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Abstract

In this investigation, we present cellular architecture for performing AB? multiplication in a dass field
GF(2™), where the definition by an irreducible polynomid for the fidd is an dl-one polynomia (AOP). This
multiplier is highly regular, modular, and thus suited to VLS implementation. For finite fidd multiplication
and exponentiation, we conclude that our proposed is more efficient as ther basc cels have less
computation time and circuit low-complexity. Furthermore, comparing the reated cdlular architecture
reved tha our congructed multipliers are shorter than the conventiond multipliers for per cell circuit
complexity and computing delay time. In addition, based on pipeline architectures, we adso produced to
compute exponentiation.

Keywords. AOP, cdlular architecture.

1 Introduction

Finite fields have many applications as dgebraic congtructions, such as coding theory [6,11] and
cryptography. In generd, the badic arithmetic operand over finite fields GF(Zm) currently available require
more computationd time and more drcuit complexity for addition, multiplication, and inversgon
implementation. As low-complexity and high-speed architectures have become increasingly atractive, finite
fidd gpplications have increased. Hence, fagt multiplication agorithms must be developed that have low
circuit complexity. In VLS architectures with concurrent, baanced with 1/0, smple and regular designs
have been widdy implemented over finite fidds. Thisinvestigation attempts to congtruct cdlular architecture
for low-complexity multipliersin a class of fidlds GF(2™).

An dl-one polynomid (AOP) is utilized for irreducible polynomids to reduce the complexity of the
fidd multiplication. Many architectures have been efficiently developed under various bases to congtruct
low-complexity bit-pardld multiplication using irreducible AOPs. Itoh and Taujii (1989)[2], in canonicd

basis, have been presented as a structure for a paralld multiplier over GF(2™). In order to improved the



computation time, Koc and Sunor (1998) [4], based on norma bas's, have designed low-complexity bit-
pardld canonicd basis multipliers that require m? AND gates and m?-1 X OR gates. Wu and Hasan (1998)
[5] recently presented low-complexity paralel multipliers usng the weekly dua basis (WDB). However,
the systems designed by previous studies are not suitable for implementing cellular architectures because
they are not congtructed with smple and regular cdll structures.

In VLS architectures, Laws in 1971]7] presented the firs pardld-in-pardld-out multiplier of
cdlular-array architecture. This circuit requires 2m gate delays to compute multiplication. To reduce the
computation time, Wang(1990) [9] modified the multiplier to contain two AND gates, one 3-input XOR
gates, and seven latches to reduce the complexity of the circuit. Wei(1994) [3] aso produced a power-
sum dircuit of systolic multipliers for computing AB?+C, where A, B, and C are any dement in GF(2™). In
generd, the computation time and circuit complexity need to be tradeoff against each other for example, the
cdlular multiplier has less the complexity of circuit and latency than the systolic-array mulltiplier.

Exponentiation can be implemented using read-only-memory (ROM) and consecutive multiplications.
Severd architectures for computing exponentiations over GF(2™) has been developed under the standard
bass and the norma basis [9][10]. Although performing a smple arithmetic operation like addition is
relaively sraightforward, more complex operaions such as multiplication and exponentiation are more
difficult tasks to cary out efficiently. This is paticulaly true large number aithmetic is involved. In
cryptography, many of the private and public-key dgorithms which rely on computationsin GF(2™) require
large field sizes, some as high as GF(2%°%°) [16], to achieve a high level of security. Hence, there is a need
to develop effective dgorithms for doing arithmetic operationsin GF(2™) [9].

In this paper, based on an irreducible AOP, has been developed a novd bit-pardld multiplier of
cdlular architecture using our proposed inner-product multiplication agorithm. This multiplier is congtructed
by (m+1)? identical inner-product cells and 2m identical summation cells. Each inner-product cell consists
of one 2-input AND gate and one 2-input XOR gate. Each of summation cell congst of one 2-input XOR
gate. The time complexity of the presented multiplier only requires m+3 gates delay. Comparing the related
cdlular architectures reveds that our congtructed multipliers are shorter than the conventiona multipliers for
computation time. In addition, we dso produced computing exponentiation by using pipeine architectures
with our proposed multiplier.

