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Abstract - NAT (Network Address Translator) has been widely used to protect private networks and 

resolve IPv4 address depletion. All hosts behind the NAT have only private IP addresses instead of 

public IP addresses. Due to the nature of NAT that hides the internal network topology, a service located 

behind a NAT is unreachable and thus protected to some degree from the outside world. Despite some 

schemes have been proposed to help a host on a public network access an internal service, it is still 

difficult to access a service that is protected behind multiple NAT boundaries. In this paper, we propose 

a protocol that allows an outsider to access services protected behind disparate address realms. With the 

collaboration of service-probing servers, a bidirectional communication channel can be established 

between the outsider and the protected service. To release resource occupied by closed or dead sessions, 
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this paper addresses the detection of channels that are no longer used. In addition, a comparison with the 

related work is also given in this paper. 
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I. INTRODUCTION 

With the rapid deployment of broadband Internet services, depletion of IPv4 address space and 

protection of enterprise networks have become important issues recently. A long-term solution would be 

IPv6 [3] with IPSec [7], but it requires a major upgrade to the whole internetworking infrastructure. In 

contrast, NAT (Network Address Translator) [13][14] and NAT variants by themselves provide a 

transparent routing and protection solution to end hosts that need to communicate between disparate 

address realms without changing to end hosts. For these reasons, NAT has been widely deployed by 

network planners. A NAT device modifies either the source or destination address and maintains states 

for these updates so that datagrams pertaining to a session can be transparently routed to the right host in 

either realm. According to current deployment scenarios, NAT can be categorized into two types: 

single-level NAT and multi-level NAT. A single-level NAT means address translation is performed once 

during the delivery of a packet; while a multi-level NAT means an address is translated multiple times 

before arriving at the destination. 

Despite the convenience brought by network address translation, there are also some limitations 



 

[12-14]. Naturally, NAT hides internal network topology from the external world so that no internal 

service behind NAT is visible to an outsider. Besides, NAT allows only uni-directional (outbound) 

connections instead of bidirectional (inbound and outbound) connections [12-14], preventing any 

protected services from being reached from the outside world. 

In the last few years, some schemes were proposed to solve the problems caused by NAT, focusing 

on either service probing or internal service connectivity. SLP (Service Location Protocol) proposed by 

E. Guttman, et al. [4] was introduced to provide a framework for a host to probe Internet services 

dynamically. There are four protocols based on the concept of SLP: LDAP (Light Directory Access 

Protocol) [6][16], DNS (Domain Name System) [10], Sun’s Jini  [5][17] and Berkeley’s SDS (Secure 

Service Discovery Service) [2]. Unfortunately, compatibility issues with NAT were not considered in the 

designs of these SLP-based protocols. For internal service connectivity, four schemes were proposed to 

deal with NAT: port forwarding [8], DNS_ALG (DNS Application Level Gateway) [15], Expanded NAT 

[9] and RSIP (Realm-Specific IP) [1]. Port forwarding creates a fixed port for each internal service, but 

it cannot handle applications with dynamic changing ports. DNS_ALG is an extension to DNS, 

providing internal address mappings only good for one-level NAT deployment. Since Expanded NAT is 

IP-tunneling based and it modifies the NAT mapping table to support internal server connection ability, 

it neglects the problem of private IP address conflict. RSIP is intended as a replacement to NAT in 

which end-to-end communication can be maintained. RSIP is different from NAT in that RSIP requires 



 

each host must be RSIP-aware in layer 3 and layer 4 of the TCP/IP protocol stack, which might be 

considered difficult in a wide deployment scenario. 

In this paper, we propose a service probing protocol for probing services protected behind 

multi-level NAT, based on the concepts of SLP. The proposed protocol assists an outsider to access the 

protected services with the helps of a group of service-probing servers, which may or may not belong to 

the same probing hierarchy. When a match is found, our protocol is responsible for reserving a 

bidirectional communication path between the two hosts by interfacing with the associated NAT devices 

to setup the necessary address mapping and filtering rules on the NAT device dynamically. 

This paper is organized as follows. In Section II, we present a protocol for probing services across 

multiple NAT boundaries. In Section III, we discuss the detection of a session that is no longer used. At 

last, our protocol is compared with other schemes and a conclusion is given in Section IV and V, 

respectively. 

II. SERVICE PROBING PROTOCOL 

In this section, we present a protocol for discovering services protected across multiple NAT realms. 

