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Abstract

In designing distributed algorithms, several general problems appear fre-

quently as subtasks, including broadcasting, leader election, mutual exclusion,

computing a global function of which each process holds part of the input.

Each of these tasks requires a basic scheme, called wave algorithms, that en-

sure the participation of all processes. This paper presents a wave algorithm

for mobile ad hoc networks in which links may fail or reform. Without assum-

ing that the network topology is always connected, the algorithm only requires

the network to be consistently connected, a very mild condition imposed on

the network ensuring that each message flooded by a process will be received

by all processes eventually. The algorithm guarantees that a decide event

eventually occurs in each process, and each decide event is causally preceded

by an event of each other process.
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1 Introduction

Within the last few years there has been a surge of interest in mobile ad hoc networks

(MANET) [1]. A MANET is defined as a collection of mobile platforms or nodes

where each node is free to move about arbitrarily [2]. A pair of nodes communicates

by sending messages either over a direct wireless link, or over a sequence of wireless

links including one or more intermediate nodes. A pair of nodes can communicate

directly only if they lie within one another’s transmission radius. A link forms

between a pair of nodes when nodes move into one another’s transmission radius; in

contrast, a link fails when nodes move out of one another’s transmission radius.

Due to link failures and link formations, designing distributed algorithms for

MANET is a challenging task. Much previous work focus on routing protocols such

as [5, 6, 7, 8]. Several distributed algorithms are modified for MANET, including

mutual exclusion algorithms [9], leader election algorithms [10], etc.

This paper studies wave algorithms for MANET. A wave algorithm ensures the

participation of all processes and has be known as a useful building block in dis-

tributed systems. For example, it can be used for some fundamental tasks, e.g.

broadcasting [13] and computing some global functions of which each process holds

part of the input [14]. In addition, wave algorithms can be used in more complicated

problems such as leader election, termination detection, and mutual exclusion [4].

In MANET, all applications mentioned above for distributed systems can be

constructed as usual if a wave algorithm designed for the ad hoc network is available

as a building block. A wave algorithm for MANET hides the dynamic nature of

the network topology. Thus, we can design algorithms based on a wave algorithm

without dealing with the dynamic nature of MANET.

In every wave process, there is a special type of internal event called a decide

event. A wave algorithm exchanges messages and then the algorithm makes at least

one decision, which depends causally on some event in each process. A process

is an initiator if it starts the execution of its local algorithm spontaneously; in

contrast, a non-initiator becomes involved in the algorithm only when a message of

the algorithm arrives and triggers the execution of the process algorithm.

A wave algorithm is called centralized (e.g., [12, 13]) if there must be exactly

one initiator in each execution, and decentralized (e.g., [3, 14]) if the algorithm can
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be started spontaneously by an arbitrary subset of the processes. A decentralized

algorithm is more general. However, more messages are needed.

If there are two nodes that always can’t communicate directly or indirectly, no

wave algorithm exists. Thus, some restriction must be made on nodes’ mobility to

solve this problem. Obviously, if we assume that the network is always connected,

the problem is avoided. In this paper, a weaker restriction on nodes’ mobility is

made. We restrict the nodes’ mobility such that the network is consistently con-

nected. That is, a message flooded by a process will be received by all processes

eventually. All links along the paths from the sender to all processes may not exist

simultaneously, but the message can be stored and forwarded through these paths.

Under this restriction, we present a decentralized wave algorithm. Each process in

our algorithm will have a decide event eventually.

The rest of the paper is organized as follows: Section 2 presents the system

model and the formal definition of wave algorithms. In section 3, we presents a

wave algorithm. A proof of correctness is given in section 4. Finally, section 5

presents conclusions.

2 System Model and Definition of Wave Algo-

rithms

In this section, we describe the system model and the correctness conditions of wave

algorithms. The system model is adapted from the one in [9].

2.1 System Model

We consider an asynchronous distributed system consisting of a finite set P of inde-

pendent mobile nodes, communicating by message passing over a wireless network.

