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ABSTRACT 

There are two general approaches to software reuse: compositional and generative. Compositional 

techniques for compiler construction have less been explored, because most compiler parts were 

thought to be language dependent and hard to reuse. After years of development, however, applying 

attribute grammars (AGs) to construction of production-quality compilers has not been successful. One 

major reason is that traditional AG specification methods are too primitive for real specification tasks. 

This paper presents an approach that integrates both generative and compositional techniques for 

compiler construction. The approach uses AGs as the compiler backbone and employs reusable 

components in AG specifications. By extending AGs to incorporate modularity, remote access, 

collective computing, and object-oriented views on tree nodes, compiler specifications can be more 

modular and concise. By employing reusable components to handle circular dependency and non-tree 

structures, specification difficulties due to the theoretical limitations of AGs can be easily removed. The 

effectiveness and efficiency of this approach are addressed.  

Key Words: semantic analysis, modularity, object-orientation, software components, compiler 

generators. 



1. INTRODUCTION 

Compilers are getting bigger and more complex. One force driving compiler front-end evolution is the 

evolution of programming languages. For example, the C language has evolved into the C++ language 

[6] with object-oriented features (classes, templates, etc.). Ada has also been revised to support 

object-orientation, mega-programming, and real-time programming [31]. Compiler designers need a 

software architecture that can be reused as programming languages evolve. In general, there are two 

approaches to software reuse [27]. Generative reuse, which generates software from a given 

specification, is based on a specific language and a program generator. Compositional reuse composes 

software from existing building blocks.  

 Compositional techniques in compiler construction have less been explored, because most parts 

of a compiler were thought to be language dependent and hard to reuse. Generative techniques work 

well in some compiling tasks. For example, GNU CC uses a parser generated by a parser generator and 

a generator of code-generators for several target machines. However, few production-quality compilers 

adopt generative techniques for semantic analysis due to the lack of widely-accepted specification 

techniques. Most semantic analyses in production-quality compilers work in one of the following ways: 

recursive descent parsing/analysis, action routines, and attribute grammars (AGs). The first way, e.g., 

lcc [9], is fully hand-coded, the second, e.g., GNU CC, is partly hand-coded, and only the last, e.g., 

Linguist-86 [7], is fully generative.  

 AGs seem to be better than the other hand-coded methods due to their theoretical simplicity. 

After years of development, however, applying AGs to construction of production-quality compilers 

has not been successful [34]. One major reason is that traditional AG specification methods are too 

primitive for real specification tasks. For example, Waite [34] suggests object-orientation as a new 

direction for AG specifications. Kastens [21] emphasizes the modularity and remote access issues of 

AGs. Another reason is that AGs cannot easily handle circular dependency or non-tree structures, 

which, unfortunately, appear in many important tasks like symbol processing and data-flow analysis. 

For these tasks, current generative techniques cannot generate codes that compete in efficiency with 

those coded according to specific algorithms. Consequently, compositional reuse techniques may be 

more appropriate for constructing components for these compiling tasks.  
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 A two-fold problem faces compiler designers: 1) the lack of a specification tool (and a clear 

methodology) for writing AG specifications and 2) the lack of reusable components for compiler 

construction, e.g., components for name analysis [19]. In this paper we present an effective approach to 

compiler construction based on AGs and reusable components. This approach adopts AGs as the 

compiler backbone and uses reusable components in AG specifications. By extending AGs to 

incorporate modularity, remote access, collective computing, and object-oriented views on tree nodes, 

compiler specifications can be more modular and concise. By employing reusable components to 

handle circular dependency and non-tree structures, the specification difficulties due to theoretical 

limitations of AGs can be easily removed. Compiler construction can be greatly simplified using our 

approach.  

2. RELATED APPROACHES  

2.1 Recursive-descent parsing, action routines, and attribute grammars 

Recursive descent parsing is a top-down parsing technique, where semantic actions can be inserted 

within recursive procedures. This technique can directly coordinate control sequences of semantic 

actions (e.g., error recovery, symbol table management, etc.) in the body of a recursive procedure. It can 

easily be incorporated into programming languages that provide recursive procedures. However, it has 

many disadvantages as well. First, the codes for syntax analysis and semantic actions are highly 

coupled. Semantic action codes need to be rewritten for even slight changes in syntax. Second, all the 

semantic actions are hand coded and prone to error.  

