
SETM*-Lmax: An EÆcient Set-Based Approach to

Find Maximal Large Itemsets

Ye-In Chang, and Yu-Ming Hsieh

Dept. of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan

Republic of China

fE-mail: changyi@cse.nsysu.edu.twg

fTel: 886-7-5252000 (ext. 4334)g

fFax: 886-7-5254301g

Abstract

Discovery of association rules is an important problem in the area of data mining. An
association rule means that the presence of some items in a transaction will imply the
presence of other items in the same transaction. For this problem, how to eÆciently count
large itemsets is the major work, where a large itemset is a set of items appearing in a
suÆcient number of transactions. In this paper, we propose an eÆcient SETM*-Lmax
algorithm to �nd maximal large itemsets, based on a high-level set-based approach. The
advantage of the set-based approach, like the SETM algorithm, is simple and stable over
the range of parameter values. In the SETM*-Lmax algorithm, we use a forward approach
to �nd all maximal large itemsets from Lk, and the w-itemset is not included in the w-
subsets of the j-itemset, where 1 � k � MaxK, 1 � w < j � MaxK, LMaxK 6= ;
and LMaxK+1 = ;. We conduct several experiments using di�erent synthetic relational
databases. The simulation results show that the proposed forward approach (SETM*-
Lmax) to �nd all maximal large itemsets requires shorter time than the backward approach
proposed by Agrawal.

(Key Words: association rules, data mining, knowledge discovery, relational databases,
transactions)

1 Introduction

One of the important data mining tasks, mining association rules in transactional or

relational databases, has recently attracted a lot of attention in database communities

[1, 2, 5, 6, 8, 11, 12, 13, 16, 17, 19, 21]. The task is to discover the important associations

among items such that the presence of some items in a transaction will imply the presence

of other items in the same transaction [7]. For example, one may �nd, from a large set

of transaction data, such an association rules as if a customer buys (one brand of) milk,

he/she usually buys (another brand of) bread in the same transaction. Since mining asso-

ciation rules may require to repeatedly scan through a large transaction database to �nd

di�erent association patterns, the amount of processing could be huge, and performance

improvement is an essential concern [7].

Previous approaches to mining association rules can be classi�ed into two approaches:

low-level and high-level approaches, where a low-level approach means to retrieve one tu-

ple from the relational database at a time, and a high-level approach means a set-based

approach. For example, Apriori/AprioriTID [2], DHP [17] and Boolean algorithms [23] are

based on the low-level approach, while the SETM algorithm [14] is based on the high-level

approach. A set-based approach (i.e., a high-level approach) allows a clear expression of

what needs to be done as opposed to specifying exactly how the operations are carried out

in a low-level approach. The declarative nature of this approach allows consideration of a

variety of ways to optimize the required operations. This means that the ample experience

that has been gained in optimizing relational queries can directly be applied here. Eventu-

ally, it should be possible to integrate rule discovery completely with the database system.

This would facilitate the use of the large amounts of data that are currently stored on

relational databases. The relational query optimizer can then determine the most eÆcient

way to obtain the desired results. Finally, the set-based approach has a small number of

well-de�ned, simple concepts and operations. This allows easy extensibility to handling

additional kinds of mining, e.g. relating association rules to customer classes.

In [14], based on a high-level approach, Houtsma and Swami proposed the SETM al-

gorithm that uses SQL for generating the frequent itemsets. Algorithm SETM is simple

and stable over the range of parameter values. Moreover, it is easily parallelized. But the

1

disadvantage of the SETM algorithm is similar to that of the AIS algorithm [1]. That

is, it generates too many invalid candidate itemsets. In this paper, we design an eÆcient

algorithm for mining association rules based on a high-level set-oriented approach. We

propose the SETM*-Lmax algorithm to �nd maximal large itemsets. We conduct several

experiments using di�erent synthetic relational databases. The simulation results show

that the proposed forward approach (SETM*-Lmax) to �nd all maximal large itemsets

requires shorter time than the backward approach proposed by Agrawal.

The rest of the paper is organized as follows. In Section 2, we describe the background.

In Section 3, we give a brief survey. In Section 4, we present the proposed SETM*-Lmax

algorithm. In Section 5, we study the performance of proposed algorithm. Finally, Section

6 gives the conclusion.

