
 1

(1) Name of workshop: Workshop on Computer Networks

(2) Title: ESP: An Efficient Storage Management Policy for Proxies

(3) Abstract
 With the enormous growth of the WWW, the Internet has seen a large volume of
traffic, which introduces severe congestion and worsens our surfing experience. Proxy
cache is a common solution to this problem. It reduces the traffic on the Internet and
the response time for Web accessing. However with the potential growth of the WWW,
the proxy is overburdened and that in turn increases the response time even more.
 In this paper we propose an efficient mechanism, ESP (Efficient Storage
management policy for Proxies), to reduce the file operation and disk seek time in
order to improve the performance of proxies. We implement ESP by modifying the
source code of Squid. Squid with ESP shows a 100% performance improvement to
the original Squid design.
.

(4) Name: Lichung Chiang (江立中) and Wen-Shyen E. Chen (陳文賢)
 Current affiliation: Institute of Computer Science National Chung-Hsing
 University
 Postal address: 台中市南區國光路 250號
 No. 250, Guoguang Rd., Nan Chiu, Taichung, Taiwan 402, R.O.C.
 E-mail address: {encore, echen}@cs.nchu.edu.tw
 Telephone number: 0936-288857, 04-22840497~901
 Fax number: 04-22853869

(5) Contact author: Lichung Chiang (江立中)
 Telephone number: 0936-288857
 encore@cs.nchu.edu.tw

(6) Key words: proxy, cache, squid, performance

 2

ESP: An Efficient Storage Management Policy for Proxies

Lichung Chiang and Wen-Shyen E. Chen
Institute of Computer Science

National Chung-Hsing University
Taichung, Taiwan

E-mail: {encore, echen}@cs.nchu.edu.tw

Abstract

 With the enormous growth of the WWW, the Internet has seen a large volume of
traffic, which introduces severe congestion and worsens our surfing experience. Proxy
cache is a common solution to this problem. It reduces the traffic on the Internet and
the response time for Web accessing. However with the potential growth of the WWW,
the proxy is overburdened and that in turn increases the response time even more.
 In this paper we propose an efficient mechanism, ESP (Efficient Storage
management policy for Proxies), to reduce the file operation and disk seek time in
order to improve the performance of proxies. We implement ESP by modifying the
source code of Squid. Squid with ESP shows a 100% performance improvement to
the original Squid design.

1 Introduction
 With the enormous growth of the WWW, the Internet has seen a large volume of
traffic which introduces severe congestion and worsens our surfing experience. Proxy
cache is a common solution to this problem. It reduces the traffic on the Internet and
the response time. However with the potential growth of the WWW, the proxy is
overburdened and that in turn increases the response time even more.
 Recent researches have indicated that disk I/O overhead is becoming an
important bottleneck for the performance of proxies. Rousskov and Soloviev[1]
observed that disk delay contribute about 30% toward total hit response time. Mogul
[2] stated that their observations suggest the disk I/O overhead turns out to be even
higher than the latency improvement from cache hit. Markatos [3] also pointed out
that a file creation followed by a file deletion may easily take up to 50 milliseconds,
even on modern hardware. Given that the median size of a cache object is 5 KB, and
that for each object a proxy creates a file to store it and deletes another file to free
space. A proxy can only store objects at a rate of 100Kbytes/sec, which is even lower
than most Internet connections.

 3

 In order to eliminate the overhead of file creation and deletion, we modify the
source code of Squid to implement our storage management policy, ESP, which stores
all objects in a single file. However this means that we have to manage the space in
the file by ourselves. Furthermore, writing data scattered all over the disk may cause
additional movement of read/write head and consequently increases the seek time, so
ESP stores a whole object together. To further reduce the additional movement of
read/write head, ESP writes in a log-structured manner. A log-structured file system [4]
writes sequentially to reduce the movement of read/write head while writing.
 The rest of this paper is organized as follows. Section 2 provides a detailed
introduction to ESP. In Section 3 we show the performance of ESP compared with
original Squid. Section 4 gives our conclusions and future work.