The protocol comprises three kinds of participants: user agent (UA), service agent (SA) and probe server 

(PS). UA is a process working on the user’s behalf to setup communication channels for services. SA is 

a process working on behalf of one or more services to perform the service advertisement function. PS is 



 

an application that collects service advertisements and exchanges the advertisement information with 

other cooperative PSs. SA must advertise its service to the PS of its NAT realm upon service startup. In 

terms of functionally, PS also performs the following two tasks: service probing and channel 

establishment. Service probing is a procedure to locate the service requested by the UA. Channel 

establishment is a procedure to setup a bidirectional communication path between the UA and SA, 

which is fulfilled by configuring the associated address mapping rules on the NAT devices [11] along 

the path. Since a PS and NAT device of the same realm have to work together to achieve the channel 

establishment, they can be integrated into a physical device for the sakes of security and efficiency. 

A probing hierarchy that forms an administrative group is a rooted tree structure in which each 

node represents a PS. A typical probing hierarchy is illustrated with Fig. 1. For simplicity, a probe server 

is denoted by )],...,,...,,(,[ 21 mi aaaamP , where m is the level of the PS in the hierarchy, ia  represents the 

ia -th node of level i, and the sequence ),...,,...,,( 21 mi aaaa  is called the index of the PS. The hierarchy root 

is denoted by ],0[ φP  in particular, with a null index. In a probing hierarchy, the common index of a 

group of PSs is the index of their closest common ancestor. For example, the closest common ancestor 

of P[2,(1,1)] and P[2,(1,2)] is P[1,(1)],and thus their common index is (1). 
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Fig. 1. A typical probing hierarchy. 

The PS from which a UA initiates a service request is called the originating PS, while the PS to 

which the SA belongs is called the terminating PS. The path from the originating PS to the terminating 

PS is called the probing path of the service request. Since a probing hierarchy is a tree-like structure, the 

probing path between any two PSs of the same hierarchy is unique. Given any two PSs 

)],...,,(,[ 21 maaamP  and )],...,,(,[ 21 nbbbnP , if their common index is ),...,,( 21 kccc , where 0 ≤ k ≤ m and 0 ≤ k 

≤ n, we define the probing path (denoted by ω ) of a service request initiated from )],...,,(,[ 21 maaamP , to 

be the sequence of all PSs on this path, which is  

ω = { )],...,,(,[ 21 maaamP , )],...,,(,1[ 121 −− maaamP , …, )],...,,(,[ 21 kmaaakmP −− , 

)],...,,(,1[ 121 +−+− knbbbknP , …, )],...,,(,[ 21 nbbbnP }. 

The number of nodes (denoted by σ ) of the probing path ω  would be 

σ = (m + n - 2k + 1). 

Since a probing request flows from the first PS on a probing path to the last PS, the previous PS of 

any PS on a probing path is called the upstream PS of this PS, while the next PS is called the 



 

downstream PS. Similarly, the previous NAT realm of any PS on a probing path is called the upstream 

realm of this PS, while the next NAT realm is called the downstream realm. 

According to the life cycle of a communication session, the proposed protocol consists of three 

procedures: Service advertisement, Channel setup and Channel release procedures. 

A. Service Advertisement Procedure 

The service advertisement procedure is used for exchanging information about service locations 

and types. Each PS collects such information in a database called the service directory. Typically, entries 

in a service directory are accessed through the indexes of PSs. Each indexed entry in a service directory 

is associated with a list of services provided by the SAs belonging to the PS of that index. The 

construction of a service directory is achieved through the following sub-procedures, which can be 

activated in an arbitrary order throughout the lifetime of each participant. 

1) Registering a service: Each SA periodically advertises a service registration message (RegRqst) 

to register its service with the PS in the same NAT realm. RegRqst can be either a unicast or broadcast 

message depending on whether the SA has been configured the address of its PS in advance. The 

detailed contents of RegRqst are not defined in this paper, but they should at least include a service 

profile with a unique service identifier, the service type and address. If there is any PS that is willing to 

serve the SA, the PS will respond with a service registration reply message (RegRply), informing the SA 



 

that the service has been registered. Meanwhile, the PS that accepts the registration also keeps the 

service profile in its service directory. If any security policy is enforced, RegRply should contain a 

credential that can be verified by the SA. A PS keeps an expiration timer for each registered service. If 

the timer of any service expires, the service will be considered unavailable and taken out of the service 

directory.  

