Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

Rule Set Decomposition for Hardware Network

Intrusion Detection

Timothy Ramirez and Chia-Tien Dan Lo

Department of Computer Science

University of Texas at San Antonio
San Antonio, Texas 78249
{tramirez, danlo}@cs.utsa.edu

November 5, 2004

Abstract

This paper describes the work being done to minimize hardware
requirements for a hardware-assisted Network Intrusion Detection
System (NIDS). This system will use a core Intrusion Detection
System (IDS) in a distributed manner. The distribution is benefi-
cial for two reasons. First, the system will not have a single point
at which an attacker can direct attack traffic for the purpose of
overloading the IDS. Second, due to the number of attacks and
corresponding signatures it is not feasible to design a system using
programmable hardware that recognizes all signatures. The NIDS
Snort will be augmented by passing the packet matching function
to a Field Programmable Gate Array (FPGA). Snort’s rule set
consists of tens of hundreds of “signatures” and is decomposed to
minimize the capacity of FPGAs necessary to implement the entire
rule set. The circuit is based on a Finite Automaton where each
character represents a state. First, the rules are broken down to
common groups that share similar characters. These groups are
then used to decompose the entire rule set into logical sets whose
patterns can be matched with a simple string matching circuit.
After reducing the rule set by taking advantage of character repe-
tition we are left with about 51% of the states necessary to match
all of the patterns. This state reduction translates to a smaller
circuit used to match all of the patterns and the circuit can be
implemented in as few devices as possible. !

1 Introduction

According to reports from the Computer Emergency Re-
sponse Team (CERT) network attacks [6], specifically

1Partial support for this work is provided by the Center for
Infrastructure Assurance and Security at UTSA through grants
CIAS-26- 0200-6275.

1224

Denial-of-Service (DoS) attacks, have increased dramat-
ically over the past few years. In part, the increase is
due to the popularity of the Internet and the wide-spread
vulnerabilities of different systems operating on the In-
ternet. In an attempt to limit these attacks, adminis-
trators employ different security tools that can stop the
attacks, or at the very least notify them that an attack
has occurred or is occurring. Network Intrusion Detec-
tion Systems (NIDSs) are used to detect the existence
of attack traffic by continually monitoring the network’s
traffic. The NIDS looks for specific behaviors, packet
formats or packet contents. When a match, or a devia-
tion from some normal behavior, occurs the system takes
an appropriate action. This action can take the form of
logging the event or, ideally, stopping the malicious traf-
fic.

Signatures for attacks are developed by analyzing the
traffic for a particular attack and selecting packet pa-
rameters that are representative of the traffic, i.e. source
address, packet type, packet contents. When examing a
packet the content of the packet may be of significant
importance in determining its legitamacy. The NIDS
Snort examines a packet’s content based on its headers,
which indicates the packet is suspicious. The algorithms
for pattern searching can be very time consuming and
can take up to 60% of a packet’s processing time [4].
Therefore, more efficient methods must be employed to
search a packet’s payload for a specific pattern. Once a

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

pattern has been found, or not found, the packet can be
classified as malicious or benign.

As network speeds increase, the NIDS must be capa-
ble of examing network traffic at network line speeds.
Snort claims to be capable of operating at a network
speed of 1 Gbps [5] although in practice reliable opera-
tion speeds are normally less than a few hundred Mbps.
Networks operating at 10 Gbps are becoming more com-
mon; hence, NIDSs will need to operate at this speed to
be effective in examing all network traffic. One solution
is to move the computationally intensive task of pattern
matching to hardware that is dedicated to matching the
known patterns. The hardware can then be updated pe-
riodically to include new patterns as new signatures are
learned. This paper focuses on reducing the size of the
pattern matching logic in order to minimize the hard-

ware requirements.