 The first problem in recursive descent analysis can be solved by applying action routines, which 

incorporate formal syntax rules with semantic action symbols. Action routines can be adapted to 

bottom-up or top-down parsing techniques. The control of semantic actions is guided by parsing 

actions. In some cases, this simplifies both parsing and the control sequence of semantic actions. Many 

action routines follow a Start-Process-Finish sequence and keep a semantic record or a stack during 

processing. However, semantic stack operations are still have to be hand coded.  

 Attribute grammars (AGs) are well known as a formal technique for compiler construction. Most 

AG generators use an abstract syntax tree as an intermediate representation. Each symbol on the tree is 

associated with some (semantic) attributes. The semantic specifications in AGs are 
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production-oriented: defining attribute computations (attribution rules) associated with production 

rules. The value of an attribute cannot be accessed outside the context of the production rule. Thus a 

production rule can be considered as a specification unit, where an inherited attribute is an input and a 

synthesized attribute is an output of the context of the production rule.  

 AGs outperform action routines because computation of attributes has no side effects and is 

independent of parsing actions. Still, AGs have their own problems. Except for some AG extensions 

that are considered in the next section, fundamentally, AGs are purely generative: A powerful generator 

is needed to apply the technique. To develop compilers designers need to learn a specification language 

that may be totally different from programming languages. Thus, it is not surprising that using AGs in 

semantic analysis of production-quality compilers is still not widely accepted, although AGs are 

theoretically better than the other two methods.   

2.2 AG Specification Extensions 

In this section, we list systems related to AG extensions and make a comparison. Table 1 shows the 

current extensions of AGs, addressed in previous research into rectifying some AG shortcomings. These 

extensions are categorized into: modularity, object-orientation, remote access, and collective 

computing. The following are the typical specification extensions in previous research. Separate 

specification allows users to define the attributes and attribution rules of a symbol in more than one file 

(from different semantic aspects). Inheritance construct lets users define the attribution rules of a 

symbol by composing from those of other symbols. An upward remote attribute denoted X.a accesses 

the nearest ancestor of symbol X and attribute a. Constituents [18, 21] represent a set of attributes in the 

descendants of a symbol. A chaining [18, 21] is a left-to-right attribution. A bucket brigade [17] is a 

bi-directional chaining. A target language's expression [11, 13] is an expression evaluated into a 

reference to a tree node in accessing a remote attribute. List attribution assigns the inherited attribute of 

each son.   
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Table 1. Summary of existing systems on extensions of AGs.  
AG system Modularity Object- 

orientation 
Remote access Collective 

computing  
ALADIN/GAG [18] separate spec.  -- upward attribute  

 constituents 
chaining  

constituent(s) 
list attribution 

Lido/Eli [21] 
 

separate spec.  multiple  upward attribute 
constituent(s) 

chaining 
constituent(s) 

Linguist [7] -- -- -- -- 
Regular Right-Part 
AGs [17] 

-- -- -- list attribution  
bucket brigade  

SSL [28] separate spec.  -- upward attribute -- 
TOOLS [23, 24] -- single  pass variable family 
OLGA [16] separate spec.  

piped AGs  
-- upward attribute  list attribution 

collect sons' attrs  
Door AGs [11] -- single   target's expr.  list attribution 

door 
Ag [13, 14] separate spec.  multiple   target 's expr. thread (chaining) 
Scan Grammar [29] -- -- -- scan 
Extended AGs [36] -- -- -- -- 
Modular AGs [5] textual matching on 

productions   
-- -- pattern matching 

on productions 
Composable AGs [8] component grammars -- -- -- 

separate spec. = separate specification; single/multiple = single/multiple inheritance;  
upward attribute = upward remote attribute; target's expr. = target language's expression.   

 Besides these common extensions, Extended AGs [36] use a concise AG notation to express 

semantic predicates. A Modular AG [5] consists of a number of patterns associated with a set of 

templates. A template specifies the attribution rules to be generated for each matching production rule. 