A link between two nodes indicates they are within one another’s transmission ra-

dius. Assumptions on the mobile nodes and network are:

1. the nodes have unique node identities,

2. node failures do not occur,

3. communication links are bidirectional,
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4. neighbor-awareness, that is, a link-level protocol ensures that each node is

aware of the set of nodes with which it can currently directly communicate by

providing indications of link formations and failures,

5. the network is connected initially,

6. the network is consistently connected.

If there exists two nodes that always can’t communicate between one another di-

rectly or indirectly due to nodes’ mobility, no wave algorithm exists. A link between

two nodes must persist a sufficient period of time so that a message can be trans-

mitted through it correctly. Thus, assuming that the network is always connected

and each link persists a sufficient period of time ensures that each pair of nodes

always has a chance to communicate. However, the weaker restriction we made, the

more mobility of nodes is allowed. We desire to restrict on nodes’ mobility weaker

than always connected such that each pair of nodes can communicate with one an-

other. A new definition of the connectivity requirement, consistently connecting, is

presented. For this we need few definitions.

First, we define a set L of links with existing time to describe the network

topology. A quadruple (p, q, t1, t2) is in L if a link between node p and q exists from

time t1 to t2, and t1 < t2. Since the links are bidirectional, if (p, q, t1, t2) is in L, so is

(q, p, t1, t2). A link between p and q must persist a sufficient period of time, denoted

by ∆tpq, such that a message sent by p will be correctly received by q. Therefore, a

consistent link between two nodes at time t is defined to mean that the link persist

a sufficient period of time such that one can correctly receive a message sent at time

t by the other.

Definition 1 There is a consistent link (p, q, t) between node p and q at time t if

there exists a quadruple (p, q, t1, t2) in L such that t ≥ t1 and t + ∆tpq ≤ t2.

Then, we define an access function γ : P × T → 2P×T \ ∅. T is the set of

non-negative real numbers representing time. A pair (q, t′) in γ(p, t) represents that

there exists a finite sequence of consistent links from p at time t to q at time t′. This

sequence of consistent links contains at least one consistent link, except q = p and

t′ = t. t′ may be arbitrarily large but finite. That is, γ(p, t) contains all that are
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eventually reachable through a sequence of consistent links, hence can be defined by

the usual reflexive and transitive closure of the consistent link relation.

Definition 2 γ(p, t) is recursively defined as follows.

1. (p, t) ∈ γ(p, t).

2. (q, t′) ∈ γ(p, t) if ∃(r, t′′) ∈ γ(p, t) and a consistent link (r, q, t′′′) : t′′′ ≥ t′′ and

t′ = t′′′ + ∆trq.

3. No other pairs are in γ(p, t).

Based on γ(p, t), the reachability set R(p, t) is defined as a set of processes that

are reachable from p after time t.

Definition 3 R(p, t) is defined as follows.

R(p, t) = {q ∈ P | ∃ t′ : (q, t′) ∈ γ(p, t)}.

If each process is reachable from p after time t, we say that the network is

consistently connected with respect to node p at time t.

Definition 4 A network is consistently connected with respect to node p at time t

if R(p, t) = P .

Finally, a consistently connected network is defined as follows.

Definition 5 A network is consistently connected if for all (p, t) pairs, the network

is consistently connected with respect to p at time t:

∀p ∈ P : ∀t : R(p, t) = P.

A consistently connected networks may be partitioned, but some links are supposed

to dynamically reform so that every node at any time eventually has sequences of

consistent links to all other nodes. An example is given below.

