
Feedback Vertex Set in Split-Stars and Alternating Groups  

Cheng－Ju Hsu*       In－Jen Lin   

Department of Computer Science, National Taiwan Ocean University, Keelung, Taiwan, 

Republic of China  

 

Abstract 

The feedback vertex set F of a graph G is a subset of vertices such that the removal 

of F from G induces an acyclic subgraph.  

   In this paper, we study the feedback vertex set problem on the directed and 

undirected spilt-stars and alternating group graphs separately. We give upper and lower 

bounds to the minimum feedback vertex set on the n-dimensional spilt-stars and 

n-dimensional alternating group graphs. 
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1. Introduction 

Let G = (V, E) be a graph with vertex set V(G) and edge set E(G), where E⊆V ×V. 

We also let D = (V, A) be a directed graph with vertex set V(D) and arc set A(D), where 

A V ×V. An arc ⊆ uv  is said to be directed from u to v. In a graph G (V, E), a cycle is a 

graph with an equal number of vertices and edges whose vertices can be placed around 

a circle so that two vertices are adjacent if and only if they appear consecutively in the 

circle. Also, a graph with no cycle is called acyclic. The feedback vertex set F of a 

digraph D = (V, A) is a subset of vertices V ⊆V whose removal from D, induces an 

acyclic subgraph = (V , ' ) where = V \ 'D ' A 'V V and = {< u, v >∈A | u, v∈ }. A 

feedback vertex set with the minimum cardinality is called minimum feedback vertex set, 

and its cardinality denoted by µ(D). The feedback vertex set problem originated from 

applications in combinatorial circuit design, but have found their way into numerous 

other applications, such as deadlock prevention in operating system, constraint 

satisfaction, Bayesian inference in artificial intelligence, and graph theory. As an 

example, consider an interconnection network modeled by a graph, for which vertices 

represent processors and each edge < i, j> represents the request of processor i for a 

resource allocated to a processor j. If there is a cycle in such a graph, a deadlock occurs 

and every processor in the cycle will wait for the requested resource and will never 

release the resource already allocated to it. In order to solve the deadlock, one can 

remove some processors from the graph and put them in a waiting queue. Therefore, it 

is clear that we want to minimize the number of processors removed and make the 

graph acyclic. It is well known that the problem of finding a minimum feedback vertex 

set is NP-hard for general networks [4], but there exits polynomial solutions for 

particular graphs [ 6, 7, 8, 9,10]. In order to obtain polynomial solutions, one can restrict 

these problems to special classes of graphs, such as interval graphs, permutation graphs, 

etc. 

'A 'V

   In this paper, we present results concerning feedback vertex set problem in both 

directed and undirected spilt-stars and alternating group graphs , which have recently 

been developed as a new model of the interconnection network for parallel and 

distributed computing systems. Jwo et al. [5] studied the alternating group graphs; 

Cheng et al. [2] studied a variant distributed processor architecture of the star graphs, 
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which is known as the spilt-star. Cheng and Lipman [1] proposed an assignment of 

directions to the edges of the spilt-stars and the alternating groups. They also showed 

that resulting directed graphs are not only strongly connected, but, in fact, they have 

maximally arc-connected and have small diameters.  

The n-dimensional directed spilt-star 2
nS is a directed graph, which has the set of n! 

permutations of an n-set as the vertex set. The vertices of the spilt-stars are in a 

one-to-one correspondence with n! permutations [p1,p2,…,pn] of the set N={1,2,…,n}, 

and two vertices u, v of nS are connected by an arc < u, v > if and only if the 

permutation of v can be obtained from u by either a 2-exchange or 3-rotation. Let u = 

[p1,p2,…,pn]. A 2-exchange interchanges the first symbol p1 with the second symbol p2 

whenever p1＞p2 , i.e., v = [p2,p1,…,pn]. A 3-rotation rotates the symbols in positions 1, 

2 and i for some i∈{3, 4,…, n}, i.e., v = [pi,p1,…pi-1, p2, pi+1,…, pn]. Figure 1 depicts an 

example of 2
nS  for n = 4. On the other hand we also denote the n-dimensional 

undirected spilt-star by Sn. The undirected spilt-star can be obtained form directed 

spilt-stars by letting each arc with bi-direction. For simplicity, we discard the arc’s 

directions of undirected spilt-stars, and Figure 2 depicts an example of Sn for n = 4. 
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 Figure 1 : 4-dimensional directed spilt-star. 
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Figure 2 : 4-dimensional undirected spilt-star.  

 

Let u = [p1, p2,…, pn] where pi∈N for all 1≤ i ≤ n. Now, let Id denote the identity 
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permutation of N. If pi＞pj where i＜j , the pair pi and pj constitute an inversion. A 

permutation is said to be even ( resp. odd) if its number of parity inversions is even 

( resp. odd). Given a simple graph G and a simple graph H, an isomorphism from G to 

H is a bijection f :V(G)→V(H) such that uv ∈E(G) if and only if f(u) f(v)∈E(H). We 

say G is isomorphic to H, if there is an isomorphism from G to H. Let EnS ,2  be the 

subgraph of 2
nS  induced by the set of even permutations. This is precisely the 

alternating group graph, nA , introduced in [5]. Let OnS ,2  be the subgraph of 2
nS  

induced by the set of odd permutations. Then, EnS ,2  is isomorphic to O,nS 2  via a 

2-exchange. Let An and nA  be n-dimensional undirected and directed alternating 

group graphs induced subgraph of Sn and 2
nS  with even permutations reactively.      

