Optimal k-copies Task Assignment Reliability in Distributed
Systems, via a Genetic Algorithm
Chin-Ching Chiu* and Chung-Hsien Hsu
Department of Management Information System
Private Takming College, Taipei, Taiwan, R.O.C.
TEL: 886-2-26585801 ext 393
E-mail: chiu@mis.takming.edu.tw
* Correspondence and reprints should be sent to Chin-Ching Chiu.
Abstract
The reliability-oriented task assignment problem, which is NP-hard, is to find a task
distribution such that the program reliability or system reliability is maximized. In this paper,
we have developed areliability oriented task allocation scheme, based on a genetic algorithm,
for distributed systems to find an approximate solution. The simulation shows that, in most

test cases, the agorithm finds sub-optimal solutions efficiently; therefore, it is a desirable

approach to solve these problems.

Keywords:. Distributed system reliability; Task assignment; Distributed program reliability;

Genetic algorithm

1. INTRODUCTION

Distributed systems (DS) have become increasingly popular in recent years. The
potentia reliability improvement of a distributed system is possible because of program and
data-file redundancy. Reliability evaluations of distributed systems have been widely
published [1-8]. To evaluate the reliability of a distributed system, including a given
distribution of programs and data-files, it is important to obtain a global reliability measure
that describes the degree of system reliability [10-15].

For a given distribution of programs and data files in a DS, distributed program
reliability (DPR) [9] is the probability that a given program can be run successfully and will
be able to access al of the files it requires from remote sites in spite of faults occurring
among the processing elements and communication links. The second measure, DSR, is
defined as the probability that al of the programs in the system can be run successfully.
Kumar, Hariri, Raghavendra [9] has also shown that redundancy in resources such as
computers, programs, and data-files can improve the reliability of distributed systems [9].
Therefore, the study of program and data-file assignment with redundancy considerations is
important in improving the DSR.

Assume that there are n processing nodes, P programs, F data files and k copies. Then
the total number of possible assignment are n“F*P. Thus, the optimal alocation of programs
and files on the processing nodes is a problem of exponential complexity [15]. This implies
that optimum solutions can be found only for small problems. For larger problems it is
necessary to introduce heuristics to produce algorithms, which generate near-optimum
solutions. Genetic algorithm (GA) can be applied to search large, complex problem spaces [19].

The main steps for GA are reproduction, selection, crossover, and mutation. The process of

selection, crossover, and mutation is repeated until the termination condition is satisfied
[16-20].

Hwang and Tseng proposed the k-DTA problem. The k-DTA models the assignment of
k copies of both distributed programs and their data-files to maximize the DSR under some

resource constraints. Since the k-DTA problem is NP-hard [13], this study proposed an

algorithm based upon genetic algorithm [19] to find an approximate solution.

2. COMPUTING OPTIMAL RELIABILITY

In this section, we describe the problem addressed herein for convenience and

clarification of our research abjectives.

2.1 Notations and Definitions

The following notations, and definitions are used hereinafter.

NoTATIONS.

G=(V,E) anundirected DS graph where MFST(p) set of minimal file spanning trees
V denotes a set of processing Associated with program p.
elements, and E represents a set of FST file spanning tree consisting of the
communication links. root node (processing element that

n the number of nodesin G, n=|V|. runs the program) and some other

v an i node represents the i™" nodes which hold al the files needed
processing element. for the program held in the root node

c(v)) the capacity of the i node. under consideration.

e the number of linksin G, e=|E| Sheed(Vi) the total capacity requires from v;.

) an edge represents a communica- ng generation of GA, for ng=0,...,tng.
tion link between v; and v;. mr, cr mutation rate, crossover rate.