Example. The network contains three processes, p1, p2, and p3, and the

changes of the topology is L = {(p1, p2, 0, 5), (p2, p1, 0, 5), (p2, p3, 0, 5), (p3, p2, 0, 5),

(p1, p2, 10,∞), (p2, p1, 10,∞), (p2, p3, 15,∞), (p3, p2, 15,∞)}. That is, links (p1, p2)

and (p2, p3) exist from time 0 to 5. Then, these links fail. Until time 10, link (p1, p2)
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Figure 1: The changes of the network topology.

reforms and persists thereafter. Until time 15, link (p2, p3) reforms and persists

thereafter. Fig. 1 shows the changes of the network. Assume that the ∆t for each

pair of nodes equals to 5.

Although the network is partitioned at time 5, the network is still consistently

connected with respect to each process at time 5. For process p1, p2 is reachable

from p1 by a consistent link (p1, p2, 10), and p3 is reachable from p1 by a sequence

of consistent links (p1, p2, 10), (p2, p3, 15). Thus, R(p1, 5) = {p1, p2, p3}. Similarly,

R(p2, 5) = {p1, p2, p3} and R(p3, 5) = {p1, p2, p3}. 2

Previous wave algorithms (e.g. [3, 12, 13, 14]) work correctly only if the net-

work is always connected and each link is permanent, a special case of consistently

connected network. In this paper, we design a wave algorithm working correctly in

consistently connected networks.

Next, we assume that each node has a wave process, modelled as a state machine,

with a set of states, some of which are initial states, and a transition function. The

transitions are associated with named events. The events are classified as either

internal, input, or output. The inputs and outputs are used for communication with

the environment, while the internal actions are visible only to the process itself. The

internal events at node pi including the ones below.

• Initpi
: if node pi is an initiator, this event is enabled spontaneously to start

the wave process.
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• Decidepi
: the decide event of node pi.

Input events are as follows.

• Recvpi
(pj,m): node pi receives message m from node pj.

• LinkUppi
(pj): node pi receives notification that the link between pi and pj is

now up.

• LinkDownpi
(pj): node pi receives notification that the link between pi and pj

is now down.

The transition function takes as input the current state of the process and the input

or internal event, and produces as a (possibly empty) set of output events and a

new state for the process. Output event is:

• Sendpi
(pj,m): node pi sends message m to node pj.

Each state contains a local variable that holds the node’s identity and a local

variable that holds the current neighbors of the node. The neighbor set variable of

each process must be properly updated by the state transition function in response

to a LinkUp or LinkDown event.

A configuration is a set consisting of each process’ state, describing the instanta-

neous state of the whole system. In an initial configuration, each state is an initial

state and the neighbor variables compose a connected undirected graph.

An execution is an infinite sequence of the form C0, int1, in1, out1, C1, int2, in2,

out2, C2, . . . , where the Ck’s are configurations, the intk’s are internal events, the

ink’s are input events, and the outk’s are sets of output events. The subscripts are

positive real numbers, representing the time at which that events occur. At most

one event by each process can occur at a given time. An execution must satisfy the

following additional conditions.

• C0 is an initial configuration.

• If ink occurs at node pi, then outk and pi’s state in Ck are correct according

to pi’s transition function operating on ink and pi’s state in Ck−1.
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• LinkUppi
(pj) occurs at time t if and only if LinkUppj

(pi) occurs at time t.

Furthermore, LinkUppi
(pj) only occurs if pj is currently not a neighbor of pi.

The analogous condition holds for LinkDown.

• If Recvpj
(pi,m) occurs at some time t, then there is a corresponding Sendpi

(pj,m)

occurs at some previous time t′, and the link connecting pi and pj is continuous

up between t′ and t. That is, if pj received a message from pi at time t, the

message must be sent by pi before time t. However, we do not assume that

every message sent by processes will always be received. A message may be

lost in our model.

2.2 Definition of Wave Algorithms

In order to define wave algorithm, we first formally define the happened-before

relation on events [11].

Let E be an execution. The relation ≺, called the causal order, on the events of

the execution is the smallest relation that satisfies

1. If e and f are different events of the same process and e occurs before f , then

e ≺ f .

2. If s is a Send event and r the corresponding Recv event, then s ≺ r.

3. ≺ is transitive.