The rest of this paper is organized as follows. Section 11 briefly reviews the Itoh-Tsujii multiplier and



definition al-one polynomid. A new bit-pardld multiplication agorithm is congructed in sections I11. A
new cdlular bit-pardld AB? multiplier is presented in the Section IV. Section V proposed pipeline

architectures for computing multiplicative exponentiation.

2 Background
In this Section important propertirs of AOP are outlined, the model used in this paper to describe the

architecture is formulated, and the notations and definitions used are introduced.

Definition 12]: A polynomid p(X)=py+pX +p,X°+...+p,X™ over GF(2), if g=p,=...=p,,=1, then the
polynomid p(x) is cdled dl one polynomid (AOP) of degree m.

Let p(x)= 1+x +C+...+X™ over GF(2) is an irreducible AOP and a is a root of p(x), then any
dement in finite fidd GF(2™) can be represented the binary representation asa= g, + aa + aa’ +..+
a,a™* where{1, a, a?, .., a™'} isacanonica basis of GF(2™). An irreducible AOP with degree m
have been suggested [2] for reducing the field multiplication complexity, where m+1 isaprime, i.e, a™*
=1. Any element in GF(2™) have an extended representation like A = Ay + Aja + Aa’ +.+ Aa™,
where "A" is denoted by the extended dement. Namely, A=A, + Aja+ Aa’+.+ A ,a™ =g+ aa +
aa’+.+a,,a™, where A= g, fori=0, 1, 2, ..., m-1, and A, =0. Assume a™? +1 takes as modulo
polynomids, then the coefficients of extended dement A multiplying by a, we can be obtained by a
periodic shifting one it to the right. For example, Aa (mod a™+1)= A + Aja+ Aja® +..+ A a".
This periodic shifting property is efficiently used to reduce the complexity of the fidd multiplication, and it is
without performing modulo irreducible polynomias.

A common computation in an dement A multiplied by a can be done asfollowsrule:

Let AV=A_ +Aja+Aa+.+A, ,a™

D)

where AY) s cdled a periodic shift-right-by-one-bit, then

Aa=Aga+A, ,a+y+A, am+A a™!

Aa(mod a™!+1)= A +Aja+Aa’+y+A, a™ =AY )

Similarly, the coefficients of element multiply by a' can be derived cydically operating periodic shift-
right-by-i-bit operand, denoted by A" We have the recursive formula

A(I) = lA<-i>+lA<1-i>a +A<2-i>a 2+1/4+A<m-i>a "



=AMDa (moda™!+1) formp i31 ©
Where <x> denotes x modulo m+1. On the other hand, from a™" =1 can be obtained a™ =a ™,
hence, an element multiplied by a™* can be done by the following rule:

Let ATY = A +Aa+Aza*+,+Aa™  (moda™'+1) 4)

be a periodic shifting-left-by-one-bit, then

Aat=Aja A Hy A 2™ A ™!

Aal (moda™+1) = Aj+tAa+Aza+y+A @™ = ACY
(5

Similarly, the coefficients of eement multiplied by a ™ can be derived from cydicaly shift-left-by-i-bit,

denoted by A™). We have the recursive formula

A(-I) = A<i>+A<1+i>a +A<2+i>a 2"'l/‘l""A\<m+i>a- m

= At*a (moda™+1) formp i31
(6)

The power-2 operation of eementsin GF(2™) can be extended representation as C = A*= (A, +A,;
a+Aa%+.+A a™ = A +Aa’ + Aat+.+A a’" = C,+C,a+Ca’ +.+C a™ 7)
Here G = Ay, (if i is even) or Aj .y (if 1 is odd), hence the parallel squaring operation only

needs to permute the coefficients of A, asFig. 1 shows.
Ao AL Ay Ay A
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C, C, C, C, C,
Fig.1: The pardld square unit over GF(2*) based on AOP

A souare dement multiplied by a2 can be done as following the rule:

Let [A%|D= A _+Aja%+Aa%+y,+A, a2, 8
where [AZ]%) is called a period shifting-right-by-one-bit, then

A?a? = Aja?+Aa*+Aa +y+A a?™?

