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Abstract—This paper presents a detailed study of several properties of the 
generalized Petersen graph, which are considered important to the parallel 
architectures. Similar to the well-known Petersen graph, the generalized Petersen 
graph contains two cycles; all the nodes in one cycle are each linked to their 
counterparts in the other cycle. Each cycle can hold either exactly five nodes or any 
number of nodes greater than six, according to our study. Besides the detailed 
analyses of several important properties of the generalized Petersen graph, we also 
propose a shortest-path routing algorithm and a general method for its VLSI layout. 

The second major contribution of this paper is the proposition of a new graph, 
denoted as Y, developed in conjunction with a novel approach to graph expansion. 
This expansion method recursively utilizes the structure of a bipartite graph and 
substitutes each node with a cyclic supernode. When compared with the popular 
hypercube structure, the Y graph not only contains up to 25% more nodes, but also 
has smaller diameters. Furthermore, close comparisons with the generalized Petersen 
graph reveals that they are both regular, but the Y graph is more favorable for being 
less restrictive in properties like number of nodes, degree, and diameter. Its structural 
flexibility can easily be seen from the fact that the generalized Petersen graph can be 
derived from the Y graph with ease. We also develop for the Y graph a shortest-path 
routing algorithm. 

 
Index Terms—Generalized Petersen graph, Y graph, interconnection network, 
routing algorithm, VLSI layout, graph theory, parallel architecture, distributed system, 
self-organization. 
 
1 INTRODUCTION 
 
The study of interconnection networks has always been an important area of research 
for multi processor and/or parallel computer systems. The interconnection networks 
can be viewed as graphs composed of node sets and edge sets. The node can be 
designated as processors, while the edge can be viewed as the communication links to 
each node. 
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The conditions to evaluate the interconnection networks include diameter, degree, 
regularity, symmetry, and so on. Desirable properties of an interconnection network 
include low degree, low diameter, symmetry, low congestion, high connectivity, high 
fault tolerance, and efficient routing algorithms. For example, graphs with small 
diameters and/or small vertex degrees are well suited for massively parallel 
computation. A small vertex degree implies that the system can be implemented with 
lower hardware cost for communication. A fixed vertex degree implies that the 
system can be expanded without having to modify the structure of the individual 
nodes. However, in most exiting interconnection networks, these requirements are 
often in conflict with each other. 

There is a close relationship between the efficiency of a parallel computer system 
and the efficiency of the interconnection network [13] it relies on. Thus, there have 
been numerous interconnection networks proposed, including hypercubes, twisted 
hypercubes, pyramids, cube-connected cycles (CCC) [12] and so on. 

A network based on regular graph [14] is particularly suited to parallel 
computers. It follows that the Peterson graph [2] has been extensively studied and 
many of its extensions have been proposed, such as folded Petersen networks [10], 
folded Petersen cube networks, and hyper Petersen networks [4]. 

This paper first analyzes some properties of the generalized Petersen graphs (GP) 
pertinent to parallel architectures. Furthermore, a new class of topology based on the 
bipartite graph, called the Y graphs, is proposed and analyzed in this paper. 

In Section 2, we discuss the properties of GP in detail. The shortest-path routing 
algorithms for GP are also included. Section 3 defines the Novel Y graphs. We also 
analyzed their topological and performance properties. In Section 4, we discuss the 
embedding and VLSI layout on the proposed networks. Section 5 concludes the paper.  
 
2 GENERALIZED PETERSEN GRAPHS 
 
The Petersen graph can be viewed as two cycles, and between them, all the nodes in 
one of the cycles will respectively conform to the regulations and link to their 
corresponding nodes in another cycle. GP, in the same way, come in two cycles in 
which the numbers of each cycle’s nodes are identical, given they are 5 or any given 
integer greater than 6.  
 

2.1 THE PETERSEN GRAPH AND ITS EXPANSIONS 

The well-known Petersen graph (see Figure 1) is the simplest case of GP, GP(5, 2), 

which has 10 nodes of degree 3 with outer 5-cycle, inner 5-cycle, and five links 

joining them. The Petersen graph is symmetric, a diameter 3, and the most efficient 
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small network in terms of node degree, diameter, and network size. Due to the 

Petersen graph’s unique and optimal properties, several network topologies based on 

the Petersen graph have been proposed and investigated in research literature 

[4][8][10]. We give the Petersen Graph a mathematical definition as follows.  

 

DEFINITION 1. GP(5, 2)  = {V, E}, V  = {vi, j | i  = 0 or 1, j  = 0, 1, 2, 4}, E  = { v0, j v0, 

(j + 1) mod 5 , v1, j v1, (j + 1) mod 5 , v1, j v0, (5w + j)/2 , where w is the smallest nonnegative 
integer such that (5w + j) is divisible by 2, j  = 0, 1, 2, 4}. 