2) Building a service directory: Each PS in the system periodically advertises a probe 

advertisement message (PrbAD) on all connected NAT realms using a broadcasting or multicasting 

mechanism. PrbAD is a one-way notification message, and it does not require a response. The contents 

of PrbAD are not defined in this paper, but they should include the service directory stored on the PS 

and the index of the PS. Once a PS receives any PrbAD from the neighborhoods, it iterates through all 

entries in PrbAD. If the entry cannot be found in the PS’s service directory, it will be added to the 

service directory. Otherwise, the entry will replace the existing entry in the service directory. The time 

when the service directory on each PS becomes stable depends on the interval of advertisement. Once a 

service directory becomes stable, it will stay unchanged until any service change is made. 

3) Finding a probe server: Each UA learns about the address of the active PS and the service 

directory by monitoring the PrbAD message over the local network on which the UA currently resides. 

If a UA has the capability to travel among different NAT realms, it can also switch between different 

PSs dynamically. 



 

B. Channel Setup Procedure 

The purpose of this procedure is to help a UA probe the requested service across multiple NAT 

realms and establish a bidirectional channel hop-by-hop between the UA and SA. Channel establishment 

can be expressed with the following four steps and shown with bold lines in Fig. 2. Note the SA that 

provides the service is not involved in this procedure. 

Step 1: When a UA wants to query a service, it sends a service request message (SrvRqst) to the 

originating PS, )],...,,...,,(,[ 21 mi aaaamP  (abbreviated as origP ) on UA’s NAT realm. SrvRqst contains the 

service profile to be requested. When origP  receives SrvRqst from the UA, it searches the requested 

service and finds out the corresponding terminating PS in the service directory. Then, origP  computes 

the probing path ω  to the terminating PS, )],...,,(,[ 21 nbbbnP  (abbreviated as termP ). 
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Fig. 2. The channel setup procedure. 

 Step 2: If the UA is authorized to request the service, origP  instructs the NAT device to allocate a 

free address on the downstream realm for address translation and setup a NAT mapping entry on the 

NAT device. Then, origP  initiates a probe request message (PrbRqst) to its downstream PS, in which it 



 

contains ω , the service profile to be requested and the source address on the downstream realm for this 

service request. PrbRqst traverses hop-by-hop from origP  to termP . Each PS on ω  must also instruct its 

NAT device to allocate a free address on the downstream realm for address translation and setup a NAT 

mapping entry for address translation between its own realm and the downstream realm. The source 

address of the service request contained in PrbRqst is taken as the source address in the NAT mapping 

entry. If any of the nodes on ω  fails to reserve the address translation resource, the failed node will 

return a probe reply message (PrbRply) to its upstream PS. In this case, PrbRply contains the status code 

indicating an error of this probe request. The PrbRply flows in upstream direction back to origP . Each 

node on the return path instructs its NAT device to release the allocated address and delete the 

temporarily reserved NAT mapping entry. 

 Step 3: When PrbRqst arrives at termP , it verifies if the requested service is still in service at the 

time being. If the service is available, termP  will respond a PrbRply with a status code indicating that 

the request can be fulfilled and the NAT mapping entry has been setup successfully. The PrbRply flows 

in upstream direction back to origP . If quality of service (QoS) should also be ensured, bandwidth 

allocation and any other QoS parameter configuration are done in this step. 

 Step 4: When origP  receives a successful PrbRply from its downstream PS, it implies that the 

bidirectional communication channel between the UA and SA has been setup properly. Then, origP  

sends a service reply message (SrvRply) back to the UA, indicating that the request has been fulfilled. 



 

Otherwise, if the PrbRply shows an error, origP  sends a SrvRply with a status code that points out the 

failure. Upon the reception of SrvRply, the UA verifies the status code 

C. Channel Release Procedure 

This procedure is activated by origP or termP  in one of the following conditions: 

1) Implicit release: After the session is up, both the originating and terminating NAT devices start 

to monitor the traffic activity between the UA and the SA. If either one detects that an existing session 

may no longer be used or idle exceeding expected period of time, it will immediately notify its PS to 

initiate the channel release procedure. 

2) Explicit release: SA sends a release request message (RlsRqst) to termP , indicating that the 

session has been closed explicitly. RlsRqst contains the profile of the service to be released. 