2
n

The remaining sections of this paper are organized as follows. In Section 2, we 

define some notations and study the feedback vertex set problem for the directed 

spilt-star. The upper and lower bounds to the minimum cardinality of the feedback 

vertex set for the n-dimensional directed spilt-star are given. In Section 3, we show the 

upper and lower bounds to the minimum cardinality of the feedback vertex set for the 

n-dimensional directed alternating group graphs. Section 4 and Section 5 are devoted to 

explore the existence of independent set vertices of spilt-stars and alternating group 

graphs to construct double rooted star as feedback vertex set of Sn and An. Finally, a 

concluding remark is given in the last section.  

 

2. The Feedback Vertex Set of Directed Spilt-stars 

The n dimensional spilt-star is a regular graph with degree 2n－3, |V( S )|＝n! and 

|E( 2
nS )|＝(2n－3)n!/2. 2

nS is recursively constructed by  n copies of 2
1−nS . 

Let Ni = N \ {i} for i＝1,2, and let N1,2＝N \ {1,2}, where  

N = {1,2,3…n}. We also let V( nS )={[p1,p2,p3…pn] | pi ≠ pj and i, j∈N }. We define X be 

a nonempty proper subset of the V( nS ), and let Ex(X) to be the set of 2-exchange 

neighbors of X and R (X) to be the set of 3-rotation neighbors of X. Define δ(X) to be the 

set of arcs leaving X and ρ(X) to be the set of arcs entering X.  
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Lemma 1.  Let F = {[p1, p2, p3…pn] | p1＞p2 } and F V(⊆ nS ). Then F is a feedback 

vertex set of nS . 

Proof.  Let F be a subset of V( nS ) with cardinality n! ⁄ 2. We want to show that F is a 

feedback vertex set of nS . Suppose, to the contrary, that F is not a feedback vertex set 

of nS . 

Then a cycle C＝u1→u2→…→uk→u1 exists in nS \F.  For each vertex ui＝[ui,1, ui,2, 

ui,3,…, ui,n] C.  Since u∈ i,1＜ui,2 ,  ui has no 2-exchange neighbor. Therefore, ui+1 is a 

3-rotation neighbor of ui ,1≤ i ≤ k－1, and u1 is uk’s 3-rotation neighbor. Further, ui,1＝

ui+1,2 and uk,1 ＝u1,2. Since ui+1,1＜ui+1,2 , ui+1,1＜ui,1 . Thus, uk,1＜uk-1,1＜…＜u11＜uk,1 , 

which is a contradiction.      □                                  

Lemma 2.  Let ＝{[2,1,p'F

'

3,…,pn] | pi∈N1,2, for each 3 i≤ n} and F. For 

each vertex u∈ , R ( u )⊆  F \ ' and R(E

≤ 'F ⊆

F F x( u ))  F \ ' .  ⊆ F

Proof. V('F ⊆ nS ). Let uv

F

⊄

 δ ( u ), then either v∈E∈ x( u ) or v∈R ( u ). If v∈R ( u ), it 

has the form [pi ,2,p3,.. pi-1,1, pi+1 ,…,pn] and pi ≥ 2, i∈N1,2. Since R ( u )∈F and R 

( u )∉ , R ( u )⊆  F \ ' . Otherwise, if v∈E'F x ( u ) then v is the form of [1,2,p3,…,pn]. 

Since Ex ( u )⊄F, Ex ( u ) F \ ' ,but for each vertex w∈R(EF x( u )), it has the form of 

[pi ,1,p3,.. pi-1,2, pi+1…,pn] and pi ≥ 1, pi≠2, i∈N1,2. . Thus, R(Ex( u ))∉ , R(E'F x(u))⊄F 

\ ' .      F □ 

Lemma 3.  Let = {[n,n－1,p''F

F

3,…, pn] | pi∈Nn,n-1, for each 3 i≤ n} and F.  

For each vertex u∈ , R ( u )  F \ ' .  

≤ ''F ⊆

'' ⊆ 'F

Proof. V(''F ⊆ nS ). Let vu  ρ ( u ), then v∈R ( u ). If v∈R ( u ), it has the form [n－

1,p

∈

i,p3,.. pi-1, n, pi+1 ,…,pn] and  pi ≤ n－1, i∈N1,2. Since R( u )∈F and R ( u )∉ , R 

( u )⊆F \ ' .      

''F

'F □ 

Based on the Lemmas 1, 2 and 3, we give the following algorithm to find the 

feedback vertex set for the directed split-stars.   

Algorithm FDS  

Input: A directed split-star nS . 

Output: A feedback vertex set of nS . 
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Method: 

   Step 1:  F＝{[p1, p2, p3…pn] | p1＞p2 } 

'F ＝{[2,1,p3,…,pn] | pi∈N1,2, for each 3≤ i n} ≤

''F ＝{[n,n－1,p3,…, pn] | pi∈Nn,n-1, for each 3 i≤ n} ≤

Step 2:  S＝F / ( ). 'F ∪ ''F

Step 3:  output S. 

From Lemma 1, Lemma 2 and Lemma 3, we can conclude that the upper bound to 

the minimum cardinality of the feedback vertex set for the n-dimensional directed 

spilt-star. 