A Composable AG [8] is built from some component AGs, each of which models a particular 

sub-domain. The interconnections of component AGs are through input/output attributes specified by a 

glue grammar. De Moor et al. [4] classify three types of AG components: families, rules and aspects. 

Multiple AG inheritance [25] allows an AG to inherit the specifications from ancestors: adding or 

overriding specifications from ancestors. Hedin [12] also addresses an extension to AGs, permitting 

attributes to be references to arbitrary nodes in a syntax tree.  

2.3 Other Extensions  

Demers et al. [3] propose a method in which message propagation is decided by a successor function, a 

mapping between tree nodes. OOAG [30] is an approach that integrates AGs and object-oriented 

programming. The static semantics is specified in AGs; the dynamic semantics is defined using message 

passing, which may cause side effects. Attribute Coupled Grammars [10] solve the modularity problem 

by providing more higher level AG compositions: A compilation is decomposed into a number of AGs, 
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each of which reads an attributed tree and generates an attributed tree. This is an AG extension for 

multi-pass compiling. Higher-Order AGs [32, 33] start from another direction: promoting abstract 

syntax trees to "first class citizens." The model allows an attribute to be an abstract syntax tree called 

non-terminal attribute (NTA), which can be attributed again. Attribute Coupled Grammars can be 

treated as a special case of Higher-Order AGs where only the root contains an NTA. Circular AGs (e.g., 

[15]) allow circular-attribute dependency. The power of fixed-point attribute evaluation can elegantly 

solve a collection of attributes involved in a dependency circle. In Conditional AGs [2], attribution rules 

may have guards. Rules are active only when their guards are satisfied. They can express well-behaved 

computations that involve circular attribute dependency. Kikuchi and Katayama [22] propose 

generalized AGs based on using type-0 grammars in place of context-free grammars. They regard 

generalized AGs as constraint satisfaction systems. 

3. AN INTEGRATED APPROACH TO COMPILER CONSTRUCTION 

As addressed in Section 2, many AG-based specification techniques have their own extensions, and 

each tries to rectify some AG shortcomings. It is difficult to combine all these extensions in one 

language. Instead of focusing on AG extensions, our approach integrates specification constructs and 

reusable components for compiler construction. With our approach, a compiler specification is done 

based on a unified AG and a framework of reusable components. This section also addresses the 

integration of our AG extensions and reusable components. 

3.1 Extending the AG Concepts 

Traditional AGs describe attribution rules by using local dependency, and attribute computing is 

applicative. This mathematical model is rather elegant but too primitive for specification use. Here we 

introduce the following key concepts into AGs to extend their capability to specify:  

 1) an attribute to be accessed being either local or remote;  

 2) an attribute being either applicative or state transitional.  

 A remote (attribute) access, a reference to an attribute on a remote tree node, is used as a tool to 

overcome part of the "modularity" problem. For example, an attribute instance may need to be 

propagated through a sequence of nodes in corresponding to a number of production rules. Such a 

propagation sequence can be avoided by introducing a remote access to the propagated attribute. In 
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other words, specification by remote access seems to be simpler than using lengthy attribute 

propagation. In [37, Ch. 4], we define R-AGs, AGs with a flexible remote access construct that 

expresses remote attributes. Because an R-AG can be translated into an AG, the resulting specification 

is still an AG. In addition, a remote access construct can operate collectively, since a remote access may 

access a collection of attributes. Thus, the design of collective computing construct can also be based on 

remote access.  

 Traditional AGs emphasized theoretical elegance (applicative computing), so all attributes were 

applicative, i.e., their values (or states) remain unchanged. However, for many compiling tasks, it is 

convenient to let an attribute change its internal data. For instance, a symbol table attribute needs to 

change its internal value when an operation such as insertion is performed on it. An attribute with this 

property is called state transitional, and the operation on a state-transitional attribute is called an action. 

Describing the explicit dependency among the operations on a state-transitional attribute is a useful 

constraint to guarantee the correct use of these attributes. 

 Some AG systems (e.g., Lido) adopt these concepts by providing ad-hoc constructs. For 

example, many systems support explicit (action) dependencies by treating them as special attribution 

rules. For example, the depends_on operator in an expression that does not define any attribute value or 

defines a void attribute.  