2 Background

Let I = fi1; i2; :::; img be a set of m distinct items [15]. A transaction T is de�ned as any

subset of items in I. A database D is a set of transactions. A set of items is called an

itemset. The number of items in an itemset is called the length of an itemset. Itemsets of

some length k are referred to as k-itemsets.

A transaction T is said to support an itemset X � I if it contains all items of X , i.e.,

X � T . The fraction of the transactions in D that support X is called the support of

X, denoted as support(X). An itemset is large if its support is above some user-de�ned

minimum support threshold [2].

An association rule has the from R : X) Y , where X and Y are two non-empty and

non-intersecting itemsets [15]. The support for rule R is de�ned as support(X [Y). The

rule X) Y has support s in the transaction set D if s% of transactions in D contain X. A

con�dence factor de�ned as support(X [Y)/support(X), is used to evaluate the strength

of such association rules. The rule X) Y holds in the transaction set D with con�dence

c if c% of transactions in D that contain X also contain Y . Consequently, the semantics of

the con�dence of a rule indicates how often it can be expected to apply, while its support

indicates how trustworthy this rule is. The problem of the association rule mining is to

discover all rules that have support and con�dence greater than some user-de�ned minimum

2

support and minimum con�dence thresholds, respectively.

In [1, 2, 17, 18, 20], the problem of mining association rules is decomposed into the

following two steps:

1. Discover the large itemsets, i.e., the sets of itemsets that have transaction support

above a predetermined minimum support s.

2. Use the large itemsets to generate the association rules for the database. The general

idea is that if, say, ABCD and AB are large itemsets, then we can determine if the

rule AB) CD holds by computing the ration � = support(ABCD)/support(AB).

The rule holds only if � �minimum con�dence. Note that the rule will have minimum

support because ABCD is a large itemset.

It is noted that the overall performance of mining association rules is determined by the

�rst step. After the large itemsets are identi�ed, the corresponding association rules can be

derived in a straightforward manner. EÆcient counting of large itemsets is thus the focus

of most priorwork.

3 The Apriori Algorithm

Agrawal and Srikant proposed an algorithm, called Apriori [2], for generating large itemsets.

Apriori constructs a candidate set of large itemsets, counts the number of occurrence of

each candidate itemset, and then determines large itemsets based on a pre-determined

minimum support. In the Apriori algorithm, the candidate k-itemsets is generated by a

cross product of the large (k � 1)-itemsets with itself. Then, the database is scanned for

computing the count of the candidate k-itemsets. The large k-itemsets consist of only

the candidate k-itemsets with suÆcient support. This process is repeated until no new

candidate itemsets is generated. It is noted that in the Apriori algorithm, each iteration

requires a pass of scanning the database, which incurs a severe performance penalty [23].

Figure 1 shows the Apriori algorithm, and Table 1 summarizes the variables used in the

algorithm [2]. Consider an example transaction database given in Figure 2. Figure 3 shows

the process. In the �rst iteration, Apriori simply scans all the transactions to count the

number of occurrences for each item, and generates candidate 1-itemsets, C1. Assuming

3

k-itemset An itemset has k items.

Lk

Set of large k-itemsets (those with minimum support). Each
member of this set has two �elds: (i) itemset and (ii) support
count.

Ck

Set of candidate k-itemsets (potentially large itemsets). Each
member of this set has two �elds: (i) itemset and (ii) support
count.

Table 1: Variables used in the Apriori algorithm

Procedure Apriori;
begin

L1 := large 1-itemsets;
k := 1;
repeat

k := k + 1;
Ck := apriori-gen(Lk�1); (* New candidates *)
forall transactions t 2 D do

begin

Ct :=subset(Ck; t); (* Candidates contained in t *)
forall candidates c 2 Ct do

c:count := c:count+ 1;
end;
Lk := fc 2 Ckjc:count � minimum supportg;

until Lk = ;;
Answer :=

S
k Lk;

end;

Figure 1: The Apriori algorithm

that the minimum transaction support required is two (i.e., s = 50%), the set of large

1-itemsets, L1, composed of candidate 1-itemsets with the minimum support required, can

then be determined. To discover the set of large 2-itemsets, in view of the fact that any

subset of a large itemset must also have minimum support, Apriori uses L1 �L1 to generate

a candidate set of itemsets C2 where * is an operation for concatenation in this case. Next,

the four transactions in D are scanned and the support of each candidate itemset in C2 is

counted. The set of large 2-itemsets, L2, is therefore determined based on the support of

each candidate 2-itemset in C2.