Theorem 4.  µ( nS ) ≤ n! ⁄ 2－2(n-2)! 

Proof.  For each vertex u∈ , by Lemma 2, R( u ) F \ ' . Since R(E'F ⊆

'F

F

F

x( u )) F 

\ ' the existence of E

⊆

F x( u), it just only makes paths not cycles. By Lemma 3, for each 

vertex v∈ , R (v)⊆F \ ' . Thus, the existence of and would not make any 

cycle in 

''F 'F ''

nS . By Lemma 1, F is a feedback vertex set of V( nS ) with cardinality n! ⁄ 2. So 

µ( nS )≤ n! ⁄ 2－2(n-2)!.       □  

   In addition to give the upper bound to the minimum cardinality of the feedback 

vertex set for the n-dimensional directed spilt-star, we also give the lower bound to the 

minimum cardinality of the feedback vertex set for the n-dimensional directed spilt-star. 

Theorem 5.  n 4, µ(≥ nS )≥ n!/3 

Proof.  In 4S , there exists 8 disjoint 3-cycles. In order to break cycles in 4S , we have 

to delete at least 8 vertices, a vertex for each disjoint cycle. The labels of deleted 

vertices are in the following: [3214], [3241], [3142], [3124], [4123], [4132], [4213] and 

[4231]. For |V( 4S )|＝24 and µ( 4S )＝8/24＝1/3. Again, since there are n! /4! copies of 

4S  in nS  for n 4, and in each copy, we need to delete at least eight vertices. Then 

results µ(

≥

nS ) (n!/4!)×8＝n!/3.      ≥ □                                                   

 

3.The Feedback Vertex Set of Directed Alternating Group Graphs 

The n-dimensional directed alternating group graphs 2
nA is a directed graph, which is 

induced by the set of even ( resp. odd) permutations of nS . It is a regular graph with 
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degree 2(n－2). Since EnS ,2  is isomorphic to OnS ,2  via a 2-exchange, without loss of 

generality, we let nA be the even permutation of nS . The cardinality of vertex set and 

edge set of nA  is n! /2 and (n－2)n!/2. Alternating group graphs have a highly 

recursive structure. nA is made up of n 1−nA . Figure 3 and 4 depict examples of 3A  

and 4A , respectively. 
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Lemma 6.  Let F = {[p1,p2,p3,…,pn] | p1＞p2 } and F⊆V( nA ). Then F is a feedback 

vertex set of nA . 

Proof.  Let F be a subset of V( nA ) with cardinality n! ⁄ 4. We want to show that F is a 

feedback vertex set of nA . Suppose, to the contrary, that F is not a feedback vertex set 

of nA . Then a cycle C＝u1→u2→…→uk→u1 exists in nA \ F.  For each vertex ui＝

[ui,1, ui,2, ui,3,…, ui,n] C.  Since u∈ i,1＜ui,2 ,  ui has no 2-exchange neighbor. Therefore, 

ui+1 is a 3-rotation neighbor of ui ,1≤ i ≤ k－1, and u1 is uk’s 3-rotation neighbor. Further, 

ui,1＝ui+1,2 and uk,1 ＝u1,2. Since ui+1,1＜ui+1,2 , ui+1,1＜ui,1 . Thus, uk,1＜uk-1,1＜…＜u11＜

uk,1 , which is a contradiction.      □ 

Lemma 7.  Let V('A ⊆ nA ) and = {[2,1, p'A 3,…, pn] | pi∈N1,2, for each 3≤ i n}, for 

each vertex u∈ , R ( u )⊆F \ ' .  

≤

'A A

Proof. Let uw∈δ ( u ), w∈R ( u ) . If wi∈R ( u ), it has the form 

[pi ,2,p3,.. pi-1,1, pi+1 ,…,pn] and pi ≥ 2, i∈N1,2 . Since R( u )∈F and  

R ( u )∉ , R ( u ) F \ ' .      'A ⊆ A □ 

Lemma 8.  Let V(''A ⊆ nA ) and ＝{[n, n－1, p''A

'

3,..., pn] | pi∈Nn,n-1, for each 3≤ i n}, 

for each vertex v∈ , R ( v ) F \  

≤

''A ⊆ 'A .

Proof. Let  sv ∈ρ ( v ), then s∈R ( v ) . If si∈R ( v ), it has the form     [n－1,pi,p3,.. 

pi-1, n, pi+1 ,…,pn] and  pi ≤ n－1, i∈N1,2. Since R ( v )∈F and R ( v )∉ , R ( v ) F 

\ ' .      

''A ⊆

'A □  

Based on the Lemmas 6, 7 and 8, we give the following algorithm for solving the 

feedback vertex set problem in the directed alternating group graphs. 

Algorithm FDA  

Input: A directed alternating group graphs nA . 

Output: A feedback vertex set of nA .  

Method: 

   Step 1:  F＝{[p1, p2, p3…pn] | p1＞p2 } 

'F ＝{[2,1,p3,…,pn] | pi∈N1,2, for each 3≤ i n} ≤

''F ＝{[n,n－1,p3,…, pn] | pi∈Nn,n-1, for each 3 i≤ n} ≤
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Step 2:  S＝A / ( ). 'A ∪ ''A

Step 3:  output S. 