3.2 A Unified and Simple AG Specification Extension  

As discussed in Section 2, each AG-based system has its own extension constructs. These constructs 

include separate specification, inheritance, upward remote attributes, chaining, list attribution, and more 

flexible remote access via target language expressions. One key difficulty in designing a new 

specification language is that the more new constructs a language contains, the more difficult the 

language is to use. To solve this problem, our language is designed with a simple unified set of language 

constructs for AG extensions according to the concepts discussed in Section 3.1. In addition, the 

language satisfies not only conventional concerns like remote access and collective computing, but also 

two general software engineering issues: modularity and object-orientation on tree nodes. These four 

issues try to bridge the gap between a simple theoretical model (i.e., AG) and its practical use (i.e., AG 

specification). 
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 To address modularity and object-orientation issues, our extension specifies a two-level 

abstraction: module-level and class-level. A compiler specification can be decomposed into a number of 

modules, each one a specification unit, containing a number of class definitions and interfaces to 

scanner, parser, and other specification units. A class is the only semantic specification construct. An 

abstract class defines common properties for a number of (sub)classes but cannot be directly used to 

create a tree node object. The class in our language is more powerful than a production rule associated 

with attribution rules in AGs, thus the production rule construct is replaced and supported with class and 

related constructs. The module and class constructs can also support separate specification. Consider a 

symbol X that involves name analysis, type checking, and code generation. By separate specification, 

symbol X may be defined in several specification files. With our unified specification constructs, class X 

can inherit the multiple classes X_name, X_typechk, and X_codegen, which define different semantic 

aspects in three corresponding modules. Table 2 summarizes how we address the modularity and 

object-orientation issues in the unified specification.  

Table 2. Using the unified specification extension for various modularity and object-orientation 
features.  

Features Unified specification 
specification unit module  
interface to other spec. files  import/export lists 
interface to scanner token definitions 
interface to parser syntax rules 
attribution rules on each production  class definitions 
composition of attribution rules from 
several spec. units  

using inheritance to compose a class with 
multiple bases from some modules  

production rule Class 
inheritance class's base classes  
abstract syntax tree  class's components 
attribute class's attribute declaration 
attribution rule class's attribute definition 
remote access class's remote site 
non-terminal attribute  object ID of tree node  
semantic function  class's member function 

 To address remote access and collective computing issues, we allow unified constructs to specify 

various features according to the key concepts defined in Section 3.1. As shown in Table 3, upward 

remote attribute access and constituents can be described as site expressions [37, Ch. 4], a generalized 

mechanism for remote access. A chaining can be described using constituents to access the tree nodes 

involved in the chaining and computing the information according to the order of the attributes of tree 
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nodes. A list attribution can be described in another direction: getting the attribute originally assigned to 

each son, i.e., by an upward remote attribute access from each son. A family can be developed using a 

symbol table, which is state transitional and needs some explicit dependency to guide correct use of the 

table.  

Table 3. Using the unified specification extension for various remote access and collective 
computing features.  

Feature Unified specification 
upward attribute site expressions  
constituent(s) site expressions 
target's expression site expressions / tree node references  
chaining constituent(s), according to the order of attributes 
bucket brigade constituent(s), according to the [reverse] order of attributes 
list attribution using upward attribute in sons 
collect attributes of sons chaining  
pass variable chaining  
scan chaining with an associative operator 
family using symbol table (state-transitional attribute) 
door state-transitional attribute 

3.3 Writing a Semantic Specification with Reusable Components   

Many reusable components are state transitional. The use of these components as attributes in AGs 

integrates generative and compositional techniques in compiler construction. The following shows the 

use of both AG specification (AGs with extensions addressed in Section 3.2) and reusable components.  

The use of AG specification: 

•  supports architectural specification/design of compilers. AGs provide various decomposition 

methods, and well-decomposed AGs serve as the backbones of compilers.  

•   incorporates with mature parser generators. AG specifications need not consider which parsing 

algorithm is used.  

•   deals with tree-structured problems: AG generators automatically generate evaluation order and 

algorithms. They can also optimize attribute storage.  

•   supports domain-specific patterns and analysis techniques. AGs can support domain-specific 

patterns, such as remote access and collective computing. AGs can also provide rigorous 

analysis techniques, such as circularity testing and grammar ambiguity checking.  