a the probability of successof link g; mc, cc mutation count, crossover count.
bij the probability of failureof linke; ps population size. represents total
d(v) the number of links connected to the tng number of generation when GA end.
node v.. Xn(p+F)----.Xo abinary string with alength n(P+F)
w(v) the weight of the i™ node. represent an chromosome, where x=1
w(e) the weight of thelink g;. if v; is selected, otherwise x,=0,
F total number of filesinthe DS. fori=0, ...,n(P+F)-1.
P total number of programsintheDS. FT; the actual fitness value of a chromo-
p distributed programii. somei in ageneration.
fi filei. SUMFT total fitness value of all the chromo-
s(p) the size of program p.. somein ageneration, i.e.,
S(fi) the size of datafilef;. SUMFT=Y"°FT,.
pfi distributed program or filei. RFT; aproportion of aroulette-wheel dot-
k the number of copies of pf;. sized of chromosomei in ageneration,
AFL(p) listof filesrequired for p; to i.e, RFT, =FT;/ SUMFT.
complete its execution. roulette accumulation of FT;,i.e.,
DPR(p) distributed program reliability of p. roulette = | FT,.
MFST minima FST containing nosubset ~ AVGFT average fitnessvalue, i.e,
file spanning tree. AVGFT= SUMFT /ps.
Definitions

Definition 1. A dependent set is defined as a set S of distributed programs and files such that
there does not exist a partition which divides S into two digoint subsets S, and S,, where
SuUS=S and S\ S=9, such that each program and the files required are within the same

subset [13].

Definition 2. A DTA problem is defined as to find an assignment for a dependent set under
some resource constraints in the distributed system such that the distributed system
reliability is maximal [13].

Definition 3. A k-DTA problem is defined as to determine assignments for k copies of a
dependent set to maximize the DSR under some resource constraints in the distributed
system [13].

Definition 4. A mask string is defined as a string with a length n(P+F) in which each bit

indicates whether the capacity of anode is sufficient to be allocated a program or datafile.

2.2 Problem Satements

A distributed system can be modeled by a simple undirected graph. For a topology of the
DS with four nodes and five links, if two programs and three data files that should be
allocated, the number of different combinations of programs and datafiles for allocation is 45,
that is 1024. The program p; requires data files fy, f,, and p, requires data files f,, f,, fs, for

compl eting execution. Assume that these files are allocated as shown in figure 1.

Fig. 1. The DS with four nodes and five links

For program p,, there are three MFSTS, such as v, V3 €3, Vi V3€1 56,3, V1 V3€1,€:4634.
Therefore, DPR(py) = pr(U2,MF S J. Once al of the minimal files spanning trees have

been generated, the next step is to find the probability that at least one MFST is working

which means that all of the edges and vertices included in it are operational. The reliability

of program p; can be computed by means of a sum of mutually digoint terms[4].

DPR(py) = bioays + @1p81303004 + @1081302384034 + Q108384034 + 1033004 + @12
ap 4 A34-

Assume that the probability of each link is0.9. Then DPR(p,) = 0.98829.

In the same way, DPR(p,) = pr(U2, MF S T= 0.97686.

Therefore, theresults of DSRispr(NZ.p,) =pr(N2.MF S(T, p=0.97686.

A reliability-oriented task assignment problem can be characterized as follows:
Given : distributed system parameters, memory capacity of each node, memory requirement
of each program and data file, number of copies of each program and data file, files

required by each distributed program for execution.

Object: Maximize DSR = Pr{rjE(P

. P P+F .
SUBJECLO: (X ps; Xy + 2 %) <C» i1, oy D
o i-p

ixjxmi =k, X ;=00r 1 j=1.,P+F, kisthe number of copies of pf;.
i=1

3. GENETIC ALGORITHM BASED RELIABILITY-ORIENTED TASK

ASSIGNMENT METHODOLOGY

The GA search space is composed of possible solutions (chromosomes) to the problem.
Each chromosome has an associated objective function value called a fitness value which
denotes its strength. A set of chromosomes and their associated fitness values are called the

population. This population at a given stage of GA isreferred to as a generation.

3.1 Development of GAROTA

The development of GAROTA is described in the following subsections.

3.1.1 Chromosomal -coding scheme
If P, F and n represent the number of programs, data files and nodes, respectively, that a

chromosome, say X, with alength nx(P+F) of the following type:

f|: f1 DP Ps

Vil Vio Vo eVt Va2 voeVo VnaViz e Vo e Vi Voo ... Vo

Xp+RnaXP+Fn2 -+ Xp+r-1)n « -« XPsnn-1 Xp+n)n-2 - -+ XenXen1 Xpn-2 -+ Xp-pyn -« Xna Xp2 - X

Each bit indicates whether a program or file is allocated in a node, where x; =1, if it is occurrs,

otherwise x; =0. For example, if n=5, P=1, F=2, k=2

S P > < fy > < P >

Xig X13 X2 X1 X0 X9 Xg X7 X5 X5 Xg X3 X X X

1001 0 01 01 00O O 1 O001

This chromosome shows p, is allocated in node v, and vy, f; is alocated in node v; and v;, and f,

isdlocated in node v, and v;.

