Embedding Quadtrees into Hypercubes

Chui-Cheng Chen
Department of Information Management
Southern Taiwan University of Technology 1 NanTai St., YungKang City Tainan, Taiwan 710, R.O.C.
Tel: +886 6 2533131\#4311
E-mail: ccchen@mail.stut.edu.tw

Abstract

The quadtree is useful data structure for a variety of image processing. In this paper, we propose two simple but effective methods for embedding quadtrees into hypercubes. First, we embed a complete quadtree of height h into a (3(h-1)+4)-dimensional hypercube, or into a smaller incomplete hypercube which comprises a (3(h-1)+3)-dimensional hypercube and a (3(h-2)+4)-dimensional hypercube. This embedding preserves the adjacency of the complete quadtree, while the second method does not. The second method is to embed a complete quadtree of height h into an incomplete hypercube of the same node size with the congestion 2 and the dilation is at most 3 .

Keywords: Embedding, Complete quadtrees, Hypercubes

Embedding Quadtrees into Hypercubes

Abstract

The quadtree is useful data structure for a variety of image processing. In this paper, we propose two simple but effective methods for embedding quadtrees into hypercubes. First, we embed a complete quadtree of height h into a (3(h-1)+4)-dimensional hypercube, or into a smaller incomplete hypercube which comprises a $(3(h-1)+3)$-dimensional hypercube and a (3(h-2)+4)-dimensional hypercube. This embedding preserves the adjacency of the complete quadtree, while the second method does not. The second method is to embed a complete quadtree of height h into an incomplete hypercube of the same node size with the congestion 2 and the dilation is at most 3. Keywords: Embedding, Complete quadtrees, Hypercubes

1. Introduction

The hypercube is one of the most popular architectures of parallel machines. The structure of the hypercube presents a rich interconnection topology, a symmetric structure, and a low diameter. It can simulate many computational structures with only small constant factor slowdown, such as array, binary tree and mesh of tree [1]. It also contains many computational structures, such as meshes and rings. While two consecutive dimensional hypercubes leave a large gap. To overcome this restriction, incomplete hypercubes provide more flexibility in the size [2, 3]. An incomplete hypercube can be obtained from a complete hypercube where some nodes/links fail.

Over the years, many algorithms have been designed to embed quadtrees into a hypercube [4-8]. The quadtree is an efficient data structure to represent binary image data [9]. The root of the quadtree represents the entire structure to represent binary image data. The root of the quadtree represents the entire image data, and each internal node has four sons, each son representing a quadrant of its parent node. Since the structure of the quadtree is easy to implement, it is a very useful data structure for a variety of image processing.

Ho and Johnsson [4] have shown a complete quadtree of height $h(h \geqq 0)$, which has $\left(4^{h+1}-1\right) / 3$ nodes, can be embedded into a ($2 h+1$)-dimensional hypercube with dilation 2, and a specific algorithm to do the embedding has been studied in [5]. Stout [6] has described how to embed a complete quadtree into a hypercube. Yang and Lee
[7] have introduced an efficient algorithm to construct a quadtree in a hypercube. In this paper, first, we present how to embed a complete quadtree into a hypercube, or into a smaller incomplete hypercube, so that the adjacency of the complete quadtree is preserved. Next, we present an algorithm to embed a complete quadtree into an incomplete hypercube with dilation 3, congestion 2 and expansion 1.

The remainder of this paper is organized as follows. In Section 2, we introduce the notations and definitions for embedding, In Section 3, we present an algorithm to embed a complete quadtree into a hypercube, or into a smaller incomplete hypercube. In Section 4, an algorithm is given to embed a complete quadtree into an incomplete hypercube with the same node size. In Section 5, we summarize the results.

2. Preliminaries

A complete quadtree of height h is a rooted quadtree. The root the complete quadtree is on level 0 , four nodes on level $1,4^{i}$ nodes on level i, etc., and we let $Q T_{h}$ denote the complete quadtree of height h with $\left(4^{h+1}-1\right) / 3$ nodes.

