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Abstract 
The quadtree is useful data structure for a variety of image processing. In this 

paper, we propose two simple but effective methods for embedding quadtrees into 
hypercubes. First, we embed a complete quadtree of height h into a 
(3(h-1)+4)-dimensional hypercube, or into a smaller incomplete hypercube which 
comprises a (3(h-1)+3)-dimensional hypercube and a (3(h-2)+4)-dimensional 
hypercube. This embedding preserves the adjacency of the complete quadtree, while 
the second method does not. The second method is to embed a complete quadtree of 
height h into an incomplete hypercube of the same node size with the congestion 2 
and the dilation is at most 3. 
 
Keywords: Embedding, Complete quadtrees, Hypercubes 
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1. Introduction 

 
The hypercube is one of the most popular architectures of parallel machines. The 

structure of the hypercube presents a rich interconnection topology, a symmetric 
structure, and a low diameter. It can simulate many computational structures with only 
small constant factor slowdown, such as array, binary tree and mesh of tree [1]. It also 
contains many computational structures, such as meshes and rings. While two 
consecutive dimensional hypercubes leave a large gap. To overcome this restriction, 
incomplete hypercubes provide more flexibility in the size [2, 3]. An incomplete 
hypercube can be obtained from a complete hypercube where some nodes/links fail. 

 
Over the years, many algorithms have been designed to embed quadtrees into a 

hypercube [4-8]. The quadtree is an efficient data structure to represent binary image 
data [9]. The root of the quadtree represents the entire structure to represent binary 
image data. The root of the quadtree represents the entire image data, and each 
internal node has four sons, each son representing a quadrant of its parent node. Since 
the structure of the quadtree is easy to implement, it is a very useful data structure for 
a variety of image processing. 

 
Ho and Johnsson [4] have shown a complete quadtree of height h (h≧0), which 

has (4h+1-1)/3 nodes, can be embedded into a (2h+1)-dimensional hypercube with 
dilation 2, and a specific algorithm to do the embedding has been studied in [5]. Stout 
[6] has described how to embed a complete quadtree into a hypercube. Yang and Lee 
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[7] have introduced an efficient algorithm to construct a quadtree in a hypercube. In 
this paper, first, we present how to embed a complete quadtree into a hypercube, or 
into a smaller incomplete hypercube, so that the adjacency of the complete quadtree is 
preserved. Next, we present an algorithm to embed a complete quadtree into an 
incomplete hypercube with dilation 3, congestion 2 and expansion 1. 

 
The remainder of this paper is organized as follows. In Section 2, we introduce 

the notations and definitions for embedding, In Section 3, we present an algorithm to 
embed a complete quadtree into a hypercube, or into a smaller incomplete hypercube. 
In Section 4, an algorithm is given to embed a complete quadtree into an incomplete 
hypercube with the same node size. In Section 5, we summarize the results. 

 
2. Preliminaries 

 
A complete quadtree of height h is a rooted quadtree. The root the complete 

quadtree is on level 0, four nodes on level 1, 4i nodes on level i, etc., and we let QTh 

denote the complete quadtree of height h with (4h+1-1)/3 nodes. 
 

We denote the n-dimensional hypercube with 2n nodes as Hn. These nodes of Hn 
are labeled {0, 1, …, 2n-1} with binary number. Two nodes in the hypercube are 
linked with an edge if their binary numbers differ by a single bit. The Hamming 
distance is the number of different bits between two nodes. If a hypercube misses 
some certain nodes, it is called an incomplete hypercube [2, 3]. Let IH(n1, n2, …, nk) 
denote the incomplete hypercube which comprises k complete hypercubes: Hn1, 

Hn2, …, Hnk, where nj>ni≧0, for j<i≦k. 
 