The set of candidate itemsets, C3, is generated from L2 as follows [7]. From L2, two large

4

A C D
B C E
A B C E
B E

Database D

TID

100
200
300
400

Items

Figure 2: A transaction database (Example 1)

2-itemsets with the same �rst item, such as fBCg and fBEg, are identi�ed �rst. Then,

Apriori tests whether the 2-itemset fCEg, which consists of their second items, constitutes

a large 2-itemset or not. Since fCEg is a large itemset by itself, we know that all the

subsets of fBCEg are large and then fBCEg becomes a candidate 3-itemset. There is no

other candidate 3-itemset from L2. Apriori then scans all the transactions and discovers

the large 3-itemsets L3. Since there is no candidate 4-itemset to be constituted from L3,

Apriori ends the process of discovering large itemsets.

In the Apriori algorithm as shown in Figure 1, the apriori-gen function takes an argument

Lk�1, and returns a superset of the set of all large k�itemsets. Before exiting the apriori-

gen function, a prune step is executed, which deletes all itemsets c 2 Ck such that some

(k � 1)-subset of c is not in Lk�1.

4 The SETM*-Lmax Algorithm

In this Section, we present the SETM*-Lmax algorithm to �nd all maximal large itemsets

(denoted as Lmax) from Lk, and the w-itemset is not included in the w-subsets of the

j-itemset, where 1 � k �MaxK, 1 � w < j �MaxK, LMaxK 6= ; and LMaxK+1 = ;.

4.1 An Example

For the sample input as shown in Figures 2 and 4, Figures 5 and 6 show the results (Lk),

respectively. For the resulting large itemsets shown in Figures 5 and 6, Figures 7 and 8

show the corresponding all maximal large itemsets (Lmax), respectively. For example, in

Figure 5, since BC 2 fBCEg (=L3), where BC 2 L2, BC is removed in the result.

5

{A C}
{B C}
{B E}
{C E}

Scan

D

{A B}
{A C}
{A E}
{B C}
{B E}
{C E}

Itemset

Itemset

{B C E}

Scan

D

Scan

D

{A}
{B}
{C}
{D}
{E}

2
3
3
1
3

Itemset Sup.

{A B}
{A C}
{A E}
{B C}
{B E}
{C E}

1
2
1
2

C1

3L

Itemset Sup.

{A}
{B}
{C}
{E}

2
3
3
3

Itemset Sup.

2
2
3
2

Itemset Sup.

2{B C E}

Itemset Sup.

3
2

Itemset Sup.

2{B C E}

1L

C2 2L

C3

C

C3

2

Figure 3: Generation of candidate itemsets and large itemsets

1
2
3
4
5
6
7
8
9
10
11
12

A B C D E I
A B C E F
A C D F
A B C D E
B C D H
D E F
A C D G
A B C D E H
B C E G I
E F G H
A G H
B F H

TID Items

Figure 4: A transaction database (Example 2)

6

Itemset
1L

Sup.

{A}
{B}
{C}
{E}

2
3
3
3

{A C}
{B C}
{B E}
{C E}

Itemset Sup.

2
2
3
2

2L 3L

Itemset Sup.

2{B C E}

Figure 5: Example 1: Large Itemsets (s = 50%)

EF

AB
AC
AD
AE
BC
BD
BE
BH
CD
CE
DE

Itemset Sup.

L 2

4
6
5
4
6
4
5
3
6
5
4
3

Itemset Sup.

L

4

3

ABC
ABD
ABE
ACD
ACE
ADE
BCD
BCE
BDE
CDE

3
4
5
4
3
4
5
3
3

A
B
C
D
E
F
G
H

7
7
8
7
7
5
4
5

1L

Itemset Sup.

ABCD
ABCE
ABDE
ACDE
BCDE

Itemset Sup.

L 4

3
4
3
3
3

Itemset Sup.