We denote the n-dimensional hypercube with 2^{n} nodes as H_{n}. These nodes of H_{n} are labeled $\left\{0,1, \ldots, 2^{n}-1\right\}$ with binary number. Two nodes in the hypercube are linked with an edge if their binary numbers differ by a single bit. The Hamming distance is the number of different bits between two nodes. If a hypercube misses some certain nodes, it is called an incomplete hypercube [2, 3]. Let $\operatorname{IH}(n 1, n 2, \ldots, n k)$ denote the incomplete hypercube which comprises k complete hypercubes: $H_{n l}$, $H_{n 2}, \ldots, H_{n k}$, where $n j>n i \geqq 0$, for $j<i \leqq k$.

To conveniently describe the embedding, we can partition a hypercube into four sub-hypercubes by the leftmost two bits of the hypercube, and the binary numbers of the leftmost two bits of the four sub-hypercubes correspond to $00,01,11$ and 10 (see Figure 1 (a)). Each node of a sub-hypercube has an edge to link a node of adjacent sub-hypercube; the leftmost and the rightmost sub-hypercubes are adjacent, likewise, the top and the bottom sub-hypercubes are adjacent. Similarly, a hypercube can be partitioned into sixteen sub-hypercubes by the leftmost four bits of the hypercube, and the binary numbers of the leftmost four bits of the sixteen sub-hypercubes correspond to $0000,0001, \ldots, 1111$ (see Figure 1(b)). Each node of a sub-hypercube has an edge to link a node of adjacent sub-hypercube.

(a)

00	01	11	10	
00	0000	0001	0011	0010
1	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

(b)

Figure 1. A hypercube is partitioned to four or sixteen sub-hypercubes.

In one-to-one node embedding of a graph G into a graph H, the dilation of an edge in G is the length of embedded path in H. The dilation of an embedding is the maximum dilation over all edges in G. The congestion of an edge in H is the number of edges of G that are embedded using the same edge of H. The congestion of an embedding is the maximum congestion over all edges in H. The expansion of an embedding is the ratio of the number of node in H to the number of nodes in G. Hence, it has to be considered the tradeoff among the dilation, the congestion and the expansion of an embedding.

3. Embedding complete quadtrees into hypercubes with dilation 1

In this section we show how to embed $Q T_{h}$ into a hypercube, or into a smaller incomplete hypercube, while the adjacency of $Q T_{h}$ is preserved.

Theorem 1. $Q T_{h}(h \geqq 1)$ can be embedded into a $(3(h-1)+4)$-dimensional hypercube.

Proof. We prove the theorem by induction on h.
Hypothesis: $Q T_{h-1}$ can be embedded into a (3(h-2)+4)-dimensional hypercube.

Basis step ($h=1,2$): When $h=1, Q T_{1}$ can be embedded directly into H_{4} as show in Figure 2. When $h=2$, we partition H_{7} into 16 sub-hypercubes H_{3} 's. Since a tritree of height 1 can be embedded into H_{3} as shown in Figure 3, and each node of sub-hypercube H_{3} has an edge to link a node of another adjacent H_{3}, we can embed $Q T_{2}$ into H_{7} (see Figure 4).

Figure 2. $Q T_{1}$ is embedded into H_{4}. The embedded $Q T_{1}$ is depicted by the solid lines in H_{4}.

Figure 3. A tritree of height 1 is embedded into H_{3}.

Figure 4. $Q T_{2}$ is embedded into H_{7}.