The use or construction of reusable components: 
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 • deals with problems of diverse structures, e.g., stacks, hash tables, and flow graphs. 

 • employs specific algorithms or optimizations that are not easily produced by program 

generators. Hash functions and interval data-flow analysis are representative. 

 • reuses components from mature domains. Many problem domains are mature enough to have 

been formalized and cataloged as reusable compiler components. These components can be 

refined and continuously improved. 

 We  have developed a number of reusable software components for compiler construction, 

including an identifier table, symbol tables, data-flow analysis components, and an interface for code 

generation. These components can be used as attribute types in AG specifications, and the attributes 

defined using these components are all state transitional. Applying these well-accepted concepts and 

their components in AG specifications can greatly reduce specification efforts.  

 The only work needed to use a reusable component is specifying the dependency among the 

operations on the component. Each dependency can be specified explicitly and elegantly in class-level 

specification: An action-dependency sequence involving a number of tree nodes can be specified in the 

"ancestor" of  these nodes. For example, let a block node be defined with a symbol table attribute, and a 

number of declaration nodes as its components. Each declaration node needs to append an entry to the 

symbol table and thus this side-effect is defined as an action. The sequence of these actions can be 

coordinated by a block node.  

4. WRITING AN OBJECT-ORIENTED COMPILER SPECIFICATION  

This section presents an example of writing an object-oriented compiler specification. Our approach 

consists of four steps:  

 1 Modularization (decomposition of syntax rules): writing token definitions and production rules.  

 2.  Identification of semantic classes and adding the linkages between syntax rules and semantic 

classes. 

 3. Specification of semantic classes: modeling objects with inheritance, components, attributes, 

protocols, remote sites, and attribution rules. Advanced features of objects include object ID, 

type ID, dynamic cast, and target language expressions for remote accesses.  
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 4. Use of software components: using components as attributes, using external (global) 

components, passing tree-node references as parameters, and specifying dependency on the 

actions of state-transitional components.  

An example language 

The example language is a sequence of definitions and expressions, an extension of [1, Fig. 4.57]. In the 

language, a definition defines the name of a constant and its value. A constant name cannot be redefined. 

There are five kinds of expression on floating numbers: addition, subtraction, multiplication, division, 

and negation. The compiler is to output a sequence of values of input expressions according to the input 

order. Figure 1 shows an example of the language input.   

pi = 3.14159 
radius = 100.0 
area = pi * radius * radius 
area 
length = 2 * pi * radius 
length 

Figure 1. An input in the expression language. 

Modularization 

Figure 2 shows the module expr using the specification language in [38]. The module expr contains a 

lexical part with two token definitions (IDENTIFIER and NUMBER) and a syntactical part with the 

production rules for the expression. The module construct integrates scanner, parser, and AGs. Note that 

for a simple language, a single specification module is enough to handle the specification. For a large 

language (e.g., more than 500 production rules) further decomposition is needed.  
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%MODULE expr 
%LEXICON   
/* The following is in Lex format */ 
/* macro definitions in Lex */ 
D  [0-9] 
E  ([Ee][-+]?{D}+) 
DE ([Dd][-+]?{D}+) 
ALPHA    [a-zA-Z_] 
ALPHANUM ({ALPHA}|{D}) 
IDENT    ({ALPHA}{ALPHANUM}*) 
%% 
/* matching rules in regular expressions */ 
[\ \t]   ;   /* skip blanks and tabs */ 
{D}+("."{D}+)?{E}  @NUMBER; /* put a code to create a terminal */ 
{D}+("."{D}+)?{DE} @NUMBER;  
{IDENT} @IDENTIFIER;  
%SYNTAX 
%% 
Lines : Ls 
 ; 
Ls : /* empty */ 
 | Ls Line 
 ; 
Line : Expr '\n' { $$~PrintExpr } 
 | Definition 
 ; 
Definition 
 : IDENTIFIER '=' Expr '\n' 
 ; 
Expr : Expr '+' Expr { $$~AddExpr } 
 | Expr '-' Expr { $$~SubExpr } 
 | Expr '*' Expr { $$~MulExpr } 
 | Expr '/' Expr { $$~DivExpr }  
 | '(' Expr ')' { $$=$2 } 
 | '-' Expr { $$~NegExpr } 
 | NUMBER { $$=$1 } 
 | IDENTIFIER { $$~IdExpr } 
 ; 
%SEMANTICS 
  ... 
%END expr 

Figure 2. The expr module. 