 

Lemma 6, Lemma 7 and Lemma 8 can derive the upper bound to the minimum 

cardinality of the feedback vertex set for the n-dimensional directed alternating group 

graphs. 

Theorem 9.  µ( nA ) ≤ n! ⁄ 4－(n－2)! 

Proof. For each vertex u∈ , v∈ , by Lemma 7, R ( u ) F \ ' , R ( v ) F \  

Thus, the existence of and would not make any cycle in 

'A ''A ⊆ A ⊆ ''A .

'A ''A nA . By Lemma 6, F is 

a feedback vertex set of V( nA ) with cardinality n! ⁄ 4. So µ( nA )≤ n! ⁄ 4－(n－2)!.               

□ 

We also give the lower bound to the minimum cardinality of the feedback vertex set 

for the n-dimensional directed alternating group graphs. 

Theorem 10.  n 4, µ(≥ nA )≥ n!/6 

Proof.  In 4A , there exists 4 disjoint 3-cycles. To break all cycles of 4A , we need to 

prune at least 4 vertices, a vertex for each disjoint cycle. The labels of deleted vertices 

are in the following: [3241], [3124], [4132] and [4213]. For |V( 4A )|＝n!/2＝12 and 

µ( nA )＝4/12＝1/3. Again, since there are n!/24 copies of 4A  in nA  for n≥ 4, and in 

each copy, we need to delete at least four vertices. Then results µ( nA ) (n!/24)×4＝n!/6.        ≥

□ 

 

4. The Feedback Vertex Set of Undirected Spilt-stars 

   An independent set in a graph G is a vertex set I⊆V(G) that contains no edge of G, 

that is to say G[ I ] has no edge. Let , N, where 'N ' ⊆'N

'N  ＝{1,2,…, } and ＝{ ＋1, ＋2, …., n}.   2/n   ''N  2/n  2/n

Lemma 11.  Let I＝{[x,y, p3,…,pn] | x∈ , y∈ , p'N ''N i∈Nx,y and 

 i＝3,4,…n} and vertex set I is an maximal independent vertex set of Sn. 

Proof.  Since I⊆V( Sn ), we immediately show that for any two vertices u, v∈ I, 

vertices u, v are not adjacent. Suppose, to the contrary, that I is not an independent 
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vertex set of Sn. Then an edge uv

'N

'N

''N

 exists in G[ I ]. Let  

u＝{[u1,u2,u3,…,un] | u1∈ 'N , u2∈ ''N and ui∈Nu1,u2 and i＝3,4,…n } and 

v＝{[v1,v2,v3,…,vn] | v1∈ 'N , v2∈ ''N , vi∈Nv1,v2 and i＝3,4,…n}. Hence, v is either the 

2-exchange neighbor of u or a 3-rotation neighbor of u. If v is the 2-exchange neighbor 

of u, then v1＝u2, and v2＝u1. Since v1∈ 'N , 

 u2∈ ''N  and ＝ , it is a contradiction. Otherwise, v is a 3-rotation neighbor 

of u. Thus, v

'N ∩ ''N φ

2＝u1or v1＝u2. Similarly, it contradicts that ＝ . 'N ∩ ''N φ

   Furthermore, we shall prove that I is maximal. Suppose, to the contrary, that I is not 

a maximal independent set of Sn. Then, there exists a vertex v∈V( Sn )\ I and I∪ {v} is 

also a independent set of Sn . That is to say, u and v are nonadjacent, for each u∈I. Let u

＝{[u1,u2,u3,…,un] | u1∈ 'N , u2∈ ''N and ui∈Nu1,u2 and i＝3,4,…n }. Since v∉I, v 

belongs to one of the following three vertex sets.  

(1) ＝{[v'V 1,v2,v3…,vn] | v1∈ and v2∈ 'N , vi∈Nv1,v2 and i＝3,4,…n}, 

(2) ＝{[v'''V 1,v2,v3…,vn] | v1∈ ' and v2∈ ''N , vi∈Nv1,v2 and i＝3,4,…n}, 

(3) ＝{[v''V 1,v2,v3…,vn] | v1∈ and v2∈ 'N , vi∈Nv1,v2 and i＝3,4,…n}. 

Now, we discuss it according to the listed classes. 

Case 1:  v∈ . Let w＝[v'V 2,vi,…,vi-1,v1,vi+1,…,vn]∈N(v), where vi∈ ''N . Then w∈I, 

vw ∈E( Sn ). Which contradicts that v, w are nonadjacent, for each vertex w∈I. 

Case 2: v∈ . The proof is similar to case 1. '''V

Case 3: v∈ . Let w＝[v''V 2,v1,…,vi-1,vi,vi+1,…,vn]∈N(v), where v2∈ 'N and v1∈ ''N . 

Then w∈I, vw ∈E( Sn ). It is a contradiction.             □ 

 

   According to the size of and , we get the following result 'N ''N

| I |＝(n2/4)(n－2)!, if n is even and | I |＝(n2－1/4)(n－2)!, if n is odd. 

Lemma 12.   Let = {[x,'L  y, p3…,pn] | x,y∈ , x＝1,3,5,…, ,  'N  2/n 

y＝x+1, pi∈Nx,y and i＝3,4,…n}, then  is an independent set of S'L n.   

Proof.  For each vertex u, v∈ ' , let u＝[xL 1, y1, p3…pn] and v＝[x2, y2, p3…, pn]. 

