nd ed., W3C Recommendation, http://www.w3.org/TR2000/REC-xml-20001006

[13] G. Chen and D. Kotz, A Survey of Context-aware Mobile Computing Research,
Technical Report TR2000-381, Department of Computer Science, Dartmouth College,
United Kingdom, 2001.

[14] J. Gosling, B. Joe, and G. Steele, The Java Language Specification, Addison-Wesley,
1996.

[15] D. Lange, Java Aglet Application Programming Interface (J-AAPI) White Paper –
Draft 2, IBM Tokyo Research Laboratory, 1997.

[16] Jean Bacon, “Toward Pervasive Computing”, IEEE Pervasive Computing, 2001.

[17] Stephen S. Intille, “Designing a Home of the Future”, IEEE Pervasive Computing,
2002.

[18] Nikos Anerousis, and Euthimios Panagos, “Making Voice Knowledge Pervasive”,
IEEE Pervasive Computing, 2002.

[19] JAXP API, http://java.sun.com/xml/

 20

http://www.w3.org/TR2000/REC-xml-20001006