3.1.2 Valid Chromosomes
The most reliable assignment for k copies of some program or data file is to
assign these copiesto k distinct nodes[13].

For avalid chromosome, it must possess two characteristics as follows:

(1) For each sub-string, say S = Xj+1yxn+1s ---» Xixn, Of @ chromosome, wherei isin the range (0,
P+F-1), the number of bitswhose valueis 1 isequal to thek.
(2) The summation of the programs and files size, which is assigned to same node is at most

as large as the capacity of the node.

3.1.3 Initialization approach

The initial population can be randomly created or well adapted [20]. GAROTA was
randomly created to generate an unbiased population at initialization.

The size and format of a mask string, say M, is same as those of a chromosome. This
string can avoid generating an invalid chromosome and speed up the GA generation
initialization. In our simulation case, if the mask string is omitted, about 80~100 invalid strings
shall be generated before obtain a valid chromosome. For each bit of M, say m.;j, the valueis
set asfollows:

1if ¢; > ps, and i <P,

Mynej =31if ¢; > fs_p,and i 2 P,>
0 othrewise

where 0 <i <P+F, 0<j <N.

When a chromosome is generated according to the mask string M, we could always obtain
a valid chromosome and could omit checking whether it is a vaid chromosome. The

chromosome satisfies our requirement and is appended to the population.

3.1.4 The object function

The number of ports at each node (degree of a node) and number of links directly impact
the system reliability. Reliability decreases with a decrease in the number of links [5].
Therefore, we employed a simple means for computing the node weight, which takes less time

and can quickly compute the weight of every node.

w(v;)=1- dﬁl) bis, @)
z=1

In the network, two nodes may contain many paths between them. The length of a path is
between one and n-1. To reduce the computational time, we considered a path in which the
length is not greater than three. The following recursive formula was used to evauate the

weight of 2-terminals.

O,/ niti,alize (2)

“/Zte(r'm‘y:%vmefe(r,m,}/+)1/£(2 wiepgpmv)y A

where
Alisaprobability of apath that select fromthe sets S, S, and S; one after another,
S={a; |if g;isexists}, S={aa; | if 6, 6;isexist}, Vo={Vv | if 6, g isexist},
S={a a8 | if 64 6y, §; isexis, v, v, ¢ Vg and v, Vi, has not occurred} .
We can obtain the 2-terminal access weight of all pairs according to formula 2.

w2t er magcp9s2v v, (+wtermly ¥ wwliwv (3

If aprogram p; is allocated in v, and afile f; is allocated in vy, the file f; is needed when
pi is run. If the set SS(p;) represents al of the pairs (v, V), i.e. SS(P)={ (Vx W) | V holds a
copy of program p;, v, hold a copy of datafilef;, fi e AFL(p;), x= y}, we can use the following
formulato compute the access weight of each program as follows.

AW(p,) = T2t er ma(¢c c,e sy v v 4

where (v, V) € SYp).

Therefore, the access weight of chromosome X which denotes all the programs and data
files allocated in some node is computed as follows.

AWX)= w2t er ma(cc,esy v Vv (5)

where (v, Vy) € ULS & ,p)andif both of pairs (v, V), (W, W) are exist, discard (v,

Vy).

According to the access weight of chromosome X, the object function to compute the
fitness value of X is constructed as follows:

FTi= AW(X) x AW(X) (6)

The object function used to compute the fitness value of each i chromosome X in
generation j. Fitness values indicate which chromosomes are to be carried into the next
generation. The reason for using the value of the square of AW(X) as the fitness value is
expansion of the difference between two chromosomes. This will lead to a speed up of the

population convergence.

3.1.5 Genetic reproduction and selection

The process for sdlecting potentially good strings from the current generation is to be
carried into the next generation. This is achieved by assigning a proportionately higher fitness
value [16,18]. A “biased” roulette whedl [20] is used for chromosome selection into the mating

pooal.