A%a® (mod a®™?+1) = A +Aga’+Aa +y+Aa?m (AW 9)

Similarly, the coefficients of square eement multiplied by a2 can be derived from cydlicdly shift-right-by-i-



bit, denoted by [A?%]". We have the recursive formula
LYREYY (mod m+1) TAL- i (mod m+1) a+A, | (mod m+1) attytAL (mod m+1) a®"
=[A?%"Ya2 (moda?™2+1) formp i31 (10)
From a™! =1 can be obtained a2 =a 2, hence, a square element multiplied by a2 can be done
by the following rule:
Let[AZCD = Aj+Aa %+, +A a2 2+A "™,
(11)
where [A%]? is called a period shifting-left-by-one-hit, then
A?a? = Aja A +Aa 2y +A @ 22
A%a? (mod a®™2+1) = A +Aa %y +A a P 2HAa M = A D
(12)
Similarly, the coefficients of square element mulltiply by a2 can be derived from cydlically shift-left-
by-i-hit, denoted by [A?]™). We have the recursive formula
[AZC) = Aimod me1y AL i(mod me1) @A imod me1) @ AL imodmer) A
=[AZ“*Ya? (moda’®™?+1) formB i3l (13)

Therefore, four results are obtained:

(@ Anextended dement multiplied by a' is equal to a periodic shifting-right-by-i-bit operation.

(b) An extended dement multiplied by a™ is eqguivdent to a periodic shifting-left-by-i-bit
operation.

(©) A square dlement multiplied by a? is equal to a periodic shifting-right-by-i-bit operation.

(d) A square dement multiplied by a ' is equivalent to a periodic shifting-left-by-i-hit operation.

Basad on above cydic shifting operations, we will derive the multiplying AB? computation in next
subsection.

3 New multiplication algorithm for computing AB?
Let any abl GF(2™) be given by
a= ayraga+a,al+y,+g, 2™t

b=by+b,a+b,a*+v,+b,, 2™
Where a, b 1 GF(2), (1, a, av, a™%) is a canonica basis. The product of a and I, in the
canonical basis, is given by c=ab®, where c=c,,¢,a+c,a *+v,+¢,, ;2™ which can be written as follows

c =ab’=(AB? (moda™!+1)) modp(a)
= C (mod p(a)) (14)



and
A= Ag+Aja+Ara+y,+Aa "= aytaa+a,a g, amt (15)
B= By+B,a+B,a’+y,+Bam=b,+b,a+b,a?+y+b ,a™* (16)
C= Cy+C,a+C,a%+y,+C,a™=AB? (mod a ™*+1)
(17)

From (13), each coefficients of the element ¢ can be executed by

¢ =C+C, ,for OEi £ m-1 (18)

From (13), c=ab? is separated into two parts: the first part performs C=AB? modulo a™*+1; and
the second part performs modulo p(a).

Definition 2: Theinner product of two extended eementsin GF(2™) is defined as the sum of product for
each term; thus, the inner product of two eementsis give by
Ax B?= A By+A,B,a%+A,B,a%+y,+A B a®" (19)
Definition 3: Let two extended eements be A" and [B?]", respectively. Then i-th inner product is
defined as AC2)*[B4 ") thus, i-th inner product is depicted by

A(_Zi) * [Bz] 0= ( A<2i>+A<1+2i>a +A<2+2i>a 2+1/4 +A<m+2i>a m) *
( B<-i>+ B<1-i >a 2"'1/4'|'B<m-1- i>a 2m_2'|'B<m-i>a 2m)
= AgisBeistA1gisBay s+ Vet A sBisa ™"
(20)

where A+ [BY]®= A%« B? i =0, 1, 2. m.

Theorem 1: Let SV = A% [B%Y, where i=0, 1, 2v,m. Then, multiplication C=AB? can be
represented as
C=AB?= (S9+SW+1,+5™ )(mod a ™" +1) (21)
Proof: The circular convolution method in discrete sgnd system[14] can efficiently multiply the two
sequences via two N-point sequences that need N inner product operations. A square eement is
decomposad of m+1 recursive eements based on the configuration of circular convolution agorithm.