2 Background and Related Work

2.1 Regular Expressions and Finite Au-
tomata

In order to identify a sequence of characters, or a pattern,
the pattern must be described by some method to rep-
resent the sequence of characters. Regular expressions
have been developed to describe character sequences. A
regular expression uses characters and meta-characters
to describe not only character sequences but also pat-
tern behaviors such as repeating characters and alterna-
tion among different characters. Figure 1 is an example
of a regular expression that matches the character se-
quences “this” or “that”. This regular expression can
then be used with a utility like grep to find the sequence
of characters that match the expression within a larger
sequence of characters. This method can be employed
to parse a stream of characters for a chosen pattern.
The grep utility constructs, to some degree, a Finite Au-
tomaton to determine if a match is present in the larger
sequence of characters.

A Finite Automaton (FA) is a collection of states
which are connected by directed edges representing tran-
sitions between two or more states. The edges of an FA
are marked by the character, or characters, that cause a

1225

PATTERN REGULAR EXPRESSION

"this" or "that" th(islat)

Figure 1: Regular expression for “this” or “that”

transition. Figure 2 is the FA that represents the previ-
ous regular expression in Figure 1. There are two types
of FAs; non-deterministic FAs (NFAs) and deterministic
FAs (DFAs). NFAs can be distinguished from DFAs by
the fact that there may be more than a single transition
with the same input or there may be empty transitions.
Because of these differences, NFAs can be inefficient due
to the overhead involved with keeping track of multiple
possible states with a state transition table. A DFA can
be more effiecient than an NFA since only a single tran-
sition is possible given a single input. The drawback to
DFAs is that it can be expensive in terms of space and
construction time. The DFA’s strength lies in the time
required to determine a match, which is linear in terms
of the searched text’s length. The worst case time to de-
termine a match for NFAs, by comparison, is quadratic.

oo
‘*a
-

Finite automaton for matching “this” or

Figure 2:
“that”

2.2 Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are devices
that can be configured to implement task specific logic.
They are a middle ground between software and hard-
ware that allows for the flexibility of software while gain-
ing the speed advantage of hardware. In order to config-
ure an FPGA, the logic must be described using a hard-
ware description language like VHSIC Hardware De-
scription Language (VHDL). Once described, the VHDL

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

is compiled and the resulting configuration bits can be
used to “burn” the configuration onto the device. The
FPGA can be re-configured later if a new logic becomes
necessary.

2.3 Snort

Snortis a popular open source network-based IDS. Func-
tionality is very diverse, especially with the inclusion
of preprocessor modules. According to the documen-
tation, Snort is capable of handling traffic up to around
1 Gbps [5]. Our tests result in a monitored bandwidth
of less than 60Mbps while other tests show Snort’s limi-
tation to be between 100 and 200 Mbps with reasonably
good performance in terms of intrusion detection, i.e. no
dropped packets. The preprocessor perfmonitor is used
to get statistics from Snort’s operation. This includes
the speed at which packets are examined and the amount
of time involved in performing pattern matching. These
two key metrics are of particular interest to this research
since we are attempting to improve the speed of Snort
through improved pattern matching. Due to the amount
of pattern matching performed by Snort, it is clear that
speeding up the pattern matching process will benefit
Snort’s overall speed.

2.4 Related Work

The methods we employ to implement the pattern
matching logic have been researched previously. A paper
by Sidhu and Prasanna explains how to implement regu-
lar expression matching in hardware [7]. They break the
problem down into two components; regular expression
generation and logic configuration. By using well known
definitions of FAs, Sidhu and Prasanna explain the dif-
ferent logic structures and how they can be mapped to-
gether to derive a match for a given pattern. The focus
of their paper is to show the improvement over a soft-
ware approach to pattern matching that hardware can
provide. A paper by Sourdis also uses FPGAs to improve
pattern matching, although their implementation uses a
distinctly different logic with comparators and shift reg-
isters [8]. Sourdis’ work implements the pattern match-
ing for content searching of network packets that is di-
rectly applicable to our work. Sidhu and Prasanna only

1226

apply their techniques to the general problem of pattern
matching. Another paper by Franklin and Hutchings [3]
implements pattern matching for Snort using Sidhu and
Prasanna’s approach. This work is a couple of years old
and Snort’s rule set has grown to a size that may not fit
on a single device. All of the mentioned approaches are
limited by the fact that an FPGA has a fixed number
of logic gates available for configuration. This results in
not being able to fully implement a large rule set. Our
proposal helps address this limitation through rule set
decomposition.