 
Figures 2 and 3 are two expansions of the Petersen graph [3]. The folded 

Petersen graph in Figure 2 can also be viewed as the graphic production expansion, 

shown as Figure 4. The root-folded Petersen graph in Figure 3 is decreasing the edges 

of the folded Petersen graph. It makes each supernode have only 1 node linking to 

other supernodes with the purpose of decreasing cost, yet flawed because it causes 

asymmetric graphs.  

 
 

  
Figure 1. Petersen graph.           Figure 2. Folded Petersen graph.           Figure 3. Root-folded Petersen graph.

 
 
 
 
 
 
Figure 4. The production of graphs. 

 
2.2 THE DEFINITION FOR GENERALIZED PETERSEN GRAPHS 
The order of nodes in cycle C8 (see Figure 5) will be addressed as 0, 1, 2, 3, 4, 5, 6, 
and 7. If we start with the node 0, according to the order, linking every other node can 
enclose a cycle C4 (see Figure 6). If it is to link with interval of three nodes, it will 
create another cycle C8 (see Figure 7).  

When we link nodes with the interval of k nodes in Cm where m is divisible by k, 
it will not create another Cm; if m is indivisible by k, it will create a new Cm. Since 
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linking with interval of k nodes and m – k nodes will create the same result, we can 
qualify the k of GP(m, k) as min (k, m – k) or regulated k < m/2.  

We detail the definition of the generalized Petersen graphs as definition 2. 
 
DEFINITION 2. GP(m, k)  = {V, E}, V  = {vi, j | i  = 0 or 1, j  = 0, 1, …, m – 1}, E  = { 

v0, j v0, (j + 1) mod m , v1, j v1, (j + 1) mod m , v1, j v0, (m×w + j)/k , where w is the smallest 
nonnegative integer such that (m×w + j) is divisible by k, j  = 0 , 1, …, m – 1}, 1 < 
k < m/2, m and k are relatively prime integers. 

 

GP(8, 3) (see Figure 8) and Petersen graphs GP(5, 2) are the special cases of GP. 
In GP, v1, j and v0, j are designated as the nodes in the outer and inner cycles 
respectively. According to definition 2, the size of node set V is 2m. In the edge set E 
of definition 2, v0, j v0, (j + 1) mod m and v1, j v1, (j + 1) mod m are designated as the edge of the 
inner and outer cycles respectively. The relation of the two cycles in GP(8, 3) is 
shown in Figure 9. 

According to definition 2, the second coordinate of the address in the inner node 
linking to node v1, j is (m×w + j)/k. In Figure 9, m = 8, k = 3 and in the 1st row of the 
inner cycle w and (m×w + 3)/k equal to 0 and 1, respectively, thus v1, 3 and v0, 1 are 
next to each other.  
 

   
Figure 5. Cycle C8.                            Figure 6. Cycle C8 turns into cycle C4.   Figure 7. Another cycle C8. 

 
2.3 THE EXISTENCE OF GP 
In Figure 10, it is indicated the interconnection of GP similar to Figure 9. According 
to the definition of GP, the graphs with different number of nodes are derived (see 
Table 1). 
 

Table 1. The Relation between the Number of Graphs in GP(m, k) and m 
The m of GP(m, k) 5 7 8 9 Prime integer, m
The k of GP(m, k)  2 2, 3 3 2, 4 2~⌊(m – 1)/2⌋ 
Number of Graphs 1 2 1 2 ⌊(m – 3)/2⌋ 

 
The D(vi, j, vi′, j′) is to designate the shortest distance between vi, j and vi′, j′, and the 

Dia(G) is defined as the diameter of graph G.  
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LEMMA 1. For a given m, the numbers of graphs in GP(m, k) is equal to or less then 
⌊(m – 3)/2⌋. When the numbers of graphs in GP(m, k) is equal to ⌊(m – 3)/2⌋, m is a 
prime.  

Proof: According to definition 2, the conditions will be 1 < k < m/2; m and k are 
relatively primes. When m is a prime, k = 2, 3…, ⌊(m – 1)/2⌋ and m are relatively 
prime. Thus, there are as many as ⌊(m – 3)/2⌋ of the numbers of graphs in GP(m, k). 
When m is a prime, m is indivisible by any k. For a given m, then the numbers of 
graphs in GP(m, k) will not be greater than that when m is a prime. This concludes 
the proof.■ 

 
 

  
Figure 8. GP(8, 3). Figure 9. The relation of two cycles of GP(8, 3) 
. 
Outer Cycle 0 1 2 3 4 5 6 7 
 
Inner Cycle 

0  
3 

 
 
6 

1  
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7 
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Figure 10. Another expression of GP(8, 3) 
 

Table 2. The Two Greatest Numbers in the Range of k Values 
Even number, m 10 12 14 m  

Two largest numbers, range k 3, 4 4, 5 5, 6 (m – 4)/2, (m – 2)/2 
 
THEOREM 1. If m is an integer which is equal to 5 or greater than 6, then GP(m, k) 

will exist. 
Proof: When m is an odd number, we can assign k = 2 and make GP(m, k) exist.  Now 

we only need to show that GP(m, k) exists when m is an even number. When m is 
an even number, we assume that m = 2x, where x is an integer. According to 
definition 2 the two greatest numbers in the range of k values are (m – 4)/2 and (m – 
2)/2, namely x – 2 and x – 1, as shown in Table 2.  