Suppose, to the contrary, that  is not an independent vertex set of S'L n. Then an edge 

uv  exists in G[ ' ]. Hence, v is either the 2-exchange neighbor of u or a 3-rotation L

 12



neighbor of u. If v is the 2-exchange neighbor of u, then x1＝y2, and y1＝x2. Since x1, x2 

are odd and y1, y2 are even, it is a contradiction. Otherwise, v is a 3-rotation neighbor of 

u. Thus, y2＝x1or x2＝y1. Similarly, it contradicts that x1, x2 are odd and y1, y2 are even. 

Therefore,  is an independent set of S'L n.                     □  

Lemma 13.  Let '＝{u | v∈ , u∈E'L 'L x( v )}, then '  is an independent set of S'L n. 

Proof.  Since  is isomorphism to , thus '  is an independent set of S''L 'L 'L

'E
n. An 

independent edge set in a graph G is an edge set E(G) that each edge contains no 

common vertex of G, that is to say G[ ' ] has no cycle. 

⊆

E

Lemma 14.    Let '＝{u | v∈ , u∈E'L 'L x( v )}, then G( ' ) is an independent 

edge set in S

' ∪L 'L

n.   

Proof.  For each vertex u, v∈ , s, w∈ . s is a 2-exchange neighbor of u and w is a 

2-exchange neighbor of v .We assume that 

'L ''L

us and vw  have a common vertex . Let u＝

[x1, y1, p3…, pn], s＝[y1, x1, p3…, pn], v＝[x2, y2, p3…, pn] and w＝[y2, x2, p3…, pn]. 

Without loss generality let s＝v be the common vertex of us and vw . Then, y1＝x2 and 

x1 ＝ y2. Since u, v  and x∈ 'L 1 ≠ y1 ≠ x2 ≠ y2. It is a contradiction.               

□  

A star is K1,n for some n 2. A doubled-rooted star (DRS) is the union of 2 K≥ 1,n, plus 

an edge between 2 vertices with maximum degrees. For example, Figure 5 (a) there are 

two K1,5 and Figure 5 (b) is double-rooted star constructed from 5 (a) with one more 

edge. 

 
      

Figure 5 (a)   
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Lemma 15.  G( I ) is acy

double rooted stars. 

'L ∪ ''L ∪

Proof.   Let u＝[p1, p2, p3…, pn]∈I

pi∈ 'N and pi＝p1＋1 (pi＝p1－1) suc

respectively. Then, v and its 2-exchan

Since each u∈I is uniquely connecte

union of disjoint double rooted 

□  

Lemma 16.  Let '＝ {[n,''L

'I ⊆

I

 n－1, p3

i＝3,4,…n}, and I, '＝ {[ pI 1, n

then N( ' ) I ' .  ''L ∩ ⊆

Proof.  Let N( ' ) I＝Γ''L ∩ 1∪Γ2, wh

Γ1＝{[n－1, pi, p3,…pi-1, n, pi+1…, pn]

Γ2＝{[pi, n, p3,…pi-1, n－1, pi+1…, pn

Therefore, N( ' ) I＝(Γ''L

'N

∩ 1∩ I ) (Γ∪

L

to complete the proof. Since n－1∉
'because pi∈ and n∈ . Thus N(''N

Lemma 17.  For any two distinct ve

(b)∩ , then N'I I’ (a)∩NI’ (b)＝ . φ

Proof.   Let a＝[n, n－1, a3,…,an] a

 

Figure 5 (b)   
clic and G( I )is a union of disjoint 'L ∪ ''L ∪

. If p1 is odd (even), then there exists a unique 

h that v＝[pi, p1, p3,..,pi-1, p2 pi+1,..,pn]∈ ( ' ), 

ge neighbor are the roots of a double-rooted star. 

d to a double-rooted star, G( I ) is a 

stars. Thus, G( I ) is acyclic.               

''L L

' ∪L

∪

' ∪'L

' ∪L ''L

…, pn] | [n, n－1, p3…, pn] A∩ n, pi∈Nn,n-1 , and 

, p3…,pn] | p1∈ 'N , pi∈Np1,n  and i＝3,4,…n}, 

ere  

 | pi∈Nn-1,n, i＝3,4,…n} and 

] | pi∈Nn-1,n, i＝3,4,…n} . 

2∩

∩

I ). Now, we want to computeΓi∩ I, i＝1,2, 

, (Γ'N

'

1∩

I

I )＝ . To find Γφ 2∩ I, Γ2∩ I⊆  'I

' ) I ' .      ⊆ □              

rtex a, b∈ , let N'''L I’ (a)＝N (a) ' , N∩ I I’ (b)＝N 

nd b＝[n, n－1, b3,…,bn].Since 
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N I’(a), N I’(b)⊆ , therefore N'I I’ (a)＝[ai, n, a3,.. ai-1, n－1, ai+1…, an], ai∈ 'N and NI’ (b)

＝[bj, n, b3,…bj-1, n－1, bj+1…, bn], bj∈ 'N .Let for any s be the common neighbor of a 

and b, then s＝[pk, n, p3,…pk-1, n－1, pk+1…, pn], pi∈ 'N .For such the position of n－1 

that i＝j＝k and ai＝pk＝bj, ai-1＝pk-1＝bj-1, ai+1＝pk+1＝bj+1 . It implies that a＝b, but it 

contradicts to  

a≠b, thus NI’ (a) N∩ I’ (b)＝ .      φ □ 

Lemma 18.  G( ) contains no cycle in S' ∪L ''L ∪ '''L n.  