Therefore, the product of C=AB? can be expressed accordingly:



C =AB?(moda™?!+1)
= (Ag+Aa+Aa%+y,+Aa™)( By+B,a?+B,a*+y,+B,a®™) (mod a ™! +1)
= (Ag+Aja+Aa%+y,+Aa™) * ( By+B,a+Bja*+y,+B,,a®™) (mod a™1+1)
+H AgtAa+Aa’+y+A a™* ( Ba’m+By+Ba’+y+B ,a®™?) (mod a™!+1)
+H AgtAa+Aa’+y+A a™)* (B, ,a?™2+Ba’ ™ +By+y.+B,, ,a®™ %) (mod a ™! +1)
+
+H Ag+Aa+Aa’+y,+A a™)* ( Bja’+B,a*+B,a ®+y,+By) (mod a ™! +1)
= (AgtAa+Aa%+y+A a™* [B2@ (mod a™!+1)
+( AgtAja+Aa’+y,+A a™* [BMa? (mod a™+1)
+( AgtAja+Aa’+y,+A a™* [B@a (mod a™!+1)
+
+( AgtAa+Ara+y,+A a™* [BMa 2"(mod a ™! +1) (22)
From (6), AC?) = a2'A, therefore, C=AB? (mod a™+1) can be rewritten as
C =AB?(moda™?!+1)
= (A« [ B2]O+ACD 5 [BD+ACD « [BY @41, +AC2™ + [ BM) (mod a™+1) 23)
Let SV = AC2)x [B?)® wherei = 0,1,2,v4,m, then the multiplication of C = AB? can be rewritten as
C =AB%*= (S9+8W+1,+8™ )(mod a™!+1)
Q.E.D.
The multiplication of C=AB? is very regular and smple since it multiplies two extended elements by
the inner product and cyclic shifting as mentioned above. Operation (18) proves this multiplication
dgorithm dearly requires a m+1 inner product proceeding for performing C=AB? (mod a™+1). Each
inner product is proceeded by the multiplication of two eements, in which the dement A must be a periodic
shifting-left-by-two-bits and the square dement must be a periodic shifting-right-by-one-bit. The results of
each inner product are arranged as the formula in Equation (18). The ab? in GF(2™) can be multiplied by

Theorem 1 as asimple computing ab? agorithm:

Algorithm 1:
A=aandB=Db
c@=0



S(O) :A(O) * [BZ](O) (mOd a.m+1+1)

Fori=1tom
{
C = (Cl-D+sD ) (mod a™*+1) (24)
s =A(2) & [Bz](i) (mod am+l+1) (25)
}
C = (C™+S™M) mod a ™*+1
(26)
c=Cmodp(a)

The following example illugtrates the bit-pardld multiplication in the case m=4.

Example 1: Here we verify the correctness of Theorem 1. Assume that m=4, p(x)= 1 +x +¢ +x° +x* is
an irreducible AOP over GF(2), and a isaroot of p(x). For " a b1 GF(2%), the product
c=ab?, where
a= a,+a,a+aa’+aa’, al GF(2) fori=0,1,2,3
b = by+b,a+b,a’+bza’, bl GF(2)fori=0,1,2,3
C=cytca+ca’+ca’, ol GF(2) fori=0,1,2,3

Here we define C=AB? (mod a °+1), where

A = Aj+Aja+Aa’+Aa%+Aa” = gytaa+aa’+aga’
B%= B,+B,a?+B,a*+B,a®+B,a® = by+b,a?+b,a*+b,a®
C=Cy+C,a+C,a*+Cza’+C,a’

Then A,=B,=0, A==a, and B, = b for i=0,1,2,3. Hence, product c=ab’ contains two part
proceeding. First, multiplication C=AB?(mod a °+1) is based on Theorem 1, and assume the coefficients of
B2 are cydlic shifting to right for each step operations; the coefficients of A are cydic shifting to left-2-bits
for each step operations. Second, the modulo unit is given by c= C mod p(a), where C is the result of
multiplication C=AB?. Therefore,

Stepl:

c@=0

SO = A% B? (mod a®+1)



= (Ag+Aa+Aa+Asa%+A,a%) * (By+B,a’+B,a*+B,a%+B,a®) (mod a°+1)
= (A Bo+A,B,a*+A,B,a+A;B;a *+A,B,a'?) (mod a°+1)
= A B,+A,B,a%+A,B,a+A,B,a*+A,B,a?