When x is an even number, x – 1 is an odd number. We could let k = x – 1, 
since odd numbers and 2 are relatively prime and any two consecutive integers are 
relatively prime that we can see by Euclid’s algorithm. Since k and m are relatively 
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primes, GP(m, k) exists.  
When x is an odd number, x – 2 is also an odd number. We could let k = x – 2 

for the same reason mentioned above. Therefore GP(m, k) exists since k and m are 
relatively prime. According to definition 2, k > 1, when m = 5 or m > 6, we can find 
some k values by which m is indivisible. Therefore GP(m, k) exists where m is 
equal to 5 or greater than 6.■ 

 
2.4 SYMMETRIC PROPERTY 
The simplified expression of GP(7, 2) will be shown as Figure 11. The result of the 
two cycles exchange in GP(7, 2) is shown in Figure 12. Since the total number of 
nodes in each cycle is 7, when we view it from another direction, it will link to form 
the graph GP(7, 7 – 4). We deduce the two following points: (1) GP(7, 2) and GP(7, 
3) are isomorphic and (2) GP(7, 2) is not a symmetric graph. When we are viewing 
from the outer cycle toward the inner cycle, the inner cycle is linked with the interval 
of 2 nodes. While under the reverse situation, its inner cycle is linked with the interval 
of 3 nodes. However, GP(8, 3) is featured with symmetric properties, as shown in 
Figures 13 and 14.  

 
Outer Cycle 0 1 2 3 4 5 6 
Inner Cycle 0 4 1 5 2 6 3 

Figure 11. GP(7, 2) 

 
Outer Cycle 0 1 2 3 4 5 6 
Inner Cycle 0 2 4 6 1 3 5 

Figure 12. Two cycle exchange in GP(7, 2) 

 
Outer Cycle 0 1 2 3 4 5 6 7 
Inner Cycle 0 3 6 1 4 7 2 5 

Figure 13. GP(8, 3) 

 
Outer Cycle 0 3 6 1 4 7 2 5 
Inner Cycle 0 1 2 3 4 5 6 7 

Figure 14. Two cycle exchange in GP(8, 3) 

 
LEMMA 2. GP(m, k) and GP(m, min(kiso, m – kiso)) respectively are isomorphic graphs 

of each other. When k = min(kiso, m – kiso), GP(m, k) is a symmetric graph. Among 
them, kiso = (m×w + 1)/k, w is the smallest nonnegative integer where (m×w + 1) is 
divisible by k.  

Proof: According to the definition of GP(m, k), v1, k and v0, 1 are adjacent nodes. If v0, 

kiso and v1, 1 are adjacent nodes, then after the exchange of inner and outer cycles, v1, 
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kiso and v0, 1 will also be adjacent nodes. In addition, according to definition 2 and the 
description of this property, in GP(m, k), v0, kiso and v1, 1 are adjacent nodes, which 
form GP(m, min(kiso, m – kiso)). Furthermore, since k = min(kiso, m – kiso) means the 
identical k value after the exchange of two cycles, and the individual nodes in a 
cycle have already come in the symmetric property, when k = min(kiso, m – kiso), 
GP(m, k) is a symmetric graph.■ 

 
2.5 DISTANCES OF GP 
According to the graphs discussed previously, we can deduce that the numbers of 
graphs in GP(m, k) will be infinite as the m’s increase. We will analyze the diameters 
and distances of these graphs in this section.  

Graphs like Figure 8 can be adopted to indicate pulsing with the designation of 
distance, as shown in Figures 15, 16 and 17. Among them, v1, 0 is selected as the 
source node with the distance of 0; therefore the distance of its adjacent nodes is 1.  

In Table 3, v0, 1 is adjacent to v0, 0 with its distance of 1. We find that the diameter 
of GP(8, 3) is 4 and the average distance of any 2 given nodes is 2.125.  

 

  

 

Figure 15. The Distance of GP(7, 2).  Figure 16. The Distance of GP(7, 3).  Figure 17. The Distance of GP(8, 3). 