Fig. 3 illustrates the scenario of an implicit-release procedure initiated by origP . Explicit-release 

procedure or implicit-release procedure initiated by termP  works in a similar way as the procedure by 

origP , and is omitted for simplicity. In Fig. 3, two steps are required to release the channel. 
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Fig. 3. The implicit channel release procedure. 



 

Step 1: origP  first issues a RlsRqst, which is then forwarded along the probing path to termP . 

Step 2: When termP  receives the RlsRqst, it instructs its NAT device to release the allocated address 

and delete the corresponding NAT mapping entry. Then, termP  returns a release reply message (RlsRply) 

to its upstream PS. Each PS on the probing path releases the allocated address and deletes the reserved 

NAT mapping entry, respectively. 

III. DECTECTION OF A CLOSED SESSION 

Detection of a closed session that triggers an implicit channel release varies from applications to 

applications. There is no such a universal algorithm to precisely distinguish between sessions that are 

idle for an exceeded time or have already been closed. However, to prevent the possibility that channel 

resource on a NAT device is occupied by unused sessions, we address two practical methods to handle 

the issues on both UDP and TCP sessions as follows. 

1) Connectionless (UDP) sessions: UDP-based sessions are always application-specific. We can 

keep a timer on each active session and retire the expired sessions. Generally, a network administrator 

can choose a timeout value for each application, depending on the behavior of the application and the 

infrastructure of the network. 

2) Connection-oriented (TCP) sessions: A NAT device can detect the termination of each session 

precisely, for a TCP-based session usually ends with the packet carrying a SYN or RST flag. According 



 

to the suggestion by the authors of NAT [14], a TCP-based session could only be assumed to have been 

terminated after a period of 4 minutes subsequent to this detection. However, since the UA or SA may 

be disconnected from the network or closed abnormally, the NAT device cannot just reply on the 

reception of such flags. A timer mechanism should also be enforced on each active session instead. The 

selection of a timeout value for a TCP session depends on the infrastructure of the network only, and is 

application independent. 

IV. COMPARISONS 

In this section, the proposed protocol is compared with the related work mentioned in the first 

section and summarized in TABLE I. Two factors are compared: protocol efficiency and NAT 

compatibility. 

TABLE I 

THE COMPARISONS 

 Numbers of 
messages for 

service 
registration 

Numbers of 
messages for 

service 
probing 

Single-level NAT 
compatible 

Multi-level NAT 
compatible 

SLPv2 N/A N/A No No 
DNS_ALG N/A ≥ 2(n+1) Yes No 

SDS ≤ (n+1) 2(n+1) No No 

Our protocol 2 2(n+1) Yes Yes 
 

In terms of protocol efficiency, we compare the numbers of messages for service registration and 



 

service probing. For simplicity, we assume that there is exactly one PS in each NAT realm and each PS 

in the system forms a full n-level binary tree with 2n+1-1 nodes. In DNS_ALG, since the DNS database 

is manually setup by the network administrator, no service registration message can be made 

dynamically. A DNS query in the tree may exceed 2(n+1) messages. As for SDS, when a server 

registers its service, the registration message propagates toward the root node and at most (n+1) 

messages are required. For a service probing, SDS requires 2(n+1) messages. In SLPv2, since directory 

agents do not form a tree structure, the number of messages for service registration cannot be estimated. 

Service probing is done by periodically multicasting the request using the multicast convergence 

algorithm [4]. The number of registration messages cannot be estimated as well. In our protocol, two 

messages are required for service registration, and at most 2(n+1) messages are needed for service 

probing depending on the locations of the UA and SA. The result is similar to other schemes. 

Since NAT compatibility were not considered by SDS and SLP-based protocols, they have 

difficulty to function well under the networks with NAT. Despite DNS_ALG was designed to work with 

NAT, it can only survive under the networks with single-level NAT. Instead, our protocol has been 

designed to be interoperable with single-level as well as multi-level NAT. As a result, our protocol can 

perform service probing and channel establishment across multiple NAT boundaries without scarifying 

the efficiency. 



 

V. CONCLUSION 

The increasing deployment of home networks and virtual private networks has greatly encouraged 

the application of NAT. We can foresee in the near future that new users of broadband services may be 

assigned only private addresses. In this way, the risk of being attacked by a hacker can be reduced. 