3.1.6 Genetic crossover operators

The crossover is performed at the boundaries of the node bits. First, two chromosomes are
randomly selected from the mating pool. Next, using a random number generator, an integer is
generated in the range (1, P+F-1). This number is used as the crossover site. The result

produces two new chromosomes with information from their parents. For example,

< f >|< fy > < Pz >

Xig X1z X2 X1 Xi0|Xo Xg X7 X6 X5 Xa Xz X X Xo

10

Stringt 1 00 1 0|0 1 0 1 0 0 0 1 0 1

Stringz 0 11 0 0|0 0 1 1 0 0 0 0 1 1

If the crossover siteis 2, the information exchange occurs as.

< fz > | < fj_ > < pl >

Xia Xi3 X2 X1 Xo|Xo Xg X7 X6 X5 X4 X3 X2 X Xo
Childf 1 0 0 2 0|0 0 1 12 0 0 0 0 1 1

Child 011 0 0J]0O 1 0 1 0 0 0 1 0 1

The crossover operator sometimes generates an invalid chromosome. For example, If the
size of each node is 5, the size of p; is 2, f; is3 and f, is 2, respectively. Because py, f; and f,
should be allocated to v, in childl, the summation size is 7 which is exceeds the capacity of v;.

Thisanomaly isjust discarded.

3.1.7 Genetic mutation operator

This operator is used to improve the globa optimal solution, if it is appreciably reduced
by the crossover operation. First, using a random number generator, three integers (say X, v, 2)
are generated. The value of x is in the range (0, ps-1), which indicates the mutation
chromosome. The value of y is in the range (0, P+F-1) which indicates the bits between yxn
and ((y+1)xn)-1 of the mutation chromosome. The value of z is in the range (0, n-1) which
indicates the mutation bit, i.e., the (yxn+z ™ it of the mutation chromosome and mutates it.
Ensures that the copy of each program and data file is correct, we select a bit randomly in the
range (yxn, yx(n+1)-1) bit of the mutation chromosome and adjust it.

The mutation operator sometimes generates a chromosome, which does not represent a
valid task assignment. When this situation occurs, the original chromosome is reserved and

another chromosome is selected for mutation.

11

3.1.8 Replacement strategy and termination rules

The most common replacement strategy is to probabilisticaly-replace the poorest
performing chromosome in the previous generation [20]. On the other hand, the dlitist strategy
appends the best performing chromosome from the previous generation to the current
population and, thereby, ensures that the chromosome with the best objective function vaue
aways survives to the next generation. Our GAROTA combines both of these concepts. Each
offspring generated after crossover is added to the new generation if it has a better objective
function value than both of its parents. If the objective function value of an offspring is better
than only one of the parents, a chromosome is randomly selected from the better of the two
parents and the offspring. If the offspring is worse than both parents, any one of the parentsis
selected at random for the next generation. This ensures that the best chromosome is carried
into the next generation, while the worst is not.

GAROTA execution can be terminated when the average and maximum fitness values of

the strings in a generation become the same.

3.2 Complete Algorithm of GAROTA

The agorithm begins with an initial generation of valid chromosomes, which satisfy the
congraint. The initial generation contains a finite number of valid strings selected by random.
The number of strings in any generation, population size, is kept an even number to ease the

crossover. The detail stepsfor GAROTA are described asfollows:

Algorithm GAROTA

step 0 /*Initialize DS, GA, and task parameters */

Read parameters: n, e, &, ¢(v), ps, cr, nr, ng, tgn, k, P, F, s(p), S(fi), AFL(p).