L

3

5

ABCDE

Figure 6: Example 2: Large Itemsets (s = 25%)

3L

Itemset Sup.

2

2L

Itemset Sup.

2{B C E}{A C}

Figure 7: Maximal Large Itemsets for Example 1

Itemset Sup.

L

3

5

ABCDE

Itemset Sup.

L 2

BH
EF

3
3

Figure 8: Maximal Large Itemsets for Example 2

7

R
0

k A database of candidate k-itemsets (i.e., a candidate DB)
Lk Large k-itemsets
Rk A database of large k-itemsets (i.e., a �ltered DB)

MaxK The maximal length of the itemset
i A loop index (1 � i �MaxK � 1)
j A loop index (1 � j � i + 1)

Table 2: Variables used in the SETM*-Lmax algorithm

4.2 The Algorithm

Table 2 shows the variables used in the SETM*-Lmax algorithm. The complete algorithms

are shown in Figures 9, 10, 11, 12, and 13. In procedure SETM*-Lmax as shown in

Figure 9, the �rst step is to generate all large itemsets Lk based on the SETM* algorithm,

1 � k � MaxK, and the second step is to delete some element w (2 Lk) from Lk if

w 2 k-subset of Lk+1 except k = MaxK. Note that the SETM algorithm constructs

R
0

k based on Rk�1 and the original database SALES. Due to this reason, the SETM

algorithm generates and counts too many candidates itemsets. To reduce the size of the

candidate database R
0

k, we have a new strategy to construct R
0

k in procedure gen-CDB

(as shown in Figure 12). In Agrawal's algorithm [3] for �nding sequential patterns, they

have proposed a backward approach to process step 2 as shown in Figures 14 and 15, where

procedure comb(j, i) (shown in Figure 15) is a function to compute Cj
i and stores all the

possible combinations in a two dimensional array COMBD. (Note that in Figure 15,

COMBD[k][1] : : : COMBD[k][i] denote the k'th combination pattern with a size = i.)

For the example of comb(6,4), i.e., C6
4 , the contents of COMBD computed from function

comb(6,4) is shown in Figure 16, in additional to return C6
4 = 15. Take Figure 5 as an

example, the backward approach will delete BC, BE and CE from L2 in the �rst iteration

by checking L3, and delete A, B, C and E from L1 at the second iteration by checking L2

and L3. While our step 2 is a forward approach. Take Figure 5 as example, our forward

approach will delete A, B, C and E from L1 in the �rst iteration by checking L2, and delete

BC, BE and CE from L2 in the second iteration by checking L3. Figures 17 and 18 show

a simpli�ed interpretation of the backward and the forward approaches, respectively.

8

procedure SETM*-Lmax;

begin

(* Step 1: Finding all large itemsets *)

(* the sort operation is optional *)

k := 1;

Lk := gen-Litemset(Sales;minsup);

Rk := �lter-DB(Sales; Lk);

repeat

k := k + 1;

R
0

k := gen-CDB(Rk�1; Rk�1);

Lk := gen-Litemset(R
0

k;minsup);

Rk := �lter-DB(R
0

k; Lk);

until Rk = ;;

MaxK := k � 1;

(* Step 2: Deleting items forwards *)

for i := 1 to MaxK � 1 do

for j:=1 to (i+ 1) do

del-Litemset(Li; Li+1; i; j);

Answer :=
S
Lk;

end;

Figure 9: The SETM*-Lmax procedure

In our forward approach, for the example shown in Figure 5 and 6, Tables 3 and 4 show

the changes of the values of the variables for MaxK = 3 and MaxK = 5, respectively.

For example, take Figure 5 as an example, when i = 2, we will �rst remove BC from L2

by following the else part in procedure del-Litemset, since B (= L2:item1 = L3:item1) and

C (= L2:item2 = L3:item2) appear at the �rst and second positions in L3, where j = 1

and (i + j � 1) = 2. Next, we will remove CE from L2 by following the else part in

procedure del-Litemset, since C (= L2:item1 = L3:item2) and E (= L2:item2 = L3:item3)

appear at the second and third positions in L3, where j = 2 and (i + j � 1) = 3. Finally,

we will remove BE from L2 by following the then part in procedure del-Litemset, since B

(= L2:item1 = L3:item1) and E (= L2:item2 = L3:item3) appear at the �rst and third

positions in L3, where (j � 2 = 1) and j = (i + 1) = 3. Therefore, only the itemset AC

remains in L2. The change of L2 is shown in Figure 19.