3 Rule Set Decomposition

Our proposal will use Snort as a foundation NIDS. It will
be augmented to increase performance to handle high
speed traffic without dropping packets. We can accom-
plish this by using FPGAs to implement a packet match-
ing module. We attempt to reduce the size of Snort’s
rule set to overcome the problem of device limitations.
Snort uses rule files that describe packet parameters that
represent known attacks. There are numerous rules that
are grouped together by the type of attack. The different
rules can be included in Snort’s rule set by specifying the
relevant rule files during configuration. Previous imple-
mentations of pattern matching for Snort rules is sum-
marized in Table 1 [8]. As can be seen from the table,
the creation of a circuit that implements pattern match-
ing for approximately 210 patterns, or 2500 characters,
uses about 71% of device capacity. There are over two
thousand rules that come with Snort v2.1.1. Due to the
limited space on an FPGA, it will be necessary to use
multiple devices for the entire rule set. Therefore, the
goal is to reduce the rule set and implement them on as
few devices as possible.

This can be accomplished by generating a regular ex-
pression for all of the patterns and constructing an NFA
to determine if there is a match. The naive approach
would be to generate a long regular expression that
would match all patterns and construct the NFA for
that expression. Due to cost considerations, the naive
approach would result in an inefficient implementation
of the entire rule set. To minimize the number of neces-
sary states in the NFA we decompose the rules based on

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

Device | Util. | Num of | Chars
patt. per patt.

Virtex | 7% 10 10
1000 | 33% 47 10.4

Virtez2 | 16% 10 10
1000 | 80% 47 10.4

Virtez2 | 711% 210 11.7
6000

Table 1: Sourdis’ results for FPGA utilization

header information and content. Additionally, by group-
ing rules with similar content together we can reuse the
pattern matching logic, thereby reducing the total num-
ber of states necessary to implement all of the rules. For
example, if two rules look for the content “this” and
“that” then the logic that identifies “th” can be reused.
The naive approach would use eight states for the eight
characters t, h, i, s, t, h, a and t. If we reuse the logic
for ‘4’ and ‘h’ then the total number of states necessary
would be six; t, h, i, s, a, t. Figure 2 shows the FA for
the second approach.

3.1 Pattern Matching Logic

In order to match specified patterns, the hardware must
be configured as an FA for the regular expression ob-
tained by decomposition. We can start with the graph
representations of the FAs as described in [1]. The FAs
for a “or” b and a “and” b are shown in Figure 3.
Transforming the graphs into hardware logic components
can be done using the methods presented by Sidhu and
Prasanna [7]. Their method builds the basic compo-
nents necessary for implementing the four constructs of
a pattern macther; a character matcher, the alternation
operator, the catenation operator and the Kleene star
(*). Our proposal can not use the Kleene star operator
since payload content is of a specific size and character
occurrences in attack signatures are bounded. Figure
4 shows a mid-level schematic for both the ‘and’ and
‘or’ logic. The structures SO and S1 are composed of
a flip-flop and character matcher as illustrated in Fig-
ure 5. The flip-flop holds the value of the state during
a given clock cycle as detertmined by the enable signal.
The character matcher uses two four-bit Look-Up Tables

1227

O

FA fora ‘and’ b

(2
A=)
e
joumod

Figure 3: Finite automaton for ‘or’ and ‘and’ operations

(LUTSs) to match a byte from the bus. The next step

SO S1

schematic for a ‘or’ b

SO S1

schematic for a ‘and’ b

Figure 4: Mid-level schematic for ‘or’ and ‘and’ circuit

is to implement the derived regular expressions on the
device by using combinations of the basic logic struc-
tures. The logic can be combined by connecting the
appropriate outputs to the appropriate inputs to form a
complete circuit. Figure 6 shows the circuit for match-
ing the pattern “abc”. Each of the states are represented
as flip-flops with the signal propagating through the cir-
cuit only when there is a character match and the state
accepting the character is active. The final design will
have a circuit that implements the least number of states
possible for all of the patterns in the rule set. While an