A wave algorithm is an algorithm that satisfies the following conditions.

1. Decision. Each execution contains at least one decide event.

2. Dependence. In each execution each decide event is causally preceded by an

event in each process.

3 Wave Algorithm for MANET

Finn’s algorithm [3] is a wave algorithm that can be used in arbitrary networks but

doesn’t tolerate link failures and link reformations. We adapt Finn’s algorithm so

that it works in MANET.
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First, we extract the basic idea of Finn’s algorithm from [4]. In this algorithm,

each process p maintains two sets of process identities, Incp and NIncp. Informally

speaking, Incp is the set of processes q such that an event in q precedes the most

recent event in p, and NIncp is the set of processes q such that for all neighbors r of

q an event in r precedes the most recent event in p. This relation is maintained as

follows. Initially Incp = {p} and NIncp = ∅. Process p sends messages, including

Incp and NIncp, each time one of the sets has increased. When p has received a

message from all neighbors, p is inserted into NIncp. When the two sets become

equal, p decides. The informal meaning of the two sets implies that for each process

q such that an event in q precedes Decidep, for each neighbor r of q also an event in

r precedes Decidep, which implies the dependence of the algorithm.

However, the network may be partitioned because each node has mobility in

MANET. In this case, it is possible that a process at some partition decides before

its decide event is causally preceded by an event in each process. In order to solve

this problem, each process maintains an additional set of process identities, Leavep,

consisting of process q such that no event in q precedes the most recent event in

p and q may be partitioned from p. Process decides only if Incp = NIncp and

Leavep = ∅. Thus, the problem is avoided.

3.1 Data Structures

• activep: indicates whether process p is active. A process is active if it started

spontaneously or received a message from its neighbor. Initially, activep =

false.

• Incp: the set of processes q such that an event in q precedes the most recent

event in p. Initially, Incp = {p}.

• NIncp: the set of processes q such that for all neighbors r of q an event in r

precedes the most recent event in p. Initially, NIncp = ∅.

• Leavep: the set of processes q such that no event in q precedes the most event

in p and q is no longer p’s neighbor now. Initially, Leavep = ∅.

• Neighp: the set of all processes in direct wireless contact with process p.
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Figure 2: Pseudocode triggered by Initp and Recvp events.

3.2 The Algorithm

The wave algorithm is event-driven. Actions triggered by an event are assumed to

be executed atomically.

The pseudocode triggered by Initp and Recvp is shown in Fig. 2.

Initp event. If process p is an initiator, Initp occurs spontaneously. When it occurs,

process p will set activep as true and then send Incp, NIncp, and Leavep to all

neighbors.

Recvp event. When process p receives a message from q, p will set activep as true

if activep is false. Then, Incq, NIncq and Leaveq are inserted into p’s versions of

these sets. Note that each process both in Leavep and Incp is removed from Leavep.

If Neighp is a subset of Incp, p is inserted into NIncp. If Incp, NIncp or Leavep

has changed, process p sends a message, including Incp, NIncp and Leavep, to all

neighbors. Finally, if Incp = NIncp and Leavep = ∅, Decidep is enabled.
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Figure 3: Pseudocode triggered by LinkDownp and LinkUpp events.

The pseudocode triggered by LinkDownp and LinkUpp is shown in Fig. 3.

LinkDownp event. When process p senses the failure of a link to a neighboring

process q, it removes q from Neighp. If p hasn’t received any message from q, q is

inserted into Leavep. In addition, if Neighp is a subset of Incp and activep is true,

p is inserted into NIncp and sends Incp, NIncp and Leavep to all neighbors.

LinkUpp event. When process p detects a new link to process q, q is inserted into

Neighp and removed from Leavep. Then, if process p is active, p sends Incp, NIncp

and Leavep to q.

4 Correctness Proof

4.1 Liveness Property: Decision

Lemma 1 For each active process p, p is eventually in Incq of each process q.