 
Table 3. The Distance Analysis of GP(8, 3) 

Nodes in outer cycle v1, 5 v1, 6 v1, 7 v1, 0 v1, 1 v1, 2 v1, 3 v1, 4
Distance of nodes in outer cycle 3 2 1 0 1 2 3 4 
Distance of nodes in inner cycle 2 3 2 1 2 3 2 3 

Nodes in inner cycle v0, 7 v0, 2 v0, 5 v0, 0 v0, 3 v0, 6 v0, 1 v0, 4

 
In Table 4, when k = 2, the nodes with the reference addresses of 2 and 3 are 

adjacent to the nodes with reference addresses of 0 and 1 respectively. So the 
corresponding distances are respectively 1 and 2. Similarly, when k = 4, the nodes 
with reference addresses of -1, 0, 1, and 2 will be adjacent to the nodes of the 
corresponding reference addresses of  3, 4, 5, and 6. 
 

Table 4. The Distance Table Starting With v1, 0 

Reference Address of Outer Cycle -1 0 1 2 3 4 5 6 7 8 

Distances of Nodes in Outer Cycle (k  = 4) 1 0 1 2 3 3 4 5 5 4 
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Distances of Nodes in Inner Cycle (k  = 4) 2 1 2 3 3 2 3 4 4 3 

Distances of Nodes in Inner Cycle (k  = 3) 2 1 2 3 2 3 4 3 4 5 

Distances of Nodes in Inner Cycle (k  = 2) 2 1 2 2 3 3 4 4 5 5  
 

In Table 4, if the number of nodes of the outer cycle in GP is 5, the 1st raw 
addresses of these nodes will be 3, 4, 0, 1, 2. If the number of nodes of the outer cycle 
in GP is 8, the 1st raw addresses of these nodes will be 5, 6, 7, 0, 1, 2, 3, 4.  

 
LEMMA 3. In GP(m, k), D(vi, 0, vi′, j′)  = D(vi, 0, vi′, m – j′), j′≠ 0. 
Proof: According to the definition of GP(m, k), v1, 0 is adjacent to v0, 0 . Since the 

nodes vi, 0 vi, 1 , vi, 2 , …, vi, m – 1 could be respectively addressed as vi, m – 1, vi, m – 2 , vi, m 

– 3 , …, vi, 1 , D(vi, 0, v0, j′) = D(vi, 0, v0, m – j′) and D(vi, 0, v1, j′)  = D(vi, 0, v1, m – j′), 
therefore, D(vi, 0, vi′, j′) = D(vi, 0, vi′, m – j′).■ 

 

 

Figure 18. The Distance Value of Nodes of Inner and Outer Cycles in GP(m, 4). 

 
In Figure 18, the distance values of the nodes in the right side of the source node 

v1, 0 can be affected merely by the upward and downward adjacent nodes. This is 
because the distance of right adjacent nodes is greater. Since we gradually approach 
the distance values to the adjacent nodes, we can get the distance value for each node.  

In the discussion below, the symbol CS is an abbreviation of critical size and the 
symbol shift means the shift values. As a matter of convenience, we can adopt some 
specific nodes like v0, 0 and v1, 0 to make comparisons. In the inner cycle, the nodes 
will be linked with the interval of k nodes. If the 2nd coordinate of the address of a 
node in an outer cycle is no less than CS, the distance of this aforementioned outer 
cycle node will be 1 more than the distance of its adjacent inner cycle node. This 
mentioned property is detailed below.  
 
LEMMA 4. In GP(m, k), assume j ≤ ⌊m/2⌋, and v1, j is adjacent to v0, j′. If j ≥ CS, then 

D(v1, 0, v1, j)  = D(v1, 0, v0, j′) + 1. Otherwise, D(v1, 0, v1, j)  = j, among them, when k ≤  
3, CS   = 6, and when k > 3, CS  = ⌊(k + 5)/2⌋.  

Proof: If v1, j is not affected by the adjacent nodes of the inner cycle, then their 
distance of 0, 1, 2, and so on will gradually increase, such that D(v1, 0, v1, j)  = j. The 
maximum difference between the 2 adjacent nodes will be 1. As regards Figure 18, 
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the first 2 sets of adjacent nodes in the inner cycles have been indicated with arrow 
marks to denote the influence of distance between the adjacent nodes.  

We find that the distance of v1, 4 in Figure 18 should be changed to 3. For the 
specific node, v1, CS , as the v1, 4 in Figure 18, v1, CS and its subsequent v1, j will satisfy 
D(v1, 0, v1, j)  = D(v1, 0, v0, j′) + 1. Furthermore, according to Table 4, we discover that 
when k ≤ 3, CS  = 6.  