Identification of semantic classes  

There are a number of semantic classes: IDENTIFIER, Definition, PrintExpr, Lines, and 

expression classes, including Number, AddExpr, SubExpr, MulExpr, DivExpr, NegExpr, and 

IdExpr. The following is a brief description on these classes. Some expression classes are discussed 

latter.  

 • Class NUMBER represents floating numbers.  

 • Class IDENTIFIER keeps the unique symbol for an identifier.  

 • Class IdExpr refers to a constant name using an IDENTIFIER.  

 • Class Definition defines a new constant name IDENTIFIER with a value of Expr. 

 • Class PrintExpr prints out an Expr. 
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 • Class Lines contains a number of PrintExpr's and Definition's.  

 As shown in Figure 2, these semantic classes are assigned to the corresponding production rules 

in the syntactical part.  

Class hierarchy of semantic classes 

Figure 3 shows the expression classes and their inheritance relationships. Class Expr is defined with an 

attribute value; class UnaryExpr is defined with a component (part) of Expr; class BinaryExpr has 

two Expr components. Because the value of a NUMBER can also be used in an expression, it is also an 

expression.  
Expr

UnaryExpr BinaryExpr

AddExpr SubExpr MulExpr DivExprNegExpr

NUMBER IdExpr

 
Figure 3.  Semantic class hierarchy. 

Using software components  

The specification needs two software components: an identifier table (IdnTable) and a plain symbol 

table (PlainTable). The IdnTable stores identifiers used in the language, and the PlainTable is 

used to store constant names and values and to retrieve the values of constants defined. Figure 4 shows 

the PlainTable interface. The add and lookup operations return a flag indicating the result of the 

operation.  

 
template<class keyT, class valueT> 
class PlainTable : public uTable<keyT, valueT> 
{ 
  friend class PlainTableIter<keyT, valueT>; 
  typedef uEntry<keyT, valueT> Entry; 
public: 
  PlainTable(); 
  ~PlainTable(); 
  flag add(keyT k, valueT v); 
  flag add(keyT k, valueT v, Entry*& ent); 
  flag lookup(keyT k) const; 
  flag lookup(keyT k, Entry*& ent) const; 
};  
 
enum flag { OK, DUPLICATE, CONFLICT, NOTFOUND, AMBIGUOUS, KEYFOUND }; 

Figure 4. The PlainTable interface. 
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Specification of semantic classes 

There are two terminal classes: IDENTIFIER and NUMBER (see Figure 5). Class IDENTIFIER accesses 

an external IdnTable that stores the identifier text. The value of a NUMBER comes from the text of the 

matched string. The external C function (sscanf) is used to convert a string into a floating number.  
 
%SEMANTICS 
/* header to be included in semantic analysis */ 
/* external C function: sscanf() */ 
%{ 
#include <stdio.h> 
IdnTable<Power2_Hash> idtbl(); 
%} 
TERMINAL IDENTIFIER 
ATTRIBUTE 
  char* @sym; 
STATIC 
  @@sym = idtbl.makeIdn(@text);  
END IDENTIFIER 
 
TERMINAL NUMBER INHERITS Expr 
STATIC 
  BLOCK sscanf(@text, "%lf", &@@value); END 
END NUMBER 

Figure 5. Terminal classes NUMBER and IDENTIFIER. 