To conveniently describe the embedding, we can partition a hypercube into four 
sub-hypercubes by the leftmost two bits of the hypercube, and the binary numbers of 
the leftmost two bits of the four sub-hypercubes correspond to 00, 01, 11 and 10 (see 
Figure 1 (a)). Each node of a sub-hypercube has an edge to link a node of adjacent 
sub-hypercube; the leftmost and the rightmost sub-hypercubes are adjacent, likewise, 
the top and the bottom sub-hypercubes are adjacent. Similarly, a hypercube can be 
partitioned into sixteen sub-hypercubes by the leftmost four bits of the hypercube, and 
the binary numbers of the leftmost four bits of the sixteen sub-hypercubes correspond 
to 0000, 0001, …, 1111 (see Figure 1(b)). Each node of a sub-hypercube has an edge 
to link a node of adjacent sub-hypercube. 
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      (a)        (b) 
Figure 1. A hypercube is partitioned to four or sixteen sub-hypercubes. 

 
In one-to-one node embedding of a graph G into a graph H, the dilation of an 

edge in G is the length of embedded path in H. The dilation of an embedding is the 
maximum dilation over all edges in G. The congestion of an edge in H is the number 
of edges of G that are embedded using the same edge of H. The congestion of an 
embedding is the maximum congestion over all edges in H. The expansion of an 
embedding is the ratio of the number of node in H to the number of nodes in G. Hence, 
it has to be considered the tradeoff among the dilation, the congestion and the 
expansion of an embedding. 

 
3. Embedding complete quadtrees into hypercubes with dilation 1 

 
In this section we show how to embed QTh into a hypercube, or into a smaller 

incomplete hypercube, while the adjacency of QTh is preserved. 
 

Theorem 1. QTh (h≧1) can be embedded into a (3(h-1)+4)-dimensional hypercube. 
 

Proof. We prove the theorem by induction on h. 
 Hypothesis: QTh-1 can be embedded into a (3(h-2)+4)-dimensional hypercube. 
 

Basis step (h=1, 2): When h=1, QT1 can be embedded directly into H4 as show in 
Figure 2. When h=2, we partition H7 into 16 sub-hypercubes H3’s. Since a tritree of 
height 1 can be embedded into H3 as shown in Figure 3, and each node of 
sub-hypercube H3 has an edge to link a node of another adjacent H3, we can embed 
QT2 into H7 (see Figure 4). 
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Figure 2. QT1 is embedded into H4. The embedded QT1 is depicted by the 

  solid lines in H4. 
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Figure 3. A tritree of height 1 is embedded into H3. 
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Figure 4. QT2 is embedded into H7. 
 

Induction step: we denote   as the induced graph of QTh by deleting a 
QTh-1 from itself (see Figure 5). Then we can construct         in a ((3(h-2)+4-1)- 
dimensional hypercube. Moreover, we partition the (3(h-1)+4)-dimensional hypercube 
into 16 sub-hypercubes H(3(h-2)+3)’s by the leftmost four bits of the hypercube. Each 
H(3(h-2)+3) contains a      . Now, we embed QTh into the (3(h-1)+4)-dimensional 
hypercube as Figure 6 shows. Let the root of QTh be embedded into sub-hypercube R, 
and two adjacent sub-hypercubes A and E embed QTh-1 by linking the root of      in 
sub-hypercube A to a subtree QTh-2 of       in sub-hypercube E. Likewise, two 
adjacent sub-hypercubes B and F (C and G, D and H) can embed QTh-1. The 
embedding works because of the symmetry of the hypercube. Thus QTh can be 
embedded into the (3(h-1)+4)-dimensional hypercube.          □ 
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Figure 6. QTh is embedded into a (3(h-1)+4)-dimensional hypercube, �����

where each ����� represents a QTh-2. 
 

By the preceding construction, the embedded complete hypercube H3(h-1)+4 can 
be reduced to a smaller incomplete hypercube. 

 
Corollary 1. QTh (h≧1) can be embedded into IH(3(h-1)+3, 3(h-2)+4).    □ 
 
4. Embedding quadtrees into incomplete hypercubes with expansion 

1 
 
We have show that a complete quadtree can be embedded into hypercube, or into 

a smaller incomplete hypercube, with dilation 1 and congestion 1 in the previous 
section. In this section we discuss how to embed a complete quadtree into an 
incomplete quadtree into an incomplete hypercube with the same node size 
(expansion 1), considering the dilation and the congestion when doing the embedding. 
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Here, denote IH(n1, n2, …, nk) as an incomplete hypercube, which can be obtained by 
deleting the largest 2n1-(2n2 + … + 2nk) nodes (in binary number) and their neighboring 
edges from an (n1+1)-dimensional hypercube. 
 