dep 2. firg cydic shifting
c® = cO 4+ O
= A B,+ A;B,a’+ A,B,a+ AB.a*+ A B,a’

S = A2« BID (mod a®+1)
= (A, +Aza+Aa%+A,a%+Aa%) * (B,+B,a’+B,a*+B,a’+B,a®) (mod a°+1)
= (A,B,+A;B,a*+A,B,a’+AB,a *+A;B,a'?) (mod a°+1)
= A,B,+A;B,a%+A,B,a+A,B,a*+A,B,a?

gep 3: 2nd cydlic shifting
Cc®@ =(c® + SY) (mod a°+1)
= (AgBo+A,B,)+(A1B1+AsB)a *+(A,B,+A,B))a +(A3Bs+A(B,)a *+(A B, +A, By)a
S = ALY+ B3P (mod a®+1)
= (A, +Aja+A a%+Aa3+Aa %) * (By+B,a%+Bya *+B,a ®+B,a®) (mod a®+1)
= (A,Bs+A,B,a%+A,Bya®+A,B,a*+A,B,a'?) (mod a®+1)
= A,B;+A,B,a’+A,B,a+A,B,a*+A,B,a?
gep 4: 3rd cydlic shifting
Cc® =(C®@ + $9) (mod a°+1)
= (AoBotA,Bs+A,By)+(A B +A3B +AGB,)a +(A B, +A B +A Bo)a +(A;By+AB,+ A,B))
a*+(A,B,+A B+ A;B,)a?
S® = ALY« B® (mod a®+1)
= (A +Aa+Aa%+Aa3+Aa %) * (B,+B;a *+B,a*+B,a ®+B,a®) (mod a®+1)
= (A,B,+A,B,a%+A,B,a%+A,B,a*+A,B,a'?) (mod a®+1)
= A,B,+A,B,a’+A,B,a+A,B,a*+A,B,a’
gep 5: 4th cydic shifting
Cc = (C® + S?) (mod a®+1)
= (AoBy+AB+ABy+A B )J+(A By +A3By+A B, +ABy)a *+(A B, +A B +A Byt AgB,)a
+HA3By+AB,+ A B+ ABola*+(A,B+A B+ AgB,+ AgBy)a’
S% = A9« B® (mod a®+1)
= (A;+Aa+Aja%+A a3 +Aa %) * (B,+B,a*+B;a*+B,a ®+B,a®) (mod a®+1)

= (A3B;+A,B,a%+A B;a+A B,a%+A,B,a'?) (mod a°+1)



= A;B,+A,B,a%+A B,a+A,B,a*+A,B,a?

step 6: Based on above operations, we can obtain the following coefficients of C:
C=(C¥ + S¥) (mod a°+1)
=(A¢Bo+A,By+A,BytA B, +AB J+(A B +AB+A B, +A,By+A,B))a *+
(A4B1+AB +AB+AgB,+A Bs)a +(A3By+AB,+ AB + ABy+ A Bya’+
(A4B4+A B+ AgB,+ AjB+ ABga’

Co = AoBotAzBs+A,Bs+A By +A3B,

C1= ABy+A,B +A1BytAsB,+AB;

Co= AB+AB3+A3B,+A B +A,B,

Cz = A1B1+A3By+AB,+A;B3+A,B,

C4= A3B3+A By +AB +A,By+A B,

Findly, the dement C modulo p(a) can obtain the coefficients of the eement ¢ using

¢=C+C,, fori=0,1,2,3

From step 1 to 5, the output of each step isfixed location by (a°, a3, a, a*, a?) order arrangement.
Therefore, our idedl proceeding, esch step is very smplify and regular multiplying ab® using the properties
of inner product and bi-directiond cyclic shifting, and suited for implementing bit-pardld multiplication. As

above mentions, in the next section we will present a cellular array for performing AB? computation.