Proof.  Let v＝[n, n－1, p3,…, pn] ' . For each u∈N(v), there are three possible 

forms of u in the following. 

∈ ''L

Case(1): u＝[n－1, n, p3,…, pn]. Since n－1 and n∉ , u∉ .  'N 'L ∪ ''L

Case(2): u＝[n－1, pi , p3,…pi-1, n, pi+1…, pn]. Since n－1∉ , u∉ ' . 'N 'L ∪ 'L

Case(3): u＝[pi, n, p3,…pi-1, n－1, pi+1…, pn]. Since n∉ , u∉ ' .      'N 'L ∪ 'L □ 

Lemma 19.  If u∈ '  then u can connect to at most one vertex v in each double 

rooted star of G( ' ). 

''L

'L' ∪L ' ∪ I

Proof    We defineΠi , i＝1,3,5,… , denote the set of double rooted star which 

roots are labeled with [i, i+1, p

 2/n 

3,…, pn] and [i+1, i, p3,…, pn]. Let u＝[n, n－1, p3,…, pn] 

. For each v∈N(u), there are three possible forms of v in the following. ∈ '''L

Case(1): v＝[n－1, n, p3,…, pn]. Since n－1∉ , v∉ . That is to say u 

does not adjacent with any vertex of G( ' ).  

'N

∪

'L ∪ ''L ∪ 'I

' ∪L ''L I

Case(2): v＝[n－1, pi , p3,…pi-1, n, pi+1…, pn]. This proof is similar to  

case (1). 

Case(3): v＝[pi, n, p3,…pi-1, n－1, pi+1…, pn]. If v is in no DRS, then u does not adjacent 

with any DRS. v∈Πpi if pi is odd and v∈Πpi－1, otherwise. For eachΠi, since the 

second symbol of each roots is less than n, v is not a root. By the construction ofΠi, 

there are exactly two leaves                                         v1＝[i, n, 

x3, x4,…xn] and v2＝[i＋1, n, x3, x4,…xn] with the permutation that the second symbol is 

n. since v1 ≠ v2 , either v1 or v2 is the only neighbor of u.               

□ 

Theorem 20.  G( I ) is acyclic.  'L ∪ ''L ∪ ∪ '''L
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Proof.  By lemma 15 G( I ) is acyclic and by Lemma 19, u can connect to at 

most one vertex in each DRS. Thus, there is no cycles in G( I ).               

'L ∪ ''L ∪

' ∪L ''L ∪ ∪ '''L

□   

Based on the Theorem 20, we give the following algorithm for solving the feedback 

vertex set problem in the undirected split-stars.   

Algorithm FUS 

Input: An undirected split-star Sn. 

Output: A feedback vertex set of Sn. 

Method: 

Step 1: I＝{[x,y, p3,…,pn] | x∈ , y∈ , p'N ''N i∈Nx,y and i＝3,4,…n}. 

'L ＝{[x, y, p3…,pn] | x, y∈ , x＝1,3,5,…, , y＝x+1, p'N  2/n  i∈Nx,y and i

＝3,4,…n}. 

''L ＝{u | v∈ , u∈E'L x( v )}.  

'''L ＝{[n, n－1, p3…, pn] | [n, n－1, p3…, pn] A∩ n, pi∈Nn,n-1 , and i＝

3,4,…n}. 

Step 2:  S＝I . ∪ 'L ∪ ''L ∪ '''L

Step 3:  output S. 

          

Since G( I ' ) is acyclic, G( I ' ) is a feedback vertex 

set, we immediately have the following result. 

' ∪L ''L ∪ ∪ ''L ' ∪L ''L ∪ ∪ ''L

Theorem 21. µ( Sn ) ≤ n!－[(n2+2n/4)(n－2)! + (n－2)!/2], if n is even. 

           µ( Sn ) ≤ n!－[(n2－1+2n /4)(n－2)! + (n－2)!/2], if n is odd. 

Any connected acyclic graph must be a tree. To determine a given simple graph G is 

acyclic or not, we make use of the relationship between number of vertices and edges in 

each component of G. Furthermore, the following lemma applied to find the lower 

bound of the undirected spilt-stars.     

Lemma 22.  Let G be a simple graph. G is cyclic, if |V(G)|≤ |E(G)|. 

Proof.  Without loss of generality, we may assume G is connected. Otherwise there is a 

cycle in a small component (by induction). If G does not contains a cycle,  the G is a 

tree then |E(G)|=|V(G)|－1.       □ 
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An edge is called outer-edge if the endvertices of this edge belong to two different 

substars and the cardinality of outer-edges of some vertex v is the outer-degree of v. 

Otherwise, an edge is called inner-edge if the endvertices of this edge belong to the 

same substars and the cardinality of inner-edges of some vertex v is the inner-degree of 

v. For example, Figure 2 shows the 24 outer-edges in S 4. Let we denote the degree of v 

in graph G by degG(v).     