 
CLASS Expr 
ATTRIBUTE double @value;  
END Expr 
CLASS BinaryExpr INHERITS Expr 
COMPONENT e1:Expr; e2:Expr; 
END BinaryExpr 
CLASS AddExpr INHERITS BinaryExpr 
STATIC 
  @@value = @e1.value + @e2.value;  
END AddExpr 
CLASS SubExpr INHERITS BinaryExpr 
STATIC 
  @@value = @e1.value - @e2.value;  
END SubExpr 
CLASS MulExpr INHERITS BinaryExpr 
STATIC 
  @@value = @e1.value * @e2.value;  
END MulExpr 
CLASS DivExpr INHERITS BinaryExpr 
STATIC 
  @@value = @e1.value / @e2.value;  
END DivExpr 
CLASS UnaryExpr INHERITS Expr 
COMPONENT e1:Expr; 
END UnaryExpr 
CLASS NegExpr INHERITS UnaryExpr 
STATIC 
  @@value = - @e1.value;  
END NegExpr 

Figure 6. Expression classes. 

 Figure 6 shows the definition of some expression classes. Each class derived from UnaryExpr 

and BinaryExpr defines how the value of the expression is computed.  
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Class Lines (Figure 7) consists of two components: exprs, a number of PrintExpr's, and 

defs, a number of Definition's. Each is defined using a remote access. A Lines contains two 

additional member functions (message protocols): define, which defines a constant name, and value, 

which returns the value of a constant. Both member functions access the private attribute consts of 

Lines (a PlainTable). A Lines object coordinates the print actions of exprs in left-to-right 

(PREORDER), line by line. In addition, all const actions of the underlying Const objects are ordered as 

left-to-right and bottom-up (POSTORDER).  
 

CLASS Lines 
COMPONENT  
  exprs = CONSTITUENTS PrintExpr; 
  defs = CONSTITUENTS Definition; 
SITE  
  consts = CONSTITUENTS Const; 
PRIVATE 
  PlainTable<char*, double> @@consts; 
PROTOCOL 
  void @@define(char* sym, double val) 
  { 
    flag f = @consts.add(sym, val);  
    if (f==DUPLICATE) Message("duplicate constant name"); 
  } 
  double @@value(char* sym)  
  { 
    Entry* ent; 
    flag f = @constns.lookup(sym, &ent); 
    if (f==NOTFOUND) {  
      Message("constant name not found");  
      return 0; 
    } 
    else  
      return ent->value(); 
  } 
STATIC 
  PREORDER @exprs.print; 
  POSTORDER @consts.const; 
END Lines 

Figure 7. Class Lines. 

 Class Const (Figure 8) is an abstract class defined with the action const and the site scope for 

the enclosing scope. Classes IdExpr and Definition both access the root (Lines) and inherit from 

class Const. Class IdExpr has an IDENTIFIER component. IdExpr looks up the scope for the value 

of the constant name. Class Definition has two components, an IDENTIFIER and an Expr. Class 

Definition defines a constant in the enclosing scope.  Class PrintExpr contains one expression. 

The duty of class PrintExpr is to print out the value of the expression. Since this operation causes side 

effect, it is defined as an action. An external C function printf is used. 
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CLASS Const 
SITE 
  scope = INCLUDING Lines; 
STATIC 
  ACTION const: END; 
END Const 
CLASS IdExpr INHERITS Expr, Const 
COMPONENT 
  id:IDENTIFIER; 
STATIC 
  ACTION const: @@value = @scope.value(@id.sym); END 
END IdExpr 
CLASS Definition INHERITS Const 
COMPONENT 
  id:IDENTIFIER; 
  Expr; 
STATIC 
  ACTION const: @scope.define(@id.sym, @Expr.value); END 
END Definition 
CLASS PrintExpr  
COMPONENT  
  Expr;  
SITE 
  ids = CONSTITUENTS IdExpr; 
STATIC 
  ACTION print: printf("%g\n", @@Expr.value); END; 
END PrintExpr  
%END expr 

Figure 8. Classes IdExpr, Definition, and PrintExpr. 

5. IMPLEMENTATION, EFFECTIVENESS AND EFFICIENCY 

5.1 Implementation  

Our system has been divided into two subsystems: an ag++ generator and a libag++ library. All the 

components in libag++ have been developed using C++ class, class templates, and functions. The code 

generation interface now generates C code compiled under GNU CC.  

 A parser for the ag++ specification language has been developed. The scanner part of the parser 

has been developed using condition states in Lex. The parser needs to partially match the codes written 

in C++ and Lex regular expressions. There are two complete specifications, Expr.m and Pascal-.m, 

parsed by the parser. We are currently developing the complete generator that generates the 

visit-oriented attribute evaluator. For parse-time evaluation, we have developed the code to locate the 

free-positions in a grammar [26]. These free positions can be used to place some semantic actions for 

attribute computation.  