12

step 1 Compute each node weight using Eqg. (1), al 2-terminal weight using Eq. (2) and all
2-terminal access weight using Eq. (3).
step 2 /* Generate each chromosome of the initid population. */
2.1 Initialize the mask string M for generating chromosomes quickly.
2.2 ng=0. /* generation 0 */
2.3 [* generate each valid chromosome and compute its fitness value for generation 0. */
for (I=0; i < ps; i++){
generate avalid chromosome chrom.
FT, = evaluate access weight of chrom using Eq. (5) }
step 3 Generate roul ette-wheel area of each chromosome according to its fitness value.
step 4 /* Reproduction/Sel ection for mating pool*/
Select ps chromosomes randomly according to roulette-wheel and generate the mating
pool.
step 5 /* Crossover for next generation. */
cC= [crx ps/2]./* set the crossover count. */
Dowhile (cc-->0)
generate two vaid chromosomes, say tmpl and tmp2, by crossover the two
chromosomes, say pool_chrom, and pool_chrom,, which are random select from
mating pool.
evaluate access weight of tmpl and tmp2 using Eq. (5).
relpace pool_chrom,, pool_chrom, by the chromosomes which are related to the two
maximized fitness values of these four chromosomes.
Enddowhile
step 6 /* Mutate for next generation. */

mc= [mrx ps|./* Set the mutation count. */

13

Dowhile (mc-->0)
generate a vaid chromosome, say tmp3, by mutate an arbitrary bit of the
chromosome, say pool_chrom,, which are random select from mating pool.
evaluate access weight of tmp3 using Eq. (5)
replace pool_chrom, by tmp3 if its fithess value better.
Enddowhile
step 7 Replacement and creation a new population
step 8 /* Test for terminating condition*/
ng =ng + 1. /* next generation */
if (ng < tngand someFT; # AVGFT) goto step 3.
step 9 /* Compute the DSR and output the best task assignment.*/
Compute the reliability of the final result task assignment indicate at the first chromosome
of the population using SY REL [4] and Output the task assignment.

End GAROTA

3.3 Anlllustrate Example

c(vi)=5 c(v2)=4 c(v3)=6
c(v4)=6 c(vs)=5 c(ve)=5

31'2=0.70 31'3=0.80 a2,3=0.90 a2,4=0.75
255=0.95 2,5=0.85 a,6=0.90 a5c=0.95

Fig. 2. The DS with six nodes and eight links

Infigure 2, if there are two programs, p,, p,, and three datafiles, fy, f,, f5, the size of p,, p.,

fy, £, f3is 2, 3, 2, 3and 3, respectively. The program p, needs f;, f,, and program p, needs f;, f,

14

f; for complete execution, e.q., AFL(py) is{fy, f.}, AFL(p,) is{fy, f,, f3}. Our problem isto find
the maximal distributed system reliability under the allocated programs and files.

In step 1, after evaluating each 2-terminal pair’ s weight using Eq. 3, the weight of (v, ,\,),
(V4 V3), ey (V1 VE), (Vo V), very (Vo V), ..y (V5 V) 1S 0.9495, 0.9550, 0.9227, 0.9356, 0.9295,
0.9914, 09735, 0.9799, 0.97%4, 0.9776, 0.9924, 0.9852, 0.9960, 0.9907 and 0.9943,
respectively.

In step 2, initialize popul ation.

In step 3, each chromosome' s fithess value, ratio of fitness value, and roulette-wheel area
are derived. The average fitness value is 0.490881.

The algorithm executes statements between step 4 and step 8. They are reproduction and
selection for the mating pool, crossover and mutation for the next generation, replacement and
creation of the new generation, and testing for the termination condition. In addition, step 3 is
executed again. The average fithess value of generation 1 is 0.537424.

In the same way, the average fitness value of generation 10, ..., 80 is obtained as shown in
Fig. 3. In generation 80, all chromosomes are 100100011000100010001100010010 and the
fitnessvalue is 0.748307. The average fitness value is 0.748307. Figure 3 illustrates the average
fitness value for every generation. Because the termination condition is satisfied, the algorithm
goesto step 9.

In step 9, the program and file assignments in the chromosomes of the population are
shown in Fig. 4. The agorithm computes the DSR using SYREL and Outputs the task

assignment. The reliability is0.9994969. The reliability count isequal to 1.

15

0.8

*

0.7

06 F

average fitness value

05 ¢

0 i 4 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

The number of generation (ng)

Fig. 3. The average fitness value of every generation of DS with six nodes and eight links with

P=2,F =3, AFL(p)={fy, fa}, AFL(py)={ 1, T2, f3}.

1, f1 P2, f2

f1, f3

P2, f3 p1, f2

Fig. 4. The results of programs and data files assignment

4. RESULTSAND DISCUSSION

Table 1 presents the data on the results obtained using three different methods for

various DS topol ogies with different allocated programs and data files.