When k > 3, we adopt shift as a shift value. If the difference value is more than 
2shift, then CS will change from k to k – shift. If k is an odd number, then the result 
will be k – 3 – 2jshift  ≥ 2. If k is an even number, the result will be k – 2 – 2shift  ≥ 2. 
So, the maximum shift will be ⌊(k – 5)/2⌋. Therefore, CS = k – ⌊(k – 5)/2⌋, namely ⌊(k 

+ 5)/2⌋.■ 
 

From the above properties, we can deduce the distance values of the nodes in the 
outer cycle in GP. According to Lemmas 4 and 5, we can deduce the distance between 
any given node and the source node in GP.  
 
LEMMA 5. In GP(m, k), assume 0 ≤  j ≤ ⌈m/2⌉, v1, j is adjacent to v0, j′, and –⌊(k – 1)/2⌋ ≤  

shift ≤ ⌊k/2⌋. If j = k×w + shift, then D(v1, 0, v0, j′)  = w + 1 + |shift|. 
Proof: According to the definition of GP(m, k), when j  = k×w and w > 0, v1, j is 

adjacent to v0, w. Furthermore, since D(v1, 0, v1, j) is no less than w, D(v1, 0, v0, w)  = w 
+ 1. When j = k×w ± 1, from Lemma 4, we find that D(v1, 0, v0, j′)  = w + 1 + 1. 
Similarly, when j = k×w + shift and –⌊(k – 1)/2⌋ ≤ shift ≤ ⌊k/2⌋, the lemma is 
proved.■ 

 
2.6 ROUTING ALGORITHMS FOR GP 

From the discussion of the properties of GP, we find that when the 2nd coordinate 
of the address of a node is equal to or greater than the critical size of GP(m, k), it 
should therefore route to another cycle’s adjacent node. On the contrary, when the 2nd 
coordinate of the address of a node is less than its critical size, it should route to the 
nearest adjacent node of its own cycle. According to the previous discussion, we can 
deduce the shortest-path routing algorithm for GP. From the algorithm below, the 3rd 
row will first deduce the kiso value discussed in Section 2.  

 
Algorithm GP(m, k)_Routing(vis, js , vid, jd)  
Begin 

kiso  = kiso_of_GP(m, k)   

janother  = GP(m, k)_ adjacentj(vid, jd) 

vi, j : = vis, js                //{Set the source node.} 
while (vi, j ≠ vid, jd) do   
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//{The terminated condition of the loop is routing to the objective nodes.} 
Begin 

if i = id then  
//{Node vi, j and node vid, jd is located within the identical cycle.} 

 jtmp := jd           //{Set the value of jtmp as jd. } 
else  

 jtmp := janother    //{Set the value of jtmp as janother. } 
end if 
if i  = 1 then        //{vi, j is located in the outer cycle. } 

if k ≤ 3 then    //{k value is equal to or less than 3.} 
CS := 6  //{To set the critical size as 6.} 

else  
CS := ⌊(k + 5)/2⌋  //{Set the critical size as ⌊(k + 5)/2⌋.} 

end if 
else  //{vi, j is located in the inner cycle. } 

if kiso ≤ 3 then  
CS := 6  //{Set the critical size as 6.} 

else  
CS := ⌊(kiso + 5)/2⌋  //{Set the critical size as ⌊(kiso + 5)/2⌋.} 

end if 
end if 
if (( j – jtmp) mod m) ≥ CS then  
//{the distance between the address j of current node vi, j and jtmp is no less than
//the critical size.} 

vi, j : = v(i xor 1), janother        //{Move to the adjacent node in various cycles. } 
else  

if ((j – jd + 1) mod m) < (( j – jd) mod m) then  
vi, j := vi, (j + 1) mod m    //{Move to a adjacent node in the same cycle. } 

else  
vi, j := vi, (j – 1) mod m    //{Move to a adjacent node in the same cycle. } 

end if 
end if 

end while  
end Algorithm  
 

The function GP(m, k)_adjacentj(vi, j) is based on the definition of GP(m, k) and 
returns to the 2nd coordinate of the address of the adjacent node located on another 
cycle. 
 
 function GP(m, k)_adjacentj(vi, j)  
 begin  
 if i  = 1 then    //{vi, j is located on the outer cycle.} 
 for w := 0 to m – 1 do  
 begin 
 if ((m×w + j) mod k)  = 0 then   
 //{According to the definition 2, we can determine whether it is the 2nd  
 //coordinate value on the adjacent nodes located on another cycle. } 
 return (m×w + j)/k 
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 end if 
 end for 
 else  //{vi, j is located on the inner cycle.} 
 for w := 0 to m – 1 do  
 begin 
 if ((m×w + j) mod kiso_of_GP(m, k))  = 0 then  
 return (m×w + j) / kiso_of_GP(m, k)  
 end if 
 end for 
 end if 
 end function 
 

The function kiso_of_GP(m, k) is based on the Lemma 2 discussed above. The 
result is the k value after the exchange between the outer and inner cycles.  
 
 function kiso_of_GP(m, k)  
 begin 
 for  w := 0 to m – 1 do  
 begin 
 if ((m×w + 1) mod k)  = 0 then 
 ktmp := (m×w + 1)/k  
 end if 
 end for 
 return min(ktmp , m – ktmp) 
 end function 
 
3 NOVEL Y GRAPHS 
 
Graphs for interconnected networks [5] are a widely discussed subject in parallel and 
distributed systems. The subject proposed in this section is the novel Y graph with GP 
as its special case.  