Lemma 23.  µ( S4 ) 11. ≥

Proof.  The 4-dimensional split-star graph S4 can be recursively constructed by four 

3-dimensional split-star as its subgraph, named S3, and each S3 contains two vertex 

disjoint 3-cycles. To count the cardinality of the 3-cycles in S4, it can be seen that since 

each vertex in S4 incidents with two 3-cycles and each 3-cycle is repeatedly counted 

three times, there are totally sixteen 3-cycles in S4. For each vertex disjoint 3-cycle, we 

must delete at least one vertex to ensure the acyclic, and so this vertex results in two 

3-cycles be broken. Then each vertex in S3 is forced to loss its degree by 2, for the 

removal of the two cycles, which the vertex belongs. Therefore, each vertex has one or 

two inner-degree less than the original vertex, because they have to adjacent to at least 

one of the two vertices deleted. We find the out-degree of each vertex in S4 is two. Since 

each vertex incidents with two 3-cycles and if we delete eight vertices for each vertex 

disjoint 3-cycle then we discredit sixteen 3-cycles. So the out-degree less than or equals 

to one for each vertex u in the remaining graph. It is clear deg(u) 2＋1＝3 

and . After we prune eight vertices in S

≤

8)( 4 ≥Sµ 4 , there are at least 20 edges and 16 

vertices left. By Lemma 22, there still exists cycles in the remaining graph. Then, we 

further delete vertices to let the remaining graph to be acyclic. For each vertex u with 

degree 3, since u is adjacent with at most one vertex in S3 with degree 3, there are at 

most two neighbors of u with degree 3. So, we first remove one of the eight vertices, v1, 

with degree 3, and then there are at least five vertices with degree three exist in the 

remaining graph. Furthermore, we delete another vertex v2 with degree 3. There remain 

two vertices with degree three. Again, we can cancel one of these two vertices to break 

all the cycles of the remaining graph. Thus, the remaining graph is acyclic and 

µ( S4 )≥ 11.      □                                    

Theorem 24.  n 4, µ( S≥ n ) (11/24)n! ≥

Proof   In order to break cycles in S4, we have to delete at least 11 vertices. The labels 
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of deleted vertices are in the following: [3124], [3142], [4123], [4132], [3214], [3241], 

[4213], [4231], [3412], [3421] and [4312]. For |V(S4)|＝24 and µ(S4)＝11. Again, since 

there are n! /4! copies of S4 in Sn for n≥ 4, and in each copy, we need to delete at least 

eleven vertices. Then results µ(Sn) (n!/4!)×11 ＝ (11/24)n!.               ≥

□ 

     

5. The Feedback Vertex Set of undirected Alternating Group Graphs 

The constructions of undirected alternating group graphs are the same as directed 

alternating group graphs except that the direction of every edge is bi-directional. For 

simplicity, we discard the arc’s directions of undirected alternating group graphs. Figure 

6 depicts example of A4 . 

1342 2143

3241

43212431

31241234

14234132

2314

3412 4213  
Here, we also use the result of independent set of spilt-star to implement the 

alternating group graphs.    

Figure 6: A4 

Lemma 25.  Let I ＝{[a,b, p3…pn] | a∈ ,by∈ , p'N ''N i∈Na,b and 
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 i＝3,4,…n} and vertex set I is an maximal independent vertex set of An. 

Proof.  Since I V( A⊆ n ), we immediately show that for any two vertices u, v∈ I, 

vertices u, v are not adjacent. Suppose, to the contrary, that I is not an independent 

vertex set of Sn. Then an edge uv  exists in G[ I ]. Let  

u＝{[u1,u2,u3…un] | u1∈ 'N , u2∈ ''N and ui∈Nu1u2 and i＝3,4,…n } and 

v＝{[v1,v2,v3…vn] | v1∈ 'N , v2∈ ''N , vi∈  Nv1v2 and i＝3,4,…n}. Hence, v is either the 

2-exchange neighbor of u or a 3-rotation neighbor of u. If v is the 2-exchange neighbor 

of u, then v1＝u2, and v2＝u1. Since v1∈ 'N , 

 u2∈ ''N and ＝ , it is a contradiction. Otherwise, v is a 3-rotation neighbor 

of u. Thus, v

'N ∩ ''N φ

2＝u1or v1＝u2. Similarly, it contradicts that ＝ . 'N ∩ ''N φ

   Furthermore, we shall prove that I is maximal. Suppose, to the contrary, that I is not 

a maximal independent set of An. Then, there exists a vertex v∈V( An )\ I and I∪ {v} is 

also a independent set of An . That is to say, u and v are nonadjacent, for each u∈I. Let u

＝{[u1,u2,u3…un] | u1∈ 'N , u2∈ ''N and ui∈Nu1,u2 and i＝3,4,…n }. Since v∉ I, v 

belongs to one of the following three vertex sets.  

(1) ＝{[v'V 1,v2,v3…vn] | v1∈ 'N and v2∈ 'N , vi∈Nv1,v2 and i＝3,4,…n}, 

(2) ＝{[v'''V 1,v2,v3…vn] | v1∈ ''N and v2∈ ''N , vi∈Nv1,v2 and i＝3,4,…n}, 

(3) ＝{[v''V 1,v2,v3…vn] | v1∈ ''N and v2∈ 'N , vi∈Nv1,v2 and i＝3,4,…n}. 

Now, we discuss it according to the listed classes. 