NFA is constructed to match all of the states it is im-

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

enable . match
flip
flop
clk —
char
matcher
bus }

Figure 5: State logic components

portant to notice that the running time to find a match
is not quadratic with the size of the searched text as the
software implementation would be. The running time is
linear with the size of the searched text. This is possible
because of the nature of hardware and the parallelized
matching that occurs with signal propagation.

clk—

o D)

bus

Figure 6: Schematic for ‘abc’ matching circuit

4 Decomposition Results

Using the naive approach and building a regular expres-
sion based on all of the extracted patterns, the FA would
have close to 30,000 states representing the number of
characters in all of the patterns for all of the rules. A
simple reduction can be made by implementing a pattern
only once. There are close to one thousand patterns that
are common with a previous pattern in the rule set. By
reusing the logic for these redundant patterns we get a
21.3% reduction in the number of states simply by re-
quiring the patterns be unique. Further reductions can
be made by examing different patterns but looking for
similarities in those patterns. For example, if we group
the unique patterns by common first character and reuse
that initial state of the group for each of the group mem-
bers we can get a further reduction of 7.8%. Taking the
last approach and maximizing the similarities by looking

1228

for the longest common prefix we can reuse the maximum
number of states in our FA. This achieves a reduction of
close to half, 51.0%, of the original number of states nec-
essary for all of the patterns. Table 2 summarizes our

results.
Method of Original Reduced | Percent
reduction num of states states reduced
Naive 29403 29403 0.0%
(no reduction)
Unique 29403 6270 21.3%
patterns
Common 23133 1813 7.8%
first char
Longest 23133 8148 35.2%
prefix
Total 29403 14418 49.0%
reduction

Table 2: Decomposition results

5 Conclusion and Future Work

Implementing some form of decomposition on a large rule
set is necessary to reduce the size of hardware require-
ments. By grouping rules together into logical subsets
we are able to maximize the use of an FPGA. This is
achieved by reusing the logic for similar characters. We
have presented that we can reduce the number of states
necessary to implement Snort’s rule set to about 51.0%
of the original number of states. While our reduction
is promising we still must implement header matching
logic to correlate the patterns to specific packets in or-
der to reduce the number of false positives that would
result in simply matching patterns. This additional cir-
cuitry will undoubtably increase the capacity beyond a
single device. Our work will continue in this direction
and organize a distributed system to split the workload
among the multiple devices that will be necessary when
all rules have been implemented.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffery D. Ull-
man. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

[2] Brian Caswell, Jay Beale, James C. Foster, and
Jeremy Faircloth. Snort 2.0 Intrusion Detection.
Syngress, 2003.

[3] B.L. Hutchings, R. Franklin, and D. Carver. “As-
sisting Network Intrusion Detection with Reconfig-
urable Hardware”. In IEEE Symposium on Field-
Programmable Custom Computing Machines, 2002.

[4] Chia-Tien Dan Lo. “Hardware-Assisted Network-
Based Intrusion Detection”. In International Con-
ference on Informatics, Cybernetics, and Systems,
Kaohsiung, Taiwan, December 14-16 2003.

[6] Martin Roesch. Snort User Manual, 2.1.1.
http://www.snort.org, February 25 2004.

[6] Stefan Savage, David Wetherall, Anna Karlin, and
Tom Anderson. “Practical Network Support for
IP Traceback”. In ACM Special Interest Group on
Data Communication, SIGCOMM00, pages 295
306, Stockholm, Sweden, 2000.

[7] Reetinder Sidhu and Viktor K. Prasanna. “Fast Reg-
ular Expression Matching Using FPGAs”. In IEEE
Symposium on Field-Programmable Custom Comput-
ing Machines, Rohnert Park, CA, USA, 2001.

[8] Ioannis Sourdis and Dionisios Pnevmatikatos. “Fast,
Large-Scale String Match for a 10Gbps FPGA-based
Network Intrusion Detection System”.

1229