 
3.1 DEFINITION 
All the nodes in a bipartite graph could be divided into 2 groups to ensure that any 
two nodes in either group are not adjacent nodes. In Figure 19, the hypercube of n 
dimensions can be designated as Qn and are bipartite graphs. In Figure 20, Torus 
graphs of n dimensions can be designated as T(m0, m1, .., mn – 1). Among them, m0, m1 
.., mn – 1 signifies the size of each dimension. When m0, m1 .., mn – 1 are all even 
numbers, T(m0, m1, .., mn – 1) is a bipartite graph. The connected graphs indicate that 
there are paths between any two given nodes.  

As the hypercube and folded Petersen expansion demonstrate, most 
interconnected networks can be viewed as the product expansion of graphs. However, 
the novel graphs proposed in this paper involve a new and efficient expansion method 
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of interconnecting networks. The advantages of Y graphs are regularity [6] and short 
diameters [7] with the definition described below. 

 

DEFINITION 3. G is a connecting and bipartite graph. Y0(G)m, k  = G and Y1(G)m, k are 

defined as follows: All the nodes of G will be categorized as two groups of vi, j ∈V0

and vi′, j′ ∈V1. , and ensure that any two given nodes in either group are not adjacent 

nodes. If vi, j is adjacent to vi′, j′, then two Cm cycles respectively will replace vi, j and 

vi′, j′ and will connect them just like two Cm cycles in GP(m, k). We define Yn(G)m, k

= Y1(Yn – 1(G)m, k)m, k with the number of dimensions n > 0. We define Y-n(G)m, k as a 

Yn(G)m, k graph whose every node is replaced with Cm_deg and which makes each 

edge in the original node link to a new node in Cm_deg according to the order of its 

dimensions. Among them, m_deg is the degree of the original node.  

 
3.2 TOPOLOGICAL PROPERTIES 
 
LEMMA 6. Y1(Q1)m, k and GP(m, k) are isomorphic graphs of each other. Assume n > 

0. There are 2n′mn nodes in Yn(Qn′)m, k and each node is with degrees of n′ + 2n. 
There are 2n′mn(n′ + 2n) nodes in Y-n(Qn′)m, k and each node is with degrees of 3. 

Proof: According to definition of the Yn(G)m, k, we find that Y1(Q1)m, k is the regular 
graph with its degree of 3 and it is isomorphic to GP(m, k).  

According to definition 3, in Yn(Qn′)m, k , whenever n is added with 1, the 
degree of each node in the graph will be increased with 2. Because each node will 
be replaced with Cm, the number of nodes will be m times as before. Since the 
degrees of each node in Y0(Qn′)m, k are equal to the degrees of each node in Qn′ with 
the value of n′, and the number of nodes in Y0(Qn′)m, k is 2n′, the degrees of Yn(Qn′)m, k 
are n′ + 2n and the number of nodes in Yn(Qn′)m, k is 2n′mn.  

Furthermore, when n > 0, the number of nodes in Y-n(Qn′)m, k will be identical 
to the number of nodes in Yn(Qn′)m, k multiplying the degrees of each node in 
Yn(Qn′)m, k , namely 2n′mn(n′ + 2n); in each node, since there are two edges to link to 
the nodes of the cycle and an edge to link another node, the degrees of each node in 
Y-n(Qn′)m, k are 3.■ 

 

  
Figure 19. A bipartite graph, Q3.                                   Figure 20. A bipartite graph, T(4, 4). 
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Figure 21. Y1(Q1)5, 2. Figure 22. Y1(Q2)5, 2. Figure 23. A Routing example. 

 
LEMMA 7. The diameter of Yn(G)m, k is Dia(G) + n × (Dia(GP(m, k)) – 1). 
Proof: Dia(Y1(G)m, k)  = Dia(G) – 1 + Dia(GP(m, k)), since we could start routing from 

the source node to any node in the cycles adjacent to the cycle of the destination 
node, and continue to route to the destination node according to the routing 
algorithms of GP, shown as Figure 23. Furthermore, Yn(G)m, k  = Y1(Yn – 1(G)m, k)m, k 

, so Dia(Yn (G)m, k)  = Dia(Yn – 1(G)m, k)m, k) – 1 + Dia(GP(m, k))  = Dia(Yn – 2(G)m, 

k)m, k) – 2 + 2Dia(GP(m, k))  = Dia(Y0(G)m, k) – n + n×Dia(GP(m, k)) and according 
to definition 3, Y0(G)m, k  = G. Therefore, the lemma is proved. ■ 