Induction step: we denote $Q T_{h}^{3 / 4}$ as the induced graph of $Q T_{h}$ by deleting a $Q T_{h-1}$ from itself (see Figure 5). Then we can construct $Q T_{h-1}^{3 / 4} \quad$ in a ((3(h-2)+4-1)dimensional hypercube. Moreover, we partition the ($3(h-1)+4)$-dimensional hypercube into 16 sub-hypercubes $H_{(3(h-2)+3)}$'s by the leftmost four bits of the hypercube. Each $H_{(3(h-2)+3)}$ contains a $Q T_{h-1}^{3 / 4}$. Now, we embed $Q T_{h}$ into the (3(h-1)+4)-dimensional hypercube as Figure 6 shows. Let the root of $Q T_{h}$ be embedded into sub-hypercube R, and two adjacent sub-hypercubes A and E embed $Q T_{h-1}$ by linking the root of $Q T_{h-1}^{3 / 4}$ in sub-hypercube A to a subtree $Q T_{h-2}$ of $Q T_{h-1}^{3 / 4}$ in sub-hypercube E. Likewise, two adjacent sub-hypercubes B and $F\left(C\right.$ and G, D and H) can embed $Q T_{h-1}$. The embedding works because of the symmetry of the hypercube. Thus $Q T_{h}$ can be embedded into the (3(h-1)+4)-dimensional hypercube.

Figure 5. $Q T_{h}^{3 / 4}$.

Figure 6. $Q T_{h}$ is embedded into a (3(h-1)+4)-dimensional hypercube, where each represents a $Q T_{h-2}$.

By the preceding construction, the embedded complete hypercube $H_{3(h-1)+4}$ can be reduced to a smaller incomplete hypercube.

Corollary 1. $Q T_{h}(h \geqq 1)$ can be embedded into $I H(3(h-1)+3,3(h-2)+4)$.

4. Embedding quadtrees into incomplete hypercubes with expansion 1

We have show that a complete quadtree can be embedded into hypercube, or into a smaller incomplete hypercube, with dilation 1 and congestion 1 in the previous section. In this section we discuss how to embed a complete quadtree into an incomplete quadtree into an incomplete hypercube with the same node size (expansion 1), considering the dilation and the congestion when doing the embedding.

Here, denote $\operatorname{IH}(n 1, n 2, \ldots, n k)$ as an incomplete hypercube, which can be obtained by deleting the largest $2^{n l}-\left(2^{n 2}+\ldots+2^{n k}\right)$ nodes (in binary number) and their neighboring edges from an ($n l+1$)-dimensional hypercube.

Theorem 2. $Q T_{h}(h \geqq 1)$ can be embedded into $I H(2 h, 2(h-1), \ldots, 2,0)$ with dilation 3 , congestion 2 and expansion 1 .

Proof. We prove the theorem by induction on h.

Stronger Hypothesis: $Q T_{h-1}$ can be embedded into $\operatorname{IH}(2(h-1), 2(h-2), \ldots, 2,0)$ with dilation 3, congestion 2 and expansion 1, and the dilation is equal to 2 for embedding the edges between level $h-2$ and level $h-1$ of $Q T_{h-1}$.

Basis step ($h=1$ and $h=2$): When $h=1$, we can embed $Q T_{1}$ into $\operatorname{IH}(2,0)$ with dilation 2 and congestion 2 (see Figure 7), since the dilation of edge (a, d) in $Q T_{1}$ is 2 and the congestion of either edge (a, b) or edge (a, c) is 2 in $\operatorname{IH}(2,0)$. Thus the dilation is equal to 2 for embedding the edges between level 0 and level 1 .

Figure 7. $Q T_{I}$ is embedded into $I H(2,0)$ with dilation 2 and congestion 2.

When $h=2$, there are 4^{2} leaf nodes, so we have to add H_{4} to $I H(2,0) . H_{4}$ can be partitioned into four sub-hypercubes by the leftmost two bits of H_{4}, hence, the binary numbers of the leftmost two bits of the four sub-hypercubes correspond to $00,01,11$ and 10 . We can construct four H_{2} 's from these four sub-hypercubes to make the binary numbers of the rightmost two bits of each H_{2} the same. We use Figure 8 to describe how to embed $Q T_{2}$ into $\operatorname{IH}(4,2,0)$.