Table 1. The results obtained using the exhaustive method, Hwang& Tseng method and

our proposed method for various DS topologies and k-DTAS.

Size

k-DTA AFL Globd Exhaust Hwang& Tseng Proposed method

16

NRC: the number of reliability computation

k: the number of copies of programs and datafiles

if k=1, then c(v1)=5, c(Vo)=4, c(V3)=6, c(V4)=6, c(Vs)=5, C(Vs)=5, S(P)=2,5(p2)=3, (p3)=3, Hf1)=2, (f»)=3,

(fa)=3, (fs)=2, fs)=2,

Exhaust: the exhaustive method

if k=2, then c(v;)=6, c(Vv,)=5, ¢(V3)=7, c(V4)=7, c(V5)=6, C(Vs)=6, S(p1)=2,3(p-)=3, S(p3)=3, s(f1)=2, (f,)=3,

(fa)=3, s(f2)=2, (fs)=2,

The complexity of the proposed agorithm is O(n®*+tngxpsxkxn(P+F)?*+n¥). Results obtained
from our agorithm were compared with those from the exhaustive method and the
Hwang& Tseng method [13]. Although the exhaustive method, which the time complexity is
O(mPn®*P), can yield the optimal solution, it cannot effectively reduce the number of
reliability computations and the time complexity. An application occasionaly requires an
efficient algorithm for computing reliability owing to resource considerations. Under this
circumstance, deriving the optimal reliability may not be a promising option. Instead, an
efficient algorithm yielding approximate reliability is preferred. The time complexity of the

method of Hwang and Tseng [13] is O(n*+kxn(P+F)+nf), which is slightly quicker than our

In this paper, we proposed a new technique for solving the k-DTA reliability problem.

17

Optimal time | time time [NR
F|l m [P3 NRC absolute err tng | ps |absolute err
solution (sec) | (se0) (sec) | C
3| fuf fi.fz - 0.9883041 | 4032 16 0.11 [0.0099509 | 097 | 1 | 190 |100 0
4| fhhfs | fafs - 0.9883041 | 18756 | 145 | 0.11 ({0.0099509 | 0.72 | 1 | 90 |100 0
3| fufo fo.fz fi.fz 0.9883041 | 13968 55 0.16 (0.0207249 | 139 | 1 | 100 |100 0
5| fifafs | fafsfs | fufs 0.9745220 | 210168 | 1072 | 0.22 [0.0055219 | 1.07 | 1 | 70 |100 0
3 | fufofs | fufs - 0.9998719 | 21312 97 0.16 (0.0146482 | 0.77 | 1 | 190 |100 |0.0002047
3| fifafs [fufafs |- 0.9992175 | 21312 34 | 022 (00137254 099 | 1 | 90 |100 |0.0001706
4 | f o fs [frfofafs | - 0.9984149 | 11691 19 0.38 [{0.0003736 | 0.72 | 1 | 100 |100 |0.0002877
3| fafs | fufs - 0.9998719 | 21312 | 104 | 0.22 [0.0002890 | 054 | 1 | 60 |100 |0.0002574
3| fafs fi.fo fi.fz 0.9998698 | 3699 24 0.27 [0.0053454 | 0.38 | 1 | 100 | 100 |0.0004042

method, but the deviation from exact solution is not ideal [13].

The accuracy and efficiency of the proposed agorithm were verified by implementing
simulation programs in C language executed in Pentium 1l with 128M-DRAM on
MS-Windows 98. In our smulation case, the number of reliability computations for the
proposed algorithm was constant. The exact solution can be obtained when the number of
copies of programs and filesis one. In dmost every casg, if the number of copies of programs
and files exceeds one, the proposed method can obtain an approximate solution, in which the
average deviation from the exact solution is under 0.001. Because the proposed agorithm uses
the ditist strategy at replacement and uses the access weight instead of the reliability of

two-terminal for computing fitness value, in afew cases, it cannot obtain the exact solution.

5. CONCLUSION

This paper has presented a genetic algorithm based reliability-oriented task assignment
methodol ogy for computing the k-DTA reliability problem. Our numerical results show that the
proposed algorithm may obtain the exact solution in most cases and the computation time
seems to be significantly shorter than that needed for the exhaustive method. When the
proposed method fails to give an exact solution, the deviation from the exact solution appears
very small.