 
3.3 FAULT TOLERANCE 
This section will analyze the fault tolerance of the Y graph, and make a comparison 
with the widely applied hypercube graph. We adopt F(G) to indicate the possibility 
that graph G might not be able to connect to the other nodes. Since the number of 
nodes in Qn is 2n, the fault will only exist if n pieces of adjacent nodes in 1 specific 
node are all found to be at fault. So  

F(Qn)  = 2n/C(2n, n)  
Among them, the denominator C(2n, n) indicates the means available to choose n  
nodes from 2n nodes.  

When considering Y1(Qn – 2)5, 2 , since it comes in 5×2n – 2  = 1.25×2n nodes and 
each node comes in n pieces of adjacent nodes, then 

F(Y1(Qn – 2)5, 2)  = 1.25×2n / C(1.25×2n, n) 
To compare both possibilities,  

F(Qn) / F(Y1(Qn – 2)5, 2)  = 1.25×C(2n, n) / C(1.25×2n, n) << 1 
This shows that the fault tolerance of Y1(Qn – 2)5, 2 is far higher than that of the 
hypercube.  Consequently, if graph Y acts as the base graph for parallel computers, 
high fault tolerance will be one of their outstanding features.  
 
3.4 ROUTING ALGORITHMS 
The routing algorithm of graph Y is well simplified because of the routing algorithm 
of GP(m, k) proposed in Section 2. We adopt Vs and Vd to respectively indicate the 
source nodes and destination nodes. The whole process of routing algorithms could be 
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divided as 2 procedures of global routing and local routing, as described below.  
 

Algorithm Yn(G)m, k_Routing(Vs , Vd)  

Step1: By using the routing method of graph G, to route messages from the source 

node Vs to any node in the cycles adjacent to the cycle that Vd is in. (Global 

routing) 

 //{Only one step of routing is needed to reach the next cycle according to the 

definition of Yn(G)m, k. The number of cycles adjacent to the cycle that Vd is 

in could be more than 1, and we could then select any one cycle from them. }

 

Step2: By repeatedly using the routing method of graph GP(m, k), to route messages 

from the current node to the destination node. (Local routing) 

 
The complexity of the routing algorithm is the size of distance between the 

source and destination nodes, and the diameter of the Y graph has been described in 
Lemma 7. The routing of GP has been discussed in Section 2. The reference graph G 
is any given bipartite graph, for example, hypercube, tree and so on.  

Furthermore, by definition 3, if GP(m′, k′) is not a bipartite graph, then there’s 
no Yn(G)m′, k′ where | n | > 1. 
 

Table 5. Comparison between the Novel Graph Y and Others 
 Nodes Degree Diameter Note  

Hypercube, Qn 2n n n Product Network
Y1(Qn – 3)8, 3 2n n – 1 n  
Y1(Qn – 2)5, 2 1.25×2n n n – 1  

Hyper Petersen, HPn 1.25×2n n n – 1 Product Network
, GP(5, 2)×Qn – 3 

Folded Petersen, FPk 10k 3k 2k Product Network
Folded Petersen Cube, FPQn, k 2n×10k n + 3k n + 2k Product Network

Folded n-cube 2n n + 1 ⌈n/2⌉ Product Network
k-ary n-cube kn 2n n×⌊k/2⌋ Product Network

Cyclic-Cubes, Gn
k n×kn 2k ⌊3n/2⌋ Product Network

CCC n×2n 3 O(n)  
Y-1 (Qn – 3)8, 3 2n(n – 1) 3 O(n)  
Y-1(Qn – 2)5, 2 1.25n×2n 3 O(n)  

Yn(Qn′)8, 3 2n′ + 3n n′ + 2n n′ + 3n  
 
3.5 COMPARISON 
This section is focusing on the comparison between the graphs we proposed 
previously and other graphs. After the comparison of these graphs, we found that the 
new graph Y proposed by us will be able to reach an identical effect or even better. 
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When compared with the popular hypercube, the Y1(Qn – 2)5, 2 graph not only contains 
up to 25% more nodes, but also has smaller diameter. Y1(Qn – 3)8, 3 has smaller degrees 
than the hypercube, therefore it has a smaller cost. And we can see that the novel 
graph Y of n dimensions, for example, Yn(Qn′)8, 3 in Table 5, have high performance 
and low relative cost. The comparison results are presented as Table 5.  
 
4 EMBEDDING AND VLSI LAYOUT 
 
4.1 EMBEDDING 
The embedding [9] and fault tolerance are correlated closely and they are one of the 
most frequently discussed subjects in the investigation of parallel and distributed 
systems.  