However, NAT also has the difficulty of providing network services of a private network to the public 

networks. It is desirable to protect the internal hosts of a private network and at the same time provide 

network services to public networks. To cope with the problem, we proposed a service probing and 

channel establishment protocol that allows an outsider to access an internal service across multiple 

network address translators. In our protocol, a probe server is located in each disparate NAT realm, 

handling service probing requests and interfacing with the associated NAT device to establish a 

bidirectional channel along the communication path between the host and service. 

The protocol comprises three procedures for handling each communication session: service 

advertisement, channel setup and release procedures. Service advertisement procedure is performed 

during the lifetime of each participant for knowing each other. Channel setup procedure is performed 

when an end host issues a service request. After service probing and channel establishment are 

accomplished in the channel setup procedure, the session activity is monitored. Once the session is 

considered to be no longer active, the channel release procedure is triggered to tear down the channel. 

Compared to other service probing protocols mentioned in Section I, our protocol can perform service 



 

probing and channel establishment across multiple NAT boundaries without sacrificing its efficiency. 

In an environment that involves privacy and trading, security policies must be enforced on each 

participant to eliminate the risk of a malicious attack. The enhancement of the proposed protocol to 

support secure probing and channel establishment is discussed in this paper, and is left as the future 

work. 

REFERENCES 

[1] M. Borella, J. Lo, D. Grabelsky, and G. Montenegro, “Realm Specific IP: Framework,” Internet 

RFC 3102, Nov. 2001. 

[2] S. E. Czerwinski, B. Y. Zhao, and T. D. Hodes, A. D. Joseph, and R. H. Katz, “An architecture for a 

Secure Service Discovery Service,” Proceedings of the Fifth Annual ACM/IEEE Intl. Conference 

on Mobile Computing and Networking, pp. 24-35, Aug. 1999. 

[3] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” Internet RFC 2460, 

Dec. 1998. 

[4] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service Location Protocol, Version 2,” Internet 

RFC 2608, Jul. 1999. 

[5] E. Guttman, and J. Kempf, “Automatic discovery of thin servers: SLP, Jini and the SLP-Jini 

Bridge,” IECON '99 Proceedings of the 25th Annual Conference of the IEEE, pp. 722-727, Vol.2, 



 

Dec. 1999. 

[6] V. Hasller, “X.500 and LDAP Security: A Comparative Overview,” IEEE Network, pp. 54-64, Vol. 

13, Issue: 6, Nov./Dec. 1999. 

[7] S. Kent, R. Atkinson, “Security Architecture for the Internet Protocol,” Internet RFC 2401, Nov. 

1998. 

[8] D. Kosiur, Building and Managing Virtual Private Networks, John Wiley & Sons, New York, 1998. 

[9] E.S. Lee, H.S. Chae, B.S. Park, and M.R. Choi, “An expanded NAT with server connection ability,” 

TENCON 99, Proceedings of the IEEE Region 10 Conference, pp. 1391-1394, Vol.2, Sep. 1999. 

[10] P. Mockapetris, “DOMAIN NAMES - CONCEPTS AND FACILITIES,” Internet RFC 1034, Nov. 

1987. 

[11] J Rosenberg, Pyda Srisuresh, A. Molitor, Abdallah Rayhan, J Kuthan, “Middlebox Communication 

Architecture and Framework,” Internet draft, Mar. 2002. 

[12] Shiuhpyng Shieh, Fu-Shen Ho, Yu-Lun Huang, and Jia-Ning Luo, “NETWORK ADDRESS 

TRANSLATORS: Effects on Security Protocols and Applications in the TCP/IP Stacks,” IEEE 

Internet Computing, pp. 42-49, Vol. 4, Number: 6, Nov./Dec. 2000. 

[13] P. Srisuresh and K. Egevang, “Traditional IP Network Address Translator (Traditional NAT),” 

Internet RFC 3022, Jan. 2001. 



 

[14] P. Srisuresh and M. Holdrege, “IP Network Address Translator (NAT) Terminology and 

Considerations,” Internet RFC 2663, Aug. 1999. 

[15] P. Srisuresh, G. Tsirtsis, P. Akkiraju, and A. Heffernan, “DNS extensions to Network Address 

Translators (DNS_ALG),” Internet RFC 2694, Sep. 1999. 

[16] M. Wahl, T. Howes, and S. Kille, “Lightweight Directory Access Protocol (v3),” Internet RFC 

2251, Dec.1997. 

[17] J. Waldo, “The JINI architecture for network-centric computing,” Communications of ACM, pp. 

76-82, Vol. 42, Issue: 7, Jul. 1999. 