Theorem 2. QTh (h≧1) can be embedded into IH(2h, 2(h-1), …, 2, 0) with dilation 3, 
congestion 2 and expansion 1.  

 
Proof. We prove the theorem by induction on h. 

 
Stronger Hypothesis: QTh-1 can be embedded into IH(2(h-1), 2(h-2), …, 2, 0) 

with dilation 3, congestion 2 and expansion 1, and the dilation is equal to 2 for 
embedding the edges between level h-2 and level h-1 of QTh-1. 

 
Basis step (h=1 and h=2): When h=1, we can embed QT1 into IH(2, 0) with 

dilation 2 and congestion 2 (see Figure 7), since the dilation of edge (a, d) in QT1 is 2 
and the congestion of either edge (a, b) or edge (a, c) is 2 in IH(2, 0). Thus the 
dilation is equal to 2 for embedding the edges between level 0 and level 1. 
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Figure 7. QT1 is embedded into IH(2, 0) with dilation 2 and congestion 2. 
 

When h=2, there are 42 leaf nodes, so we have to add H4 to IH(2, 0). H4 can be 
partitioned into four sub-hypercubes by the leftmost two bits of H4, hence, the binary 
numbers of the leftmost two bits of the four sub-hypercubes correspond to 00, 01, 11 
and 10. We can construct four H2’s from these four sub-hypercubes to make the binary 
numbers of the rightmost two bits of each H2 the same. We use Figure 8 to describe 
how to embed QT2 into IH(4, 2, 0). 

 
Figure 8 illustrates the embedding of QT2 into IH(4, 2, 0). The four H2’s 

comprise respectively the nodes (b, g, h, i), (u, e, s, t), (c, k, l, m) and (d, o, p, q). Each 
leaf node of QT1 in IH(2, 0) has an edge to link a node of an H2, such as leaf nodes f, j, 
n and r linking respectively nodes b, c, d and e. We take leaf nodes f, j, n and r of QT1 
in IH(2, 0) as leaf nodes of QT2, nodes b, c, d and e as the parents of the nodes (f, g, h, 
i), (j, k, l, m), (n, o, p, q) and (r, s, t, u). The congestion of the edges which link IH(2, 0) 
and H4, such as edges (b, f), (c, j), (d, n) and (e, r), is 2. The dilation of edges between 
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level 0 and level 1 increases by 1, compared to the dilation of the edges between level 
0 and level 1 for embedding QT1 into IH(2, 0), such as the dilation of edge (a, b), (a, 
c), (a, d) and (a, e) become 2, 2, 3 and 2, respectively. Therefore, QT2 can be 
embedded into IH(4, 2, 0) with dilation 3, congestion 2 and expansion 1, and the 
dilation is equal to 2 for embedding the edges between level 1 and level 2 of QT2. 
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Figure 8. QT2 is embedded into IH(4, 2, 0). Four H2’s, depicted respectively 
by solid lines, are constructed from H4 in IH(4, 2, 0). 