Am is defined as the linear array with m nodes. If the graph is embedded by Am, 
then it shows that this graph comes in the Hamilton path with the length of m.  

 
LEMMA 8. A2m is available to embed in Y1(Q1)m, k .  
Proof: According to Lemma 6, Y1(Q1)m, k and GP(m, k) are isomorphic graphs since 

the 2nd coordinate of address of nodes in the inner or outer cycles are respectively 0, 
1, 2, …, m – 1 and adjacent to each other in this order. In addition, v1, 0 is adjacent 
to v0, 0. From the connecting order of v1, 1 , v1, 2 , …, v1, 0 , v0, 0 , v0, 1, …, v0, m – 1 we 
can obtain A2m.■ 

 
LEMMA 9. The number of G subgraphs in Y1(G)m, k is m. 
Proof: According to definition 3 and referring to Figure 22, the nodes in the reference 

graph G are replaced with the cycle Cm, and constructing the graph Y does not 
involve the interconnection of the reference graph G. Therefore, the number of G 
subgraphs in Y1(G)m, k is equal to the number of nodes in Cm , namely m.■ 

 
LEMMA 10. Qn is available to embed in Y1(Qn)m, k .  
Proof: According to Lemma 9, Y1(Qn)m, k comes in m Qn subgraphs. Therefore, 

Y1(Qn)m, k is readily embedded by Qn.■ 
 
LEMMA 11. Y1(Qn)m, k can be embedded by a complete binary tree with the number of 

nodes up to 2n – 1.  
Proof: The property of the hypercube has been discussed in detail and it is known that 

the hypercube is capable of being embedded with the complete binary tree that has 
2n – 1 – 1 nodes. In Y1(Qn)m, k , we can select any 3 adjacent nodes in a cycle that 
replace the node of G. They are referred to as left, middle and right node, in that 
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order. According to Lemma 10, there is one Qn that contains a left node, and 
another Qn that contains a right node. Therefore, two complete binary trees exist, 
respectively rooted as left node and right node, both with the number of nodes up to 
2n – 1 – 1. In addition, the above-mentioned middle node is adjacent to the left and 
right nodes. Therefore, the number of nodes in the complete binary tree is up to 1 + 
(2n – 1 – 1) + (2n – 1 – 1) = 2n – 1.■ 

 
4.2 VLSI LAYOUT  
In chip design, the VLSI layout [1] is an important procedure that affects the cost and 
performance of chips. After investigating the GP, we continue to discuss the 
generalized method of VLSI layout [11]. In Figure 24, the outer cycle is designated as 
the outmost circuit with the outer cycle node located on. This means that the spiral 
circuit of the inner cycle will be wound with k rounds. In Figures 24 and 25, k = 2, 
and there are 2 rounds of spiral circuits on the inner cycle. In Figure 26, k = 3 and 
there are 3 rounds of spiral circuits on the inner cycle. 

Referring to Figure 9, since the interconnection between the nodes in GP(8, 3) 
corresponds to Figure 26, we can place in the inner cycle nodes of 3, 4, 5 as shown in 
Figure 9, when it is wound the 2nd round. So the middle position of the layout is 
located on the 2nd round. The whole layout method applicable to GP is described 
below.  

 
Step1: Place the circuit of outer cycles and indicate the spiral circuit 

of inner cycles. 
Step2: Establish the interconnecting data shown as Figure 9. 

Step3: Place and connect the nodes of v1, 0 and v0, 0, shown as Figure 
26. In the order of the outer cycle addressed with 1, 2… m – 
1, place and connect the nodes located on inner and outer 
cycles. Among them, the location of inner cycle nodes will 
refer to the interconnecting relation, according to the row 
number of this mentioned node, so as to determine the 
location in spiral circuits.  

 
   

Figure 24. The layout of GP(5, 2). Figure 25. The layout of GP(7, 2).  Figure 26. The layout of GP(8, 3). 
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5 CONCLUSIONS 
 
GP comes in a wide range of nodes. We have proven that there exists GP with nodes 
of even numbers more than 12, and the degree will be fixed to 3. We first proposed 
the relevant properties to discuss, like symmetry and distance…etc. GP are, as 
Petersen graph, applicable to the relevant expansion.  

The problem of routing in GP is solved for the first time. Also, in Section 2, we 
proposed the relevant theorems and properties so as to deduce the distance between 
any given 2 nodes of GP, together with the diameters. This paper also includes the 
VLSI-layout method and shortest-path routing algorithm of graph Y.  

This study has covered the investigation for symmetric graphs with degree of 3. 
We have found the investigation results of their properties and the shortest paths, 
together with the infinite number of nodes. The new graph Y proposed in this paper 
can create novel expansions of interconnection. We can expand our investigation in 
the application of computing networks, self-organization, and artificial intelligence 
[15].  
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