9

procedure gen-Litemset(R
0

k; minsup);
begin
insert into Lk
select p.item1; : : : ; p.itemk, COUNT(*)
from R

0

k p

group by p.item1; : : : ; p.itemk

having COUNT(*) � :minsup;
end;

Figure 10: The gen-Litemset procedure

procedure �lter-DB(R
0

k; Lk);
begin
insert into Rk

select p.tid, p.item1, . . . , p.itemk

from R
0

k p; Lk q

where p.item1 = q.item1 AND : : : AND p.itemk = q.itemk;
end;

Figure 11: The �lter-DB procedure

procedure gen-CDB(Rk�1; Rk�1);
begin
insert into R

0

k

select p.tid, p.item1; : : : ; p.itemk�1; q.itemk�1

from Rk�1 p; Rk�1 q

where p.tid=q.tid AND p.item1 = q.item1 AND . . . AND
p.itemk�2 = q.itemk�2 AND p.itemk�1 < q.itemk�1;

end;

Figure 12: The gen-CDB procedure

loop i j i+ j � 1 j � 2 j � 1 i+ 1
1 1 1 1 - - -
2 1 2 2 - - -
3 2 1 2 - - -
4 2 2 3 - - -
5 2 3 - 1 2 3

Table 3: Changes of the values of the variables for MaxK = 3

10

procedure del-Litemset(Li; Li+1; i; j);
begin

if (j > 2) then
begin
delete
from Li p

where exists
(select *
from Li+1 q

where p.item1 = q.item1 AND . . . AND p.itemj�2 = q.itemj�2

AND p.itemj�1 = q.itemj AND . . . AND p.itemi = q.itemi+1)
else
begin
delete
from Li p

where exists
(select *
from Li+1 q

where p.item1 = q.itemj AND . . . AND p.itemi = q.itemi+j�1)
end;

end;

Figure 13: The del-Litemset procedure

(* Step 2: Deleting items backwards *)
for i := (MaxK � 1) downto 2 do
for j := (i+ 1) to MaxK do
begin
(* comb(j; i) is a function to compute Cj

i and generate COMBD *)
loop times := comb(j; i);
for k := 1 to loop times do
begin
delete
from Li p

where exists
(select *
from Lj q

where p.item1 = q.itemCOMBD[k][1] AND . . . AND p.itemi = q.itemCOMBD[k][i];
end;

end;

Figure 14: Step 2 in Agrawal's Algorithm (denoted as BLmax)

11

function comb(j; i):integer;

begin

(* compute Cj
i *)

x:=1;

y:=1;

for k := j downto (i+ 1) do

x := x � k;

for k := (j � i) downto 1 do

y := y � k;

total times := x div y;

(* generate COMBD *)

for k := 1 to i do

COMBD[1][k] := k;

for k := 2 to total times do

begin

for x := 1 to i do

COMBD[k][x] := COMBD[k � 1][x];

p := i;

COMBD[k][p] := COMBD[k][p] + 1;

while (COMBD[k][i] > j) do

begin

p := p� 1;

COMBD[k][p] := COMBD[k][p] + 1;

for x:= (p+ 1) to i do

COMBD[k][x] := COMBD[k][x � 1] + 1;

end;

end;

(* return value *)

comb:=total times;

end;

Figure 15: The comb function

12

k COMBD[k][i]
1 1234
2 1235
3 1236
4 1245
5 1246
6 1256
7 1345
8 1346
9 1356
10 1456
11 2345
12 2346
13 2356
14 2456
15 3456

Figure 16: The contents of COMBD computed from function comb(6,4) (1 � i � 4)

(* Deleting items backwards*)
for i := (k � 1) downto 1 do
Delete all itemsets in Li contained in some subsets of Lj, j > i;

Figure 17: A backward approach

(* Deleting items forwards *)
for i := 1 to (k � 1) do
Delete all itemsets in Li contained in some subsets of Li+1;