2 ESP
 As mentioned above ESP has the following features:

 It stores all objects in a single file
 It stores a whole object together
 It writes in a log-structured manner

To achieve these features, ESP maintains a pointer pos to indicate where the next
object is to be stored and a variable remain to record the remaining size of the current
contiguous free space. If remain is smaller than the object to be stored onto the disk,
EPS searches for the next contiguous free space of which the size is larger than a
certain threshold. In order to speedup the search of contiguous free space, ESP
manages the space in the file with a data structure called multileveled-bitmap, which
is a variant of buddy system [5]. Multileveled-bitmap can be regarded as a set of
several buddy systems as Figure 1 shows.

0 0 0 0 0 0 0 0

1 1 1 1

0000000000000000

 legend: 1 free space
 0 used, split, or merged space
Figure 1: An example of the initial state of a 3 leveled-bitmap, it can be regarded as

 4

several specialized buddy system, where each buddy system has only 3 levels.
 While the concepts of splitting and coalescing are the same, the space allocation
is very different. If the minimal allocation unit is 4KB (we called it a block in the rest
of this paper), multileveled-bitmap allocates 12KB to a 9KB object and aligns it on a
multiple of 4K (we can, logically, regard it as 3 4KB objects except for that they must
be stored sequentially and contiguously) while buddy system allocates 16KB and
aligns it on a multiple of 16KB which is the size of the space that the buddy system
allocates to this object. Examples of ESP write are shown in Figures 2 and 3.

0 0 0 0 0 0 0 0

0 1 1 1

0001000000000000

 pos=3, remain=13
 The dashed arrow lines are splits.
 The bold-lined rectangles are the space allocated to this objects.
Figure 2: The status after allocating 3 blocks from the status of Figure 1.

0 0 0 1 0 0 0 0

0 0 1 1

000001000000000000

 pos=5, remain=11
 The dashed arrow lines are splits.
 The bold-lined rectangles are the space allocated to this objects.
Figure 3: The status after allocating 2 blocks from the status of Figure 2. The
allocation of the 2 blocks doesn’t start on a multiple of 2 but start from the last write,
pos.
 When the object is released the bits that are represented with bold-lined
rectangles are reset to 1 and coalescing is performed.

 5

 Shown in Figures 4, 5, and 6 are examples of a buddy system allocating space to
objects. In Figure 6 we can see that buddy system allocates 4 blocks to the 3-block
large object and aligns it on a multiple of 4, instead of appending it to the last write.

1

0 0

0000

0 0 0 0 0 0 0 0

Figure 4: An example of the initial state of a buddy system, where the total space in
this system is 8 block-large

0

0 1

0010

0 0 0 0 0 0 0 0

 The dashed arrow lines are splits.
 The bold-lined rectangles are the space allocated to this objects.
Figure 5: The status after allocating 3 blocks from the status of Figure 4.

0

0 0

0010

0 0 0 0 0 0 0 0

 The bold-lined rectangles are the space allocated to this objects.
Figure 6: The status after allocating 3 blocks from the status of Figure 5.

 6

 If remain is smaller than the size of the new object, ESP searches the highest
level for contiguous space that is larger than a certain threshold. Only searching the
highest level speeds up this operation enormously at the cost of losing some free
space in lower levels; however they are at most 2*(1+2+…+2lvl-1) block-large; thus
can be negligible.

0 1 0 0 0 0 1 0

0 1 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 7: The area marked by the bold line is the contiguous free space found for
oncoming writes.