Proof. Since p ∈ Incp initially and the network is consistently connected, p will be

propagated to all processes after p becomes active. 2

Theorem 1 If E is an execution in which there is at least one initiator, then E

contains at least one decide event.
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Proof. Since there is at least one initiator and the network is consistently connected,

every process will receive at least one message and then become active. By lemma 1,

Incp = P eventually for each process p.

Thus, Neighp ⊆ Incp eventually and p will be added into NIncp, according to

the algorithm. Using the assumption that the network is consistently connected

again, p will in NIncq of each process q. As a result, NIncp = P eventually for each

process p.

Finally, because Leavep := Leavep \ Incp and Incp = P , Leavep = ∅. Incp =

NIncp and Leavep = ∅ will hold eventually, and therefore p will decide. 2

4.2 Safety Property: Dependence

For each process p, NeighIp
denotes the neighbors of process p in the initial state.

Lemma 2 For each process p, NeighIp
⊆ Neighp ∪ Leavep ∪ Incp is an invariant.

Proof. Initially, Neighp = NeighIp
, so the proposition holds. Then, the actions

triggered by events will be considered in turn to show that they preserve the propo-

sition.

Initp: Observe that the actions triggered by Initp do not change Neighp, Leavep and

Incp, so the proposition is preserved.

Recvp: Line 7, 8, 9 and 10 do not decrease the set of Neighp ∪ Leavep ∪ Incp, so

the proposition is preserved.

LinkDownp: Line 19 removes q from Neighp but q is added to Leavep if q 6∈ Incp

by line 22. Thus, NeighIp
is still a subset of Neighp ∪ Leavep ∪ Incp. The

proposition is preserved.

LinkUpp: Line 32 removes q from Leavep but line 31 adds q into Neighp. Thus, the

proposition is preserved.

2

Lemma 3 For each process p, if Incp = NIncp and Leavep = ∅, then Incp = P .
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Proof. Since p ∈ Incp and Incp = NIncp, p ∈ NIncp. Thus, Neighp ⊆ Incp.

Because NeighIp
⊆ Neighp ∪ Leavep ∪ Incp (by lemma 2), Neighp ⊆ Incp and

Leavep = ∅, we can get NeighIp
⊆ Incp.

Then, it will be shown that NeighIr
⊆ Incp for each process r ∈ NeighIp

.

Since r ∈ Incp and Incp = NIncp, r ∈ NIncp. Consequently, r ∈ NIncr. This

implies that Neighr ⊆ Incr. NeighIr
⊆ Neighr ∪Leaver ∪ Incr can be rewritten as

NeighIr
⊆ Leaver ∪ Incr. Because Incr ∪Leaver ⊆ Incp ∪Leavep and Leavep = ∅,

NeighIr
⊆ (Incp ∪ Leavep) = Incp.

By the same reasoning and the assumption that the network is connected initially,

NeighIr
⊆ Incp for each process r ∈ P , and therefore Incp = P . 2

Theorem 2 Decidep in process p is preceded by an event in each process.

Proof. Decidep in process p is enabled only if Incp = NIncpp and Leavep = ∅. By

lemma 3, Incp = P . For each process q 6= p in Incp, since q is only in Incq initially,

there exists a message chain from q to p. Thus, there is an event in q causally

preceded Decidep. 2

5 Conclusion

We presented a wave algorithm for MANET, based on Finn’s algorithm. The mes-

sage complexity can be improved if the wave algorithm applies to a network of

broadcast radios. In our algorithm, whenever Incp, NIncp or Leavep of process p

has changed, p will send a message to all neighbors. This can be done by broad-

casting only one message in networks of broadcast radios. Each process within

transmission radius of p will receive the same message.

The liveness property of our algorithm is achieved by assuming that the network

is consistently connected. A consistently connected network may be partitioned,

but there always exists a sequence of consistent links between every pair of nodes.

We conjecture that this assumption is necessary for wave algorithms.
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