5.2 The Effectiveness in Compiler Specification 

The following is a comparison of two specifications for a Pascal subset, one using Lido as given in [35] 

and the other using ag++ as given in [38]. Our specification is much smaller due to its extensive use of 
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class construct, simpler explicit dependency, object ID, and type ID. Figure 9, for example, shows a 

specification for ConstNameUse. The class ConstNameUse multiply inherits class Constant, which 

defines the attribute value, and class NameUse, which looks up the enclosing scope for the identifier 

and defines the attribute ref. The ref is checked to determine whether it is a Constant using the type 

ID of the node pointed by ref. Most explicit dependencies are removed and the corresponding 

dependencies are defined in the enclosing constant definition part.  
 

ATTR Type: DefTableKey; 
ATTR Value: int; 
 
RULE IdnConst: Constant ::= ConstantNameUse 
COMPUTE 
  Constant.Type= 
    GetType(ConstantNameUse.Key,NoKey) DEPENDS_ON Constant.Objects; 
  Constant.Value= 
    GetValue(ConstantNameUse.Key,0) DEPENDS_ON Constant.Objects; 
  IF(NE(GetKind(ConstantNameUse.Key,Constantx),Constantx), 
    Message(FATAL,"Constant name required")) 
    DEPENDS_ON Constant.Objects; 
END; 
CLASS ConstNameUse INHERITS NameUse, Constant 
STATIC 
  BLOCK Assert(@ref IS Constant,  
           Message(FATAL, "Constant name required") ); END 
  @@type = @ref.type; 
  @@value = @ref.value; 
END ConstNameUse 

Figure 9.  A comparison of the specifications of class (symbol) ConstNameUse. The specification on 

top is the excerpts from Pascal- [35, p.36]; ours is on bottom. 

 In addition to addressing the technical issues in Sections 2 and 3, we carefully consider the 

current computing environment in designing ag++ and libag++. Lex and Yacc syntax have been used in 

the lexical and syntactical parts of our generator, and C++ language has been used to write the code for 

semantic definitions. This approach, of course, can also be applied to other scanner generators, parser 

generators, and target languages. The current version specifically addresses Lex-Yacc-C++ to 

encourage compiler designers who presently use UNIX tools in their work to shift to ag++ and libag++.  

5.3 The Efficiency of a Generated Compiler 

We take a two-fold approach to discussing the efficiency of the generated compiler: 1) considering the 

efficiency of generated attribute evaluators, and 2) examining the efficiency of software components in 

libag++ .  
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 The ag++ AG generator is based on a visit-oriented evaluator [20], a kind of evaluator in wide 

use as a very efficient subset of well-formed AGs. The parse-time evaluation technique promises to 

significantly improve the efficiency of the generated attribute evaluator. Another issue, attribute storage 

optimization, is addressed by the use of remote access, which already removes most artificial 

propagation attributes and reduces the amount of storage required. In addition, we have also used an 

object stack component to allocate memory for tree nodes and attributes in the evaluator [39].  

 The efficiency of software components in libag++ depends on the algorithms and the 

programming language (C++) used to develop the components. C++ is an efficient object-oriented 

language and object-oriented characteristics will not introduce much overhead if the programming 

guidelines in C++ are followed.  

 The algorithms of these components are designed carefully and are comparable with the codes in 

production-quality compilers, such as lcc [9] and GNU CC. For instance, symbol tables are developed 

using hash tables. This approach is very fast in comparison with a table that uses a linked list of 

declaration nodes. The data-flow analysis components now use the iterative method, which is quite 

efficient when the control-flow graph is simple. Moreover, because the implementation of a component 

can be directly replaced without changing its interface, the efficiency of those components can be 

improved when a new and faster algorithm is used.  

6. CONCLUSIONS  

We have presented an approach to improving compiler construction that integrates generative and 

compositional techniques. It simplifies specification and improves reuse potentially. Our preliminary 

result shows that integrating generative and compositional techniques promises both effectiveness and 

efficiency in compiler construction.  
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