REFERENCES

[1] K.K. Aggarwal, S. Rai, “Reliability evaluation in computer communication networks’, IEEE trans.
Reliability, vol R-30, 1981 Jun, pp 32-35.

[2] K.K.Aggarwal, Y.C. Chopra, J.S. Bajwa, “Topological layout of links for optimizing the S-T reliability ina
computer communication system”, Microelectron. Reliab., vol 22, num 3, 1982, pp 341-345.

[3] A. Satyanarayna, J.N. Hagstrom, “New algorithm for reliability analysis of multiterminal networks’, |EEE

Trans. Reliability, vol R-30, 1981 Oct, pp 325-333.

18

[4] S. Hariri, C.S. Raghavendra, “SYREL: A symbolic reliability algorithm based on path and cuset methods’,
IEEE Trans. Computers, vol C-36, 1987 Oct, pp 1224-1232.

[5] F. Altiparmak, B. Dengiz, A.E. Smith, “Reliability optimization of computer communication networks
using genetic algorithms”, Proc IEEE int conf syst man cybern 5, 1998 Oct, pp 4676-4680.

[6] D.W. Cait, A.E. Smith, “Reliability optimization of series-parallel systems using a genetic algorithm”, |IEEE
Trans. Reliability, vol R-45, 1996 Jun, pp 254-260.

[7] D. Torrieri, “Calculation of node-pair reliability in large networks with unreliable nodes’, IEEE Trans. On
Reliability, vol R-43, 1994 Sep, pp 375-377.

[8] D.J. Chen, T.H. Huang, “Reliability analysis of distributed systems based on a fast reliability algorithm”,
IEEE Trans. on Parallel and Distributed Systems, vol 3, 1992 mar, pp 139-154.

[9] V.K.P. Kumar, C.S. Raghavendra, Hariri, “Distributed program reliability analysis’, IEEE Trans. Software
Engineering, vol SE-12, 1986 Jan, pp 42-50.

[10] A. Kumar, D.P. Agrawal, “A generalized algorithm for evaluation distributed program reliability”, |IEEE
Trans. Reliability, vol R-42, 1993 Sep, pp 416-426.

[11] D.J. Chen, R.S. Chen, T.H. Huang, “Heuristic approach to generating file spanning trees for reliability
analysis of distributed computing systems”, Journal of Computers Math. with Applic. vol 34, 1997 Nov, pp
115-131.

[12] P. Tom, C.R. Murthy, “Algorithms for reliability-oriented module allocation in distributed computing
systems’, Journal of Systems and Software, vol 40, 1998 Feb, pp 125-138.

[13] G.J. Hwang, S.S. Tseng, “A heuristic task assignment algorithm to maximize reliability of a distributed
system”, |[EEE Trans. Reliability, vol R-42, 1993 Sep, pp 408-415.

[14] M. Kd&fil, 1. Ahmad, “Optimal task assignment in heterogeneous distributed computing systems’, |EEE
Concurrency, vol 6, 1998 Sep, pp 42-51.

[15] A. Kumar, R.M. Pathak, Y.P. Gupta, “Genetic algorithm based approach for file alocation on distributed
systems’, Computers Ops Res., vol 22, num 1, 1995, pp 41-54.

[16] L. Davis, et al, “Genetic agorithms and simulated annealing: An overview”, Genetic Algorithms and
Smulated Annealing (L. Davis, Ed), 1987, Morgan Kaufman.

[17] K.A. De Jong, “An analysis of the behavior of a class of genetic adaptive systems’, PhD Thesis, 1975,
(microfilm -76-9381); Univ. of Michigan.

[18] D.E. Goldberg, Genetic Algorithmsin Search, Optimization and Machine Learning, 1989; Addison-Wesley.

19

[19] J.H. Holland, “Genetic algorithm and the optimal allocation of trials’, SAM J. Comput., vol 2, num 2, 1973
Jun, pp 88-105.
[20] G.E. Liepins, M.R. Hilliard, “Genetic algorithms: Foundations and applications’, Annals of Operations

Research, vol 21, 1989, pp 31-58.

20