Figure 8 illustrates the embedding of $Q T_{2}$ into $\operatorname{IH}(4,2,0)$. The four H_{2} 's comprise respectively the nodes $(b, g, h, i),(u, e, s, t),(c, k, l, m)$ and (d, o, p, q). Each leaf node of $Q T_{1}$ in $\operatorname{IH}(2,0)$ has an edge to link a node of an H_{2}, such as leaf nodes f, j, n and r linking respectively nodes b, c, d and e. We take leaf nodes f, j, n and r of $Q T_{1}$ in $\operatorname{IH}(2,0)$ as leaf nodes of $Q T_{2}$, nodes b, c, d and e as the parents of the nodes $(f, g, h$, $i),(j, k, l, m),(n, o, p, q)$ and (r, s, t, u). The congestion of the edges which link $\operatorname{IH}(2,0)$ and H_{4}, such as edges $(b, f),(c, j),(d, n)$ and (e, r), is 2 . The dilation of edges between
level 0 and level 1 increases by 1 , compared to the dilation of the edges between level 0 and level 1 for embedding $Q T_{l}$ into $\operatorname{IH}(2,0)$, such as the dilation of edge $(a, b),(a$, $c),(a, d)$ and (a, e) become $2,2,3$ and 2 , respectively. Therefore, $Q T_{2}$ can be embedded into $\operatorname{IH}(4,2,0)$ with dilation 3, congestion 2 and expansion 1 , and the dilation is equal to 2 for embedding the edges between level 1 and level 2 of $Q T_{2}$.

Figure 8. $Q T_{2}$ is embedded into $I H(4,2,0)$. Four H_{2} 's, depicted respectively by solid lines, are constructed from H_{4} in $\operatorname{IH}(4,2,0)$.

Induction step: There are 4^{h} nodes which are added to $Q T_{h-1}$ as the leaf nodes of $Q T_{h}$, thus we have to add $H_{2 h}$ to $I H(2(h-1), \ldots, 2,0)$. Likewise, using the approach of basis step, we partition $H_{2 h}$ into four sub-hypercubes by the leftmost two bits of $H_{2 h}$ to construct $2^{2(h-1)} \mathrm{H}_{2}$'s, and the binary numbers of the rightmost $2(h-1)$ bits of each H_{2} are the same. Each leaf node of $Q T_{h-1}$ in $\operatorname{IH}(2(h-1), \ldots, 2,0)$ has an edge to link a node of an H_{2} in $H_{2 h}$, since leaf nodes of $Q T_{h-1}$ are embedded into either the nodes of $H_{2(h-1)}$ in $I H(2(h-1), 2(h-2), \ldots, 2,0)$ or the adjacent nodes of $H_{2(h-l)}$ in $\operatorname{IH}(2(h-2), \ldots, 2,0)$, and the binary numbers of the rightmost $2(h-1)$ bits of both the adjacent nodes are the same. We take leaf nodes of $Q T_{h-1}$ as leaf nodes of $Q T_{h}$ and the nodes, which are adjacent with leaf nodes of $Q T_{h-1}$, of $H_{2 h}$ as the parents of leaf nodes of $Q T_{h}$. We use Figure 9 to show how to embed $Q T_{h}$ into $\operatorname{IH}(2 h, 2(h-1), \ldots, 2,0)$.