4 Thenovd bit-paralld celular multipliers

This section uses Algorithm 1 to construct cdlular multiplier for performing ab® multiplication, as
shown Fig. 2. This circuit contains two parts: the multiplication and modulo p(a) units The multiplication
unit uses the properties of inner product and cydlic shift to perform C=AB? (mod a™*+1). Modulo p(a)
unit is performs c= C (mod a ™+1), where the element C is the output of the multiplication unit. Our idedl
multiplier has the following fegtures:

(1) Thismultiplier is smple and regular multiplying operaions, which uses the properties of cydic

shifting and inner product.
(2) Thismultiplier has the multiplication and modulo p(a) units.
(3 Thetime complexity of our proposed multiplier only requires m+3 2-input XOR geate delays.
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Fig. 2: The multiplier architecture for GF(2%)

A. The multiplication unit:

Based on Algorithm 1, the multiplication unit is comprised of (m+1)? inner-product cells and m
summation cdls. The basc inner-product cell of the multiplication unit computes C; as indicated in
Equations (24) and (25). The basc summation cdl of the multiplication unit is indicated in Equation (26).
Fig. 3 shows atwo dimenson signd flow graph array of the multiplication unit. Each inner-product cdl is
contained of one 2-input AND gate and one 2-input XOR gate as depicted in Fig. 4. Each summation cell
is composed of one 2-input XOR gate as depicted in Fig. 5. The whole multiplication unit desires (m+1)?
2-input AND gates and (m+1)> + m+1 2-input XOR gates. The overal computation delay of the
multiplication unit demands m+1 2-input XOR gate delays, where let AND gate delay is shorter than XOR
gate dday.
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Fig. 3: The multiplication unit for GF(2%)

Assuming that the inner-product cell illustrated in Fig.4 is located at the i-th low and j-th column of
the multiplication unit, denote by (i,j)-cell, where CEi,jEm. The coefficients of dements A and B enter the
array from the top in paradld form. In the (i j) inner-product cell, the AND gate is used to perform Bi-1Y)
and A"2*Y) computation, and the output is put in the temporary storage §'); the XOR gate is used to
execute the temporary storage §'1) and sum G totd, where B is the output of B in (i-1)cell,
Al-21*D isthe output of A in (i-2,j+1)cdl, and CU1Y isthe output of Cin (i-1,j)cell.
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Fig. 4: Theinner-product cell (i,))

Fg 5: The summeation cdl (i)

B. The modulo p(a ) unit:
Fig. 6 shows a two-dimenson signd flow graph array of the modulo p(a) unit. Each summation cell

includes one 2-input XOR gate, as depicted in Fig. 5. Thisunit is given by c=C (mod p(a)), where p(a) is
an irreducible AOP, then G =C; + C,,,- Therefore, this unit wants m 2-input XOR gates. Based on the

sructures of the multiplication unit, the coefficients of C findly arrange by (Cy+ C,a 34+ C,a 3™ mod a

m+1

+1 forms for example GF(2%). Hence, the output of this multiplier is permuted by (Cy, €,C3,C))

¢, ¢, ¢C,¢c ¢C ¢c ¢ ¢C,
] ] .. ]
v v v v
c c c C,

1

arrangement.

0 3
D : Summetion cdll
Fig. 6: Themod p(a) unit for GF(2")



C. Comparison

For the circuit complexity of the multiplication and mod p(a) units, the circuit complexity requires
(m+1)? 2-input AND gates and (m+1)? + 2m 2-input XOR gates; the computation time requires m+3 2-
input XOR gate delays. The comparisons of circuit complexity and per cell computation time between the
presented cdlular multiplier, Law’ s developed cdlular multiplier [7], is listed in Table 1. The computation
speed of our presented multiplier improved by per cdl computation delay and complexity over the other
multiplier. Our proposed architecture of circuit complexity are less than the other multiplier.