Case 1:  v∈ . Let w＝[v'V 2,vi,…,vi-1,v1,vi+1,…,vn]∈N(v), where vi∈ ''N . Then w∈I, 

vw ∈E( Sn ). Which contradicts that v, w are nonadjacent, for each vertex w∈I. 

Case 2: v∈ . The proof is similar to case 1. '''V

Case 3: v∈ . Let w＝[v''V 2,v1,…,vi-1,vi,vi+1,…,vn]∈N(v), where v2∈ 'N and v1∈ ''N . 

Then w∈I, vw ∈E( An ). It is a contradiction.      □ 

Based on the theorem 20 and Lemma 25, we give the following algorithm for 

solving the feedback vertex set problem in the undirected alternating group graphs. 

Algorithm FUA 

Input: An undirected alternating group graphs An. 

Output: A feedback vertex set of An. 
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Method: 

Step 1: I＝{[x,y, p3,…,pn] | x∈ , y∈ , p'N ''N i∈Nx,y and i＝3,4,…n}. 

'L ＝{[x, y, p3…,pn] | x, y∈ , x＝1,3,5,…, , y＝x+1, p'N  2/n  i∈Nx,y and i

＝3,4,…n}. 

''L ＝{u | v∈ , u∈E'L x( v )}.  

'''L ＝{[n, n－1, p3…, pn] | [n, n－1, p3…, pn] A∩ n, pi∈Nn,n-1 , and i＝

3,4,…n}. 

Step 2:  S＝I . ∪ 'L ∪ ''L ∪ '''L

Step 3:  output S. 

 

| I |＝(n2/4)(n－2)!/2, if n is even and | I |＝(n2－1/4)(n－2)!/2, if n is odd. 

By Theorem 20, we have shown that G( I ) is acyclic. Since 

G( I ' ) is acyclic, G( I ' ) is a feedback vertex set, we 

immediately have the following result. 

Theorem 26.  µ( A

' ∪

∪

L

∪

''L

'L

∪

'

∪ '''L

' ∪L ''L ∪ ∪ ''L ' ∪L ''L

n ) ≤ n!/2－[(n2/4)(n－2)!/2+ (n－2)!/4], if n is even. 

            µ( An ) ≤ n!/2－[(n2－1/4)(n－2)!/2+(n－2)!/4], if n is odd. 

We also make use of the relationship between number of vertices and edges in each 

component of A4 to find the lower bounds of the undirected alternating group graphs. 

To decide the lower bound of the feedback vertex number, By Lemma 22 and 

Lemma23, an important observation is established as follows. In A4, the graph is exactly 

covered by 4 disjoint vertex 3-cycles. To break all cycles of A 4, we discard four vertices, 

a vertex for each disjoint cycle, at first. And cycle does not survive in any A 3. It is clear 

that , and since there are 24 edges in A4)( 4 ≥Aµ  4 , it is easy to see that there are at least 

8 edges  left. To cut the remaining cycles, one edge should be pruned at least, because 

there are 8 vertices survived in the remaining graph. Therefore, it is necessary to remove 

one vertex in the remaining graph to break all cycles of A4. Thus, and the 

lower bound of A

5)( 4 ≥Aµ

n is built as follows. 

Theorem 27.  n 4, µ( A≥ n ) (5/24)n! ≥

Proof   To break cycles in A4, we have to omit at least 5 vertices. The labels of deleted 

vertices are in the following: [3124], [4132], [3241], [4213] and [3412]. For |V(A4)|＝12 
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and µ(A4)＝5. Again, since there are n! /4! copies of A4 in An for n 4, and in each copy, 

we need to delete at least five vertices. Then results µ(A

≥

≥n) (n!/4!)×5＝(5/24)n!.            

□ 

 

6. Concluding Remarks 

A recent line of research on polynomially solvable cases focuses on special 

undirected graphs having bounded degree and that are widely used as connection 

networks, namely meshes and toroidal meshes, 

Butterflies, toroidal butterflies, and hypercubes. In meshes and toroidal meshes, Luccio 

[10] obtained the upper bounds on the size of the minimum feedback vertex set. These 

bounds either match the lower bounds or are very close to them. For butterfly graphs, 

Luccio [10] found both bounds to the size of a minimum feedback vertex set. Similar 

results to those obtained for butterflies can also be obtained for toroidal butterflies.  

Spilt-stars, an alternative to the star graphs, are companion graphs to alternating 

group graphs. These graphs have many advantages over the n-cubes. Recently, Cheng et 

al. [1] proposed an orientation to the spilt-stars and the alternating group graphs. They 

showed that the oriented graphs are maximally arc-connected and have small diameters. 

In this thesis, we study the feedback vertex set problem on directed and undirected 

spilt-stars and alternating group graphs separately. At the first part, the upper and lower 

bounds to the feedback vertex set for the directed spilt-stars and alternating group 

graphs, respectively, are determined. At the second part, we give the both bounds to the 

undirected spilt-stars and alternating group graphs by expanding maximal independent 

sets, respectively, to decide the feedback vertex sets. 

In the construction of the remaining graph, discard the feedback vertex set from the 

given undirected graph, we add a specified maximal independent set with undirected 

other vertices. However, the independent set we used is not maximum. Further, a natural 

question to ask a maximum independent set to increase the size of feedback vertex set is 

our next research. And we can also study the feedback vertex set for the other 

topologies such as multi-mesh or star graph.  
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