Figure 18: A forward approach

i j Deleted Item Resulting Li
2 1 BC AC BE CE
2 2 CE AC BE
2 3 BE AC

Figure 19: Change of L2 (i = 2)

13

loop i j i+ j � 1 j � 2 j � 1 i+ 1
1 1 1 1 - - -
2 1 2 2 - - -
3 2 1 2 - - -
4 2 2 3 - - -
5 2 3 - 1 2 3
6 3 1 3 - - -
7 3 2 4 - - -
8 3 3 - 1 2 4
9 3 4 - 2 3 4
10 4 1 4 - - -
11 4 2 5 - - -
12 4 3 - 1 2 5
13 4 4 - 2 3 5
14 4 5 - 3 4 5

Table 4: Changes of the values of the variables for MaxK = 5

5 Performance

In this Section, we study the performance of the proposed SETM*-Lmax algorithm by

simulation. Our experiments were performed on a PentiumIII Server with one CPU clock

rate of 450 MHz, 128 MB of main memory, running Windows-NT 2000, and coded in

Delphi. The data resided in the Delphi relational database and was stored on a local 8G

IDE 3.5" drive.

5.1 Generation of Synthetic Data

We generated synthetic transactions to evaluate the performance of the algorithms over a

large range of data characteristics. The synthetic data is said to simulate a customer buying

pattern in a retail environment. The parameters used in the generation of the synthetic data

are shown in Table 5. The length of a transaction is determined by a Poisson distribution

with mean � equal to jT j. The size of a transaction is between 1 and jMT j. The transaction

is repeatedly assigned items from a set of potentially maximal large itemsets F , until the

length of the transaction does not exceed the generated length [2, 17, 19, 24].

The length of an itemset in F is determined according to a Poisson distribution with

14

jDj Number of transactions
jT j Average size of transactions
jMT j Maximum size of the transactions
jIj Average size of maximal potentially large itemsets
jMIj Maximum size of the potentially large itemsets
jLj Number of maximal potentially large itemsets
N Number of items

Table 5: Parameters

mean � equal to jIj. The size of each potentially large itemset is between 1 and jMIj. Items

in the �rst itemset are chosen randomly from the set of items. To model the phenomenon

that large itemsets often have common items, some fraction of items in subsequent item-

sets are chosen from the previous itemset generated. We use an exponentially distributed

random variable with mean equal to the correlation level to decide this fraction for each

itemset. The remaining items are picked at random. In the datasets used in the exper-

iments, the correlation level was set to 0.5. Each itemset in F has an associated weight

that determines the probability that this itemset will be picked. The weight is picked from

an exponential distribution with mean equal to 1. The weights are normalized such that

the sum of all weights equals 1. For example, suppose the number of large itemsets is 5.

According to the exponential distribution with mean equal to 1, the probabilities for those

5 itemsets with ID equal to 1, 2, 3, 4 and 5 are 0.43, 0.26, 0.16, 0.1 and 0.05, respectively,

after the normalization process. These probabilities are then accumulated such that each

size falls in a range, which is shown in Table 6. For each transaction, we generate a random

real number which is between 0 and 1 to determine the ID of the potentially large itemset.

To model the phenomenon that all the items in a large itemset are not always bought

together, we assign each itemset in F a corruption level c. When adding an itemset to a

transaction, we keep dropping an item from the itemset as long as a uniformly distributed

random number (between 0 and 1) is less than c. The corruption level for an itemset is

�xed and is obtained from a normal distribution with mean = 0.5 and variance = 0.1. Each

transaction is stored in a �le system with the form of <transaction identi�er, item>.

Some di�erent data sets were used for performance comparison. Table 7 shows the

15

Itemset ID Range
1 0� 0:43
2 0:44� 0:69
3 0:70� 0:85
4 0:86� 0:95
5 0:96� 1

Table 6: The probabilities of itemsets after normalization

Case Name jT j jMT j jIj jMIj jDj Size
1 T5.MT10.I2.MI4.D20K 5 10 2 4 20K 1.5MB
2 T10.MT15.I6.MI10.D5K 10 15 6 10 5K 0.8MB

Table 7: Parameter values for synthetic datasets

names and parameter settings for each data set. For all data sets, N was set to 1,000 and

jLj was set to 2,000.