 
Induction step: There are 4h nodes which are added to QTh-1 as the leaf nodes of 

QTh, thus we have to add H2h to IH(2(h-1), …, 2, 0). Likewise, using the approach of 
basis step, we partition H2h into four sub-hypercubes by the leftmost two bits of H2h to 
construct 22(h-1) H2’s, and the binary numbers of the rightmost 2(h-1) bits of each H2 
are the same. Each leaf node of QTh-1 in IH(2(h-1), …, 2, 0) has an edge to link a node 
of an H2 in H2h, since leaf nodes of QTh-1 are embedded into either the nodes of H2(h-1) 
in IH(2(h-1), 2(h-2), …, 2, 0) or the adjacent nodes of H2(h-1) in IH(2(h-2), …, 2, 0), 
and the binary numbers of the rightmost 2(h-1) bits of both the adjacent nodes are the 
same. We take leaf nodes of QTh-1 as leaf nodes of QTh and the nodes, which are 
adjacent with leaf nodes of QTh-1, of H2h as the parents of leaf nodes of QTh. We use 
Figure 9 to show how to embed QTh into IH(2h, 2(h-1), …, 2, 0). 
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Figure 9 illustrates the embedding of QTh into IH(2h, 2(h-1), …, 2, 0). We label 
the nodes of IH(2h, 2(h-1), …, 2, 0) by 2h+1 bits and partition IH(2h, 2(h-1), …, 2, 0) 
into eight sub-hypercubes by the leftmost three bits of the incomplete hypercube. 
Hence, the eight sub-hypercubes can be labeled as 000, 001, 011, 010, 100, 101, 111 
and 110. Let n1, n2, n3 and n4 construct H2 from these four sub-hypercubes 101, 100, 
110 and 111 in H2h. If a leaf node of QTh-1 is embedded into n5 in the sub-hypercube 
001, we take n5 as leaf node of QTh and n1 as the parent of n5, n2, n3 and n4. 
Similarly, if a leaf node of QTh-1 is embedded into n6 in the sub-hypercube 000, n6 
has an edge to link n2 because of the symmetry of the hypercube. We take n6 as leaf 
node of QTh and n2 as the parent of n6, n1, n4 and n3. By using the same method, we 
take the remaining leaf nodes of QTh-1 as leaf nodes of QTh and their adjacent nodes in 
H2h as the parents of leaf nodes of QTh. 
 

�����
���

���

���
��

���

���

������
��

���

���

���

���

���

��
��

���
���

�����
���

��

��
��

���

��

��

���

���

���
��
��

���
���

��
��

���
���

��

��

���

���

�����
��

���

���
���

��

���

���

��

��

��
���
���

��
��

���
���

��
��

���

���

��

��

�����
��

���

���
���

��

���

���

��

��

��
���
���

��
��

���
���

��
��

���

���

��

��

�����
���

��

��
��

���

��

��

���

���

���
��
��

���
���

��
��

���
���

��

��

���

���

����
��

��

��
��

��

��

��

��

��

��
��
��

��
��

��
��

��
��

��

��

��

��

������
���

���

���
���

���

���

���

���

���

���
���
���

���
���

���
���

���
���

���

���

���

���

��
���
���

��
���
���
���

���

��
��

���
���
���

��
��
��

��
�����

���
���

��
��
��

���
���

��
��

���
���
���

��
��
��

���
��
��

���
��
��
��

��

���
���

��
��
��

���
���
���

���
�����

��
��

���
���
���

��
��

���
���

��
��
��

���
���
���

��
��
��

��
��
��
��

��

��
��

��
��
��

��
��
��

��
����

��
��

��
��
��

��
��

��
��

��
��
��

��
��
��

���
���
���

���
���
���
���

���

���
���

���
���
���

���
���
���

���
������

���
���

���
���
���

���
���

���
���

���
���
���

���
���
���

n6 n5 n1 n2

n4 n3

000-

010-

001-

011-

000-

010-

001-

011-

2(h-1)-dimension

 

Figure 9. Embedding QTh into IH(2h, 2(h-1), …, 2, 0). The 
sub-hypercube H2h is partitioned into four sub-hypercubes H2(h-1)’s, and 
the bold lines depict an H2 from these four H2(h-1)’s. 

 
The dilation of the edges between level h-2 and level h-1 of QTh increases by 1, 

compared to the dilation of the edges between level h-2 and level h-1 for embedding 
QTh-1 into H(2(h-1), …, 2, 0), while the congestion of the edges between 
IH(2(h-1), …, 2, 0) and H2h is held on 2. Therefore, QTh can be embedded into IH(2h, 
2(h-1), …, 2, 0) with dilation 3, congestion 2 and expansion 1, and dilation is equal to 

9 



2 for embedding the edges between level h-1 and level h of QTh.       □ 
 

5. Conclusions 
 
We have presented two simple but effective algorithms for embedding quadtrees 

into hypercubes. First, we have shown hat a complete quadtree of height h (h≧1) can 
be embedded into a (3(h-1)+4)-dimensional hypercube, or into a smaller incomplete 
hypercube IH(3(h-1)+3, 3(h-2)+4), so that the adjacency of the complete quadtree is 
preserved. Then a complete quadtree of height h can be embedded into an incomplete 
hypercube IH(2h, 2(h-1), …,2 ,0) with expansion 1, congestion 2 and dilation 3. 
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