 The traditional Squid doesn’t remove objects until the used space is higher than
some low watermark and manages to keep the used size between the low watermark
and high watermark. However this may lead to a condition that the used size is lower
than the low watermark and ESP can’t find free space by just searching the highest
level. As a result, ESP cannot allocate space to objects nor can the replacement policy
delete any objects; thus no new oncoming objects can be stored. In order to ease this
condition, we modify the replacement policy to be more aggressive as follows

 While the used space is lower than low watermark evict 10+evict_more
objects per second

 While the used space is between low and high watermark evict 200 objects
per second

 While the used space is higher than high watermark evict 200 objects per
0.5 second

where evict_more is a variable to make the replacement policy even more aggressive
if the contiguous free space we last found isn’t large enough. It is set as follows

 7

=

thresholdthetimesthanerlandthreshold
thetimesthansmallerisfoundspacecontiguousthe

thresholdthethanerlandthreshold
thetimesthansmallerisfoundspacecontiguousthe

thresholdthethansmallerisfoundspacecontiguousthe

moreevict

2arg
3

arg
2

5

10

15

_

3 Simulations
3.1 Simulation Environment
 We benchmark our implementation of ESP with web polygraph [6,7]. Web
polygraph has the architecture shown in Figure 8. It uses several pairs of computers to
simulate web servers and clients. Each server runs a polysrv to simulate several web
servers which respond to HTTP requests while each client runs a polyclt to simulate
several web clients (referred to as robots in the rest of this paper) which generates
HTTP requests. Table 1 shows the objects distribution generated by web polygraph.

SWITCH

Proxy Server

Clients Servers
Figure 8: The architecture of web polygraph.

Content type ratio (%) mean size
(bytes)

distribution

image 65 4604.28 exponential
HTML 15 8697.42 exponential

download 0.5 307218.10 log normal
other 19.50 25631.78 log normal

Table 1: The object distribution the web polygraph generates.

 8

 Hardware:

 Server: ACER 7100, CPU: P-III 1G with 256MB RAM, 30G IDE HD
 Client: ACER 7100, CPU: P-III 1G with 256MB RAM, 30G IDE HD
 Proxy Server: ACER 7100, CPU: P-III 1G with 512MB RAM, 2*30G IDE

HD
Software:
 Server: RedHat 7.2, polygraph 2.7.6
 Client: RedHat 7.2, polygraph 2.7.6
 Proxy Server: RedHat 7.2, Squid-2.4.STABLE6, ext2 fs

 Metrics: There are three metrics
 Delay and response time: On receiving a request web polygraph waits for

a think_time which is randomly generated with a mean time 2.5s and
standard deviation 1s. Web polygraph uses think_time to simulate the delay
to fetch an object from a real web server that may be far away from the
proxy server. The proxy server doesn’t think if it has the object the client
requests so it replies immediately. We can regard the average response time
as the quality of service that the proxy server can provide the larger the
response time is the worse the quality is.

 Hit ratio: when a robot generates a request, it inserts a unique
transaction-id in the HTTP header. After the requested server receives this
request it inserts the mutant version of this transaction-id in the header of
the response. As the robot receives the response, it checks if the
transaction-id is the mutant version of the current transaction-id. If so, a
miss is counted;if it is a mutant of some other transaction-id, a hit is counted.
Web polygraph simulates an ideal proxy, which has infinite space to store
all cacheable objects to calculate the ideal hit ratio for this simulation.
Generally speaking, the higher the hit ratio, the lower the response time.

 Throughput: the number of replies per second a proxy server can sustain.
With the same quality, that is the average response time, the higher
throughput indicates the better performance.

 9

3.2 Simulation Results

benchmark for squid

0
300
600
900
1200
1500
1800
2100
2400
2700
3000

50 60 75

workload (req/s)

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

0

20

40

60

80

100

h
i
t

r
a
t
i
o

(
%
)

hit

avg

miss

hit ratio

offered hit ratio

Figure 9: Benchmark for Squid with different workloads

Benchmark for my strategy

0
300
600
900
1200
1500
1800
2100
2400
2700
3000

75 85 95 120 130 150 160

workload (requests/s)

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

0

20

40

60

80

100

h
i
t

r
a
t
i
o

(
%
)

hit

avg

miss

hit ratio

offered hit ratio

Figure 10: Benchmark for ESP with different workloads

 As is seen in Figures 9 and 10, as the workload increases, the hit ratio drops and
the average response time increases.