5.2 Experiments

In this Section, we compare the performance of our SETM*-Lmax algorithm based on a for-

ward approach (denoted as FLmax) with the backward approach described in Agrawal's Al-

gorithm [3] (denoted as BLmax). When we choose the synthetic dataset as T5.MT10.I2.MI4.D20K

(Case 1), Figure 20 shows a comparison of execution time between the forward and the

backward approaches. The detailed information is shown in Table 8. For this result, we

show that our forward approach requires shorter time than the backward approach. Ob-

viously, as the value of the minimum support is decreased, the execution time in both

approaches is decreased. Figure 21 shows another simulation result where we choose the

synthetic dataset as T10.MT15.I6.MI10.D5K (Case 2), which also shows that forward ap-

proach requires shorter time than the backward approach.

16

0.50 0.75 1.00 1.25 1.50 1.75 2.00

Minimum supoort (%)

0

5

10

15

T
im

e
(s

ec
on

ds
)

BLmax
FLmax

Figure 20: A comparison of execution time between BLmax (the backward approach) and
FLmax (the forward approach) (T5.MT10.I2.MI4.D20K: Case 1)

Time Minimum Support
(seconds) 0.5 0.75 1 1.5 2
BLmax 18.3 7.98 4.65 2.3 1.7
FLmax 9.24 3.45 2.11 1.1 0.75

Table 8: A comparison of execution time based on di�erent values of the minimum support
(T5.MT10.I2.MI4.D20K: Case 1)

17

0.50 0.75 1.00 1.25 1.50 1.75 2.00

Minimum support (%)

0

100

200

300

400

500

600

T
im

e
(s

ec
on

ds
)

BLmax
FLmax

Figure 21: A comparison of execution time between BLmax (the backward approach) and
FLmax (the forward approach) (T10.MT15.I6.MI10.D5K: Case 2)

6 Conclusion

Discovery of association rules is an important problem in the area of data mining. Since the

amount of the processed data in mining association rules tends to be huge, it is important

to devise eÆcient algorithms to conduct mining on such data [7]. In order to bene�t from

the experience with relational databases, a set-oriented approach to mining data is needed

[14]. In such an approach, the data mining operations are expressed in terms of relational or

set-oriented operations. In this paper, to �nd a large itemset of a speci�c size in relational

database, we have proposed the SETM*-Lmax algorithm to �nd all maximal large itemsets

from Lk. We have studied the performance of the proposed SETM*-Lmax algorithm. The

simulation results have shown that the proposed forward approach (SETM*-Lmax) to �nd

all maximal large itemsets requires shorter time than the backward approach. In the future,

we plan to extend this work to the related problems of mining multiple-level association

rules, mining sequential patterns, and mining path traversal patterns directions.

18

References

[1] R. Agrawal, T. Imielinski, and A. Swami, \Mining Association Rules Between Sets of Items in
Large Databases," Proc. 1993 ACM SIGMOD Int'l Conf. Management of Data, pp. 207-216,
May 1993.

[2] R. Agrawal and R. Srikant, \Fast Algorithms for Mining Association Rules in Large
Databases," Proc. 20th Int'l Conf. Very Large Data Bases, pp. 490-501, Sept. 1994.

[3] R. Agrawal and R. Srikant, \Mining Sequential Patterns," Proc. 11th IEEE Int'l Conf. Data
Engineering, pp. 3-14, March 1995.

[4] R. Agrawal and K. Shim, \Developing Tightly-Coupled Applications on IBM DB2/CS Re-
lational Database System: Methodology and Experience," IBM Research Report, 1995.

[5] R. Agrawal, C. C. Aggarwal and V. V. V. Prasad, \A Tree Projection Algorithm for Gener-
ation of Frequent Item Sets," Journal of Parallel and Distributed Computing, Vol. 61, No. 3,
pp. 350-371, March 2001.

[6] F. Berzal, J. Cubero, N. Marin, and J Serrano, \TBAR: An EÆcient Method for Association
Rule Mining in Relationall Databases," Data and Knowledge Engineering, Vol. 37, No. 1,
pp. 47-64, April 2001.

