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Abstract

In this investigation, we present cellular architecture for performing AB2 multiplication in a class field

GF(2m), where the definition by an irreducible polynomial for the field is an all-one polynomial (AOP). This

multiplier is highly regular, modular, and thus suited to VLSI implementation. For finite field multiplication

and exponentiation, we conclude that our proposed is more efficient as their basic cells have less

computation time and circuit low-complexity. Furthermore, comparing the related cellular architecture

reveal that our constructed multipliers are shorter than the conventional multipliers for per cell circuit

complexity and computing delay time. In addition, based on pipeline architectures, we also produced to

compute exponentiation.
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1 Introduction

Finite fields have many applications as algebraic constructions, such as coding theory [6,11] and

cryptography. In general, the basic arithmetic operand over finite fields GF(2
m

) currently available require

more computational time and more circuit complexity for addition, multiplication, and inversion

implementation. As low-complexity and high-speed architectures have become increasingly attractive, finite

field applications have increased. Hence, fast multiplication algorithms must be developed that have low

circuit complexity. In VLSI architectures with concurrent, balanced with I/0, simple and regular designs

have been widely implemented over finite fields. This investigation attempts to construct cellular architecture

for low-complexity multipliers in a class of fields GF(2m).

 An all-one polynomial (AOP) is utilized for irreducible polynomials to reduce the complexity of the

field multiplication. Many architectures have been efficiently developed under various bases to construct

low-complexity bit-parallel multiplication using irreducible AOPs. Itoh and Tsujii (1989)[2], in canonical

basis, have been presented as a structure for a parallel multiplier over GF(2m). In order to improved the



computation time, Koc and Sunor (1998) [4], based on normal basis, have designed low-complexity bit-

parallel canonical basis multipliers that require m2 AND gates and m2-1 XOR gates. Wu and Hasan (1998)

[5] recently presented low-complexity parallel multipliers using the weekly dual basis (WDB). However,

the systems designed by previous studies are not suitable for implementing cellular architectures because

they are not constructed with simple and regular cell structures.

In VLSI architectures, Laws in 1971[7] presented the first parallel-in-parallel-out multiplier of

cellular-array architecture. This circuit requires 2m gate delays to compute multiplication. To reduce the

computation time, Wang(1990) [9] modified the multiplier to contain two AND gates, one 3-input XOR

gates, and seven latches to reduce the complexity of the circuit. Wei(1994) [3] also produced a power-

sum circuit of systolic multipliers for computing AB2+C, where A, B, and C are any element in GF(2m). In

general, the computation time and circuit complexity need to be tradeoff against each other for example, the

cellular multiplier has less the complexity of circuit and latency than the systolic-array multiplier.

Exponentiation can be implemented using read-only-memory (ROM) and consecutive multiplications.

Several architectures for computing exponentiations over GF(2m) has been developed under the standard

basis and the normal basis [9][10]. Although performing a simple arithmetic operation like addition is

relatively straightforward, more complex operations such as multiplication and exponentiation are more

difficult tasks to carry out efficiently. This is particularly true large number arithmetic is involved. In

cryptography, many of the private and public-key algorithms which rely on computations in GF(2m) require

large field sizes, some as high as GF(22000) [16], to achieve a high level of security. Hence, there is a need

to develop effective algorithms for doing arithmetic operations in GF(2m) [9].

In this paper, based on an irreducible AOP, has been developed a novel bit-parallel multiplier of

cellular architecture using our proposed inner-product multiplication algorithm. This multiplier is constructed

by (m+1)2 identical inner-product cells and 2m identical summation cells. Each inner-product cell consists

of one 2-input AND gate and one 2-input XOR gate. Each of summation cell consist of one 2-input XOR

gate. The time complexity of the presented multiplier only requires m+3 gates delay. Comparing the related

cellular architectures reveals that our constructed multipliers are shorter than the conventional multipliers for

computation time. In addition, we also produced computing exponentiation by using pipeline architectures

with our proposed multiplier.

The rest of this paper is organized as follows. Section II briefly reviews the Itoh-Tsujii multiplier and



definition all-one polynomial. A new bit-parallel multiplication algorithm is constructed in sections III. A

new cellular bit-parallel AB2 multiplier is presented in the Section IV. Section V proposed pipeline

architectures for computing multiplicative exponentiation.

2 Background

In this Section important propertirs of AOP are outlined, the model used in this paper to describe the

architecture is formulated, and the notations and definitions used are introduced.

Definition 1[2]: A polynomial p(x)=p0+p1x +p2x2+...+pmxm over GF(2), if p0=p1=...=pm=1, then the

polynomial p(x) is called all one polynomial (AOP) of degree m.

Let p(x)= 1+x +x2+...+xm over GF(2) is an irreducible AOP and α is a root of p(x), then any

element in finite field GF(2m) can be represented the binary representation as a = a0 + a1α + a2α2 +...+

am-1αm-1, where {1, α, α2, ..., αm-1} is a canonical basis of GF(2m). An irreducible AOP with degree m

have been suggested [2] for reducing the field multiplication complexity, where m+1 is a prime, i.e., αm+1

=1. Any element in GF(2m) have an extended representation like A = A0 + A1α + A2α2 +...+ Amαm,

where "A" is denoted by the extended element. Namely, A=A0 + A1α+ A2α2 +...+ Amαm = a0 + a1α +

a2α2 +...+ am-1αm-1, where Ai= ai, for i=0, 1, 2, ..., m-1, and Am =0. Assume αm+1 +1 takes as modulo

polynomials, then the coefficients of extended element A multiplying by α, we can be obtained by a

periodic shifting one bit to the right. For example, Aα (mod αm+1+1)= Am + A0α+ A1α2 +...+ Am-1αm.