0

500

1000

1500

2000

2500

3000

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

hit avg miss

squid 50 req/s
(hit ratio
49.34%)

ESP 95 req/s
(hit ratio
49.06%)

Figure 11: Comparison of ESP and Squid with average response time close to 1.5s.

 10

0

500

1000

1500

2000

2500

3000

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

hit avg miss

squid 60 req/s
(hit ratio
33.17%)

ESP 130
req/s (hit
ratio 33.94)

Figure 12: Comparison of ESP and Squid with the average time close to 2s.

0

500

1000

1500

2000

2500

3000

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

hit avg miss

squid 75 req/s (hit
ratio 23.01)

ESP 160 req/s (hit
ratio 23.66)

Figure 13: Comparison of ESP and Squid with average response time larger than 2s.

 From Figures 11,12, and 13, it is obvious that ESP can sustain a throughput that
is twice the throughput original Squid can, while providing less response time or the
response time close to what Squid provides.

0

500

1000

1500

2000

2500

3000

1MB 2MB 8MB 16MB 64MB MAX

Threshold

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

30

35

40

45

50

55

60

h
i
t

r
a
t
i
o

(
%
)

hit

average

miss

hit ratio

offered hit ratio

Figure 14: Comparison of ESP with different threshold

 11

Figure 14 shows a comparison of ESP with different threshold with lower threshold
like 1MB. We may lose the locality of objects from the same site, and therefore
store objects from the same site all over the disk and increase the seek time. With
higher threshold, we can ease this condition. However, with a threshold that is too
high may cause the read/write head to move further (ignoring nearby contiguous free
space) and result in higher seek time. High seek time reduces the throughput of disk
and therefore reduces the hit ratio.

4 Conclusions and Future Work
 In this paper we propose an efficient mechanism ESP (Efficient Storage
management policy for Proxies) to reduce the file operation and disk seek time in
order to improve the performance of Squid. ESP shows a 100% performance
improvement to the original Squid. When comparing the performance of ESP with
different thresholds, an appropriate threshold does affect the hit ratio of ESP up to
10%.
 In this paper we use a modified version of LRU as ESP’s replacement policy.
However, LRU replaces objects according to the time an object was last referenced
and doesn’t help in making contiguous space for ESP. After running for a long time,
there might be a lot of very small slice of space scattered all over the disk which may
cause the inefficiency of ESP. Developing a dedicated replacement policy which takes
objects’ locality on disk into consideration would help increase the size of contiguous
space.
 Markatos [3] stated that the aggregate write operations outnumber read ones; it is
obvious that most write operations are not necessary. If we can reduce the useless
write operations then we can also improve the performance of the proxy servers.
 Utilizing raw device can eliminate the file system overhead and further improve
the performance of proxies. We hope to investigate this aspect more in our future
research.

References
[1] A. Rousskov and V. Soloviev, “On Performance of Caching Proxies,” In Proc. of

the 1998 ACM SIGMETRICS Conference, 1998
[2] J. C. Mogul, “Speedier Squid: A Case Study of an Internet Server Performance

Problem, ” The USENIX Association Magazine, Vol. 24, No. 1, pp.50- 58, 1999.
[3] E. P. Markatos and M. G. H. Katevenis, “Secondary Storage Management for Web

Proxies,” The 2nd Usenix Symposium on Internet Technologies and System,
Boulder, Colorado, USA, Oct. 11-14, 1999.

 12

[4] T. Blackwell, J. Harris, and M. Seltzer, “Heuristic Cleaning Algorithms for
Log-Structured File Systems,” In Proceedings of the 1995 Usenix Technical
Conference, January 1995.

[5] K. C. Knowlton, “A Fast Storage Allocator,” Communications of the ACM, Vol. 8,
No. 10, pp.623-625, October 1965.

[6] http://www.web-polygraph.org
[7] http://polygraph.ircache.net/doc/papers/paper01.ps.gz