[7] M.-S. Chen, J. Han, and P.S. Yu, \Data Mining: An Overview from a Database Perspective,"
IEEE Trans. on Knowledge and Data Engineering, Vol. 8, No. 5, pp. 866-882, Dec. 1996.

[8] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P.Indyk, R. Motwani, J. Ullman, and C. Yang,
\Finding Interesting Associations without Support Pruning," IEEE Tansactions on Knowl-
edge and Data Engineering, Vol. 13, No. 1, pp. 64-78, Jan. 2001.

[9] Y. Fu, \Data Mining," IEEE Potentials, pp. 18-20, 1997.

[10] V. Ganti, J. Gehrke, and R. Ramakrishnan, \Mining Very Large Databases," IEEE Com-
puter, Vol. 32, No. 8, pp. 38-45, 1999.

[11] J. Han and Y. Fu, \Mining of Multiple-level Association Rules from Large Databases," IEEE
Trans. on Knowledge and Data Engineering, Vol. 11, No. 5, pp. 798-805, September/October
1999.

[12] J. Han, J. Pei and Y. Yin, \Mining Frequent Patterns without Candidate Generation," Proc.
2000 ACM SIGMOD Conf. on Management of Data, pp. 1-11, May 2000.

[13] J. Han, and J. Pei , \Mining Frequent Patterns by Pattern-Growth: Methodology and Impli-
cations," ACM SIGKDD Explorations (Special Issue on Scaleble Data Mining Algorithms),
Vol. 2, No. 4, pp. 14-20, December 2000.

[14] M. Houtsma and A. Swami, \Set-oriented Mining for Association Rules in Relational
Databases," Proc. 11th IEEE Int'l Conf. Data Engineering, pp. 25-33, 1995.

[15] Dao-I Lin and Zvi M. Kedem, \Pincer Search: An EÆcient Algorithm for Discovering the
Maximum Frequent Set," IEEE Trans. on Knowledge and Data Engineering, Vol. 14, No. 3,
pp. 553-565, May/June 2002, pp. 105-119, 1998.

19

[16] H. Mannila, H. Toivonen, and A. Inkeri Verkamo, \EÆcient Algorithms for Discovering
Association Rules," Proc. AAAI Workshop Knowledge Discovering in Databases, pp. 181-
192, July 1994.

[17] J.-S. Park, M.-S. Chen, and P.S. Yu, \An E�ective Hash Based Algorithm for Mining As-
sociation Rules," Proc. 1995 ACM SIGMOD Int'l Conf. Management of Data, pp. 175-186,
May 1995.

[18] G. Piatetsky-Shapiro, \Discovery, Analysis, and Presentation of Strong Rules," G. Piatetsky-
Shapiro and W.J. Frawley, eds., Knowledge Discovery in Databases, AAAI/MIT Press.
pp. 229-238. 1991.

[19] A. Savasere, E. Omiecinski, and S. Navathe, \An EÆcient Algorithm for Mining Association
Rules in Large Databases," Proc. 21th Int'l Conf. Very Large Data Bases, pp. 432-444, Sept.
1995.

[20] S. Sarawagi, S. Thomas, and R. Agrawal, \Integrating Association Rule Mining with Rela-
tional Database Systems: Alternatives and Implications," Proc. 1998 ACM SIGMOD Int'l
Conf. Management of Data, pp. 343-354, 1998.

[21] R. Srikant and R. Agrawal, \Mining Generalized Association Rules," Proc. 21th Int'l Conf.
Very Large Data Bases, pp. 407-419, Sept. 1995.

[22] D. Tsur, J. D. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and A. Rosenthal,
\Query Flocks: A Generalization of Association-Rule Mining," Proc. ACM SIGMOD Int'l
Conf. on Management of Data, pp. 1-12, June 2-4, 1998.

[23] S.-Y. Wur and Y. Leu, \An E�ective Boolean Algorithm for Mining Association Rules in
Large Databases," Proc. 6th Int'l Conf. Database Systems for Advanced Applications, pp. 179-
186, April 1999.

[24] S.-J. Yen and A. Chen, \An EÆcient Approach to Discovering Knowledge from Large
Databases," Proc. 4th Int'l Conf. Parallel and Distributed Information Systems, pp. 8-18,
1996.

20