Table 1. Comparison of the rdated cdluar-array multiplier computations

Multiplier Wei [g] Law, etd.[7] New proposed
Item
Number of cells " " Inner-product cell: (m+1)?
summation cel: 2m+1
Circuit complexity | 3 2-input AND | 1 3-input XOR (Inner-product cell:
per cdl 12-input XOR | 2 2-input AND 1 2-input AND
1 3-input XOR 1 2-input XOR
summation cdl:
1 2-input XOR
Computationtime | Tanpt+Taxor TanotTaxor TanotTxor
per cdl
Computetion delay| 2mgatesddlay | 2m gatesdelay m+3 gates delay
Pre-computed yes yes No
polynomia

5 Pipelinearchitecture for exponentiation in GF(2™)
Let b and S be dements of GF(2™), where m+1 is a prime, then the exponentiation of b is defined [8]
S=bN, 0ENf£2™-1 (27)
For any integer NE2™-1, N can be expressed by
N = ng+n 2+n,2%+y,+n, 2™ nT GF(2), =0, 1, 2,4, m-1 (28)
By means of polynomid form of representation, substrate Eq. (28) to Eq. (27) can obtain the
exponentiation of b by means of a polynomid form asfollows
S =b"

2. m-1
— b ngtn 2+n,2%+...+n_2



2m—l

= (b")(b™)*(b™)%...(b"r)
where if n=1,thenb" =b, dseb" =1

(29)

In order to reconstruct computing exponentiation for recursive architectures which is based on our
proposed bit-pardlel multipliers, hence, the exponentiation can be ddlineated powers form as follows:
bN = (b"™)(b™)2(b™)*"..(b™)
= b"o[b"(b™)?...(b" 7" ]2
= b"o[b"[b"...(b"")?" >

2m—l

=y,
= b"[bM[b"...[b"m2(b"m1)?]?.. ]2 (30)
Equation (30) is suitable for our proposed performing multiplier, because its possessed recursive
function of polynomial form operations by the multiplication of AB2. Based on our proposed multiplier, the
exponentiation can be presented as follows dgorithm:
Algorithm 2
ifn,,=1thenF=b dseF=1

fori=m-2to0

{
ifn=1thenE=b dseE=1
F=EF?

}

c=Fmod p(a)

According to agorithm 2, Fig. 7 shows computing exponentiation in GF(2%). In Fig. 7 the MUX of
proceeding is controlled sdlection n, i=0, 1, 2, ..., m-1, respectively. If =1 then the output of the
multiplier of input dement is dement b, ese fixed vaue a®=1. In order to make the signds arrive

concurrently at each input of the multipliers. However, latches are required. In this architecture, the latch
can be congtructed by a combination of m+1 pieces of D-type flip-flopsin pardld. In Fig.7 the D, if the

multiplication unit uses by our proposed multiplier, then D= t(m+3)i, where t is one 2-input XOR gate
dday time. The bags function of our proposed multiplier can be redized m-1 pipeine multipliers for

computing exponentiation. Hence, the latency complexity of our proposed exponentiation requires m-1



clock cycles.

n 1
+4 v Note:
b+ M M &b
U U b 1
1 X X (1 v 4
Y v MUX [N
1 v
v E
MUX D1 n (ifn=1thenE= heseE=1)
v
. ABmultiplication
vV v B A
l MUX ¢ D2 [&1, y v
v
vy
" AB A
bN

Fig. 7: Computing exponentiation for GF(2*)

6 Conclusion
In this paper, we have explored circular convolution algorithms for computing AB? multiplication into
low-complexity systalic architecture in a class fidld GF(2™). These functions have the following properties:
(1) The new proposed structure possesses - both the multiplication and modulo p(a) units, where
p(x) isan irreducible AOP.
(2) The multiplication unit uses the properties of the inner product and cyclic shifting to construct
low-complexity cdlular architecture.
(3  Thecomputation time of the desgned multiplier is less than the conventiond cdlular multipliers.
For finite fidld multiplication, we conclude that our proposed circular convolution dgorithms are more
efficient as thelr basic cells have less computation time. Comparison of the related cdlular architecture
reved that our congtructed cdlular architecture is shorter than the conventiona multipliers for per cdl circuit
complexity and computing time. In addition, comparison of pardld multiplier of GF(2™) defined by an
irreducible AOP of m is liged in Table 2. The complexity of our proposed multiplier is amilar to the
conventiond low-complexity multipliers. Moreover, in complexity resembles presented low-complexity

articles, our proposed multipliers are the only redlity for bit-pardle cdlular architectures ( shown in table 2).



In addition, we aso uses pipeline configuration to perform the exponentiations.
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