Figure 9 illustrates the embedding of $Q T_{h}$ into $\operatorname{IH}(2 h, 2(h-1), \ldots, 2,0)$. We label the nodes of $\operatorname{IH}(2 h, 2(h-1), \ldots, 2,0)$ by $2 h+1$ bits and partition $\operatorname{IH}(2 h, 2(h-1), \ldots, 2,0)$ into eight sub-hypercubes by the leftmost three bits of the incomplete hypercube. Hence, the eight sub-hypercubes can be labeled as $000,001,011,010,100,101,111$ and 110. Let $n 1, n 2, n 3$ and $n 4$ construct H_{2} from these four sub-hypercubes 101, 100, 110 and 111 in $H_{2 h}$. If a leaf node of $Q T_{h-1}$ is embedded into $n 5$ in the sub-hypercube 001 , we take $n 5$ as leaf node of $Q T_{h}$ and $n 1$ as the parent of $n 5, n 2, n 3$ and $n 4$. Similarly, if a leaf node of $Q T_{h-1}$ is embedded into n6 in the sub-hypercube $000, n 6$ has an edge to link $n 2$ because of the symmetry of the hypercube. We take $n 6$ as leaf node of $Q T_{h}$ and $n 2$ as the parent of $n 6, n 1, n 4$ and $n 3$. By using the same method, we take the remaining leaf nodes of $Q T_{h-1}$ as leaf nodes of $Q T_{h}$ and their adjacent nodes in $H_{2 h}$ as the parents of leaf nodes of $Q T_{h}$.

Figure 9. Embedding $Q T_{h}$ into $I H(2 h, 2(h-1), \ldots, 2,0)$. The sub-hypercube $H_{2 h}$ is partitioned into four sub-hypercubes $H_{2(h-1)}$'s, and the bold lines depict an H_{2} from these four $H_{2(h-l)}$'s.

The dilation of the edges between level $h-2$ and level $h-1$ of $Q T_{h}$ increases by 1 , compared to the dilation of the edges between level $h-2$ and level $h-1$ for embedding $Q T_{h-1}$ into $H(2(h-1), \ldots, 2,0)$, while the congestion of the edges between $I H(2(h-1), \ldots, 2,0)$ and $H_{2 h}$ is held on 2. Therefore, $Q T_{h}$ can be embedded into $\operatorname{IH}(2 h$, $2(h-1), \ldots, 2,0)$ with dilation 3 , congestion 2 and expansion 1 , and dilation is equal to

5. Conclusions

We have presented two simple but effective algorithms for embedding quadtrees into hypercubes. First, we have shown hat a complete quadtree of height $h(h \geqq 1)$ can be embedded into a (3(h-1)+4)-dimensional hypercube, or into a smaller incomplete hypercube $\operatorname{IH}(3(h-1)+3,3(h-2)+4)$, so that the adjacency of the complete quadtree is preserved. Then a complete quadtree of height h can be embedded into an incomplete hypercube $I H(2 h, 2(h-1), \ldots, 2,0)$ with expansion 1 , congestion 2 and dilation 3.

Reference

1. T. Leighton, Introduction to parallel Algorithms and Architectures: Array, Tree, Hypercubes (Morgan Kaufmann, Reading, MA,1992).
2. H. P. Katseff, Incomplete Hypercubes, IEEE Trans Computer 37 (1988) 604-608.
3. N. F. Tzeng, H. L. Cheng and P. J. Chuang, Embeddings in Incomplete Hypercube, Proc. of Int. Conf. on Parallel Processing 3 (1990) 335-339.
4. C. T. Ho and S. L. Johnsson, Dilation d Embedding of a Hyper-Pyramid into a Hypercube, Proc. of the Supercomputing' 89 (1989) 294-303.
5. N. Krishnakuma, V. G. Hegde and S. S. Iyengar, Fault Tolerant Based Embedding of Quadtrees into Hypercubes, Proc. of Int. Conf. on Parallel Processing 3 (1991) 244-249.
6. Q. F. Stout, Hypercubes and Pyramids, Pyramidal Systems for Computer Vision, (Springer-Verlag, 1986) 75-89.
7. S. N. Yang and R. R. Lee, IEEE Region 10 Conference, Tencon $9211^{\text {th }}-13^{\text {th }}$ (1992) 131-135.
8. F. Dehne, A. G. Ferreira and A. Rau-Chaplin, Efficient Parallel Construction and Manipulation of Quadtrees, Proc. of Int. Conf. on Parallel Processing 3 (1991) 255-262.
9. H. Samet, The Quadtree and Related Hierarchical Data Structures, Computing Surveys 16 (1984) 187-260.