This periodic shifting property is efficiently used to reduce the complexity of the field multiplication, and it is

without performing modulo irreducible polynomials.

A common computation in an element A multiplied by α can be done as follows rule:

Let A(1)=Am + A0α+ A1α2+...+ Am-1αm,

(1)

where A(1) is called a periodic shift-right-by-one-bit, then

Aα= A0α+Am-2α2+…+Am-1αm+Amαm+1

Aα(mod αm+1+1)= Am+A0α+A1α2+…+Am-1αm =A(1) (2)

Similarly, the coefficients of element multiply by αi can be derived cyclically operating periodic shift-

right-by-i-bit operand, denoted by A(i). We have the recursive formula

A(i) = A<-i>+A<1-i>α+A<2-i>α2+…+A<m-i>αm



= A(i-1)α (mod αm+1+1 ) for m≥ i ≥1 (3)

Where <x> denotes x modulo m+1. On the other hand, from αm+1 =1 can be obtained αm =α-1,

hence, an element multiplied by α-1 can be done by the following rule:

Let A(-1) = A1+A2α+A3α2+…+A0αm (mod αm+1+1 ) (4)

be a periodic shifting-left-by-one-bit, then

Aα-1 = A0α-1+A1+…+Am-1αm-2+Amαm-1

Aα-1 (mod αm+1+1) = A1+A2α+A3α2+…+A0αm = A(-1)

(5)

Similarly, the coefficients of element multiplied by α-i can be derived from cyclically shift-left-by-i-bit,

denoted by A(-i). We have the recursive formula

A(-i) = A<i>+A<1+i>α+A<2+i>α2+…+A<m+i>αm

= A(-i+1)α  (mod αm+1+1 ) for m≥ i ≥1

(6)

The power-2 operation of elements in GF(2m) can be extended representation as C = A2= (A0 +A1

α + A2α2 +...+Amαm) = A0 +A1α2 + A2α4 +...+Amα2m = C0+C1α+C2α2 +...+Cmαm (7)

Here  Ci = Ai/2 (if i is even) or A(i+m+1)/2 (if i is odd), hence the parallel squaring operation only

needs to permute the coefficients of A, as Fig. 1 shows.
A0 A2 A4A1 A3

C0 1 2 3 4CC CC

Fig.1: The parallel square unit over GF(24) based on AOP

A square element multiplied by α2 can be done as following the rule:

Let [A2](1)= Am+A0α2+A1α4+…+Am-1α2m, (8)

where [A2](1) is called a period shifting-right-by-one-bit, then

A2α2 = A0α2+A1α4+A2α6+…+Amα2m+2

A2α2 (mod α2m+2+1) = Am+A0α2+A1α4+…+Am-1α2m =[A2](1) (9)

Similarly, the coefficients of square element multiplied by α2i can be derived from cyclically shift-right-by-i-



bit, denoted by [A2](i). We have the recursive formula

[A2](i) = A-i (mod m+1)+A1- i (mod m+1) α
2+A2- i (mod m+1) α

4+…+Am- i (mod m+1) α
2m

= [A2](i-1)α2 (mod α2m+2+1 ) for m≥ i ≥1 (10)

From αm+1 =1 can be obtained α2m =α-2, hence, a square element multiplied by α-2 can be done

by the following rule:

Let [A2](-1) = A1+A2α2+…+Amα  2m-2+A0α2m,

(11)

where [A2](-1) is called a period shifting-left-by-one-bit, then

A2α-2 = A0α-2+A1+A2α2+…+Amα  2m-2

A2α-2 (mod α2m+2+1) = A1+A2α2+…+Amα  2m-2+A0α2m = [A2](-1)

(12)

Similarly, the coefficients of square element multiply by α-2i can be derived from cyclically shift-left-

by-i-bit, denoted by [A2](-i). We have the recursive formula

[A2](-i) = A-i(mod m+1)+A1- i(mod m+1) α
2+A2- i(mod m+1) α

4+…+Am- i(mod m+1) α
2m

= [A2](-i+1)α-2  (mod α2m+2+1) for m≥ i ≥1 (13)

Therefore, four results are obtained:
(a) An extended element multiplied by αi is equal to a periodic shifting-right-by-i-bit operation.
(b) An extended element multiplied by α-i is equivalent to a periodic shifting-left-by-i-bit

operation.
(c) A square element multiplied by α2i is equal to a periodic shifting-right-by-i-bit operation.
(d) A square element multiplied by α-2i is equivalent to a periodic shifting-left-by-i-bit operation.

Based on above cyclic shifting operations, we will derive the multiplying AB2 computation in next

subsection.

3 New multiplication algorithm for computing AB2

Let any a,b∈ GF(2m) be given by

a= a0+a1α+a2α2+…+am-1αm-1

b=b0+b1α+b2α2+…+bm-1αm-1

Where ai, bi ∈GF(2), (1, α, α2,…, αm-1) is a canonical basis. The product of a and b2, in the

canonical basis, is given by c=ab2, where c=c0+c1α+c2α2+…+cm-1αm-1 which can be written as follows:

c = ab2 = (AB2 (mod αm+1+1) ) mod p(α)

= C (mod p(α)) (14)



and

A= A0+A1α+A2α2+…+Amαm= a0+a1α+a2α2+…+am-1αm-1 (15)

B= B0+B1α+B2α2+…+Bmαm=b0+b1α+b2α2+…+bm-1αm-1 (16)

C= C0+C1α+C2α2+…+Cmαm=AB2 (mod αm+1+1)

(17)

From (13), each coefficients of the element c can be executed by

ci = Ci+Cm , for 0≤ i ≤ m-1 (18)

From (13), c=ab2 is separated into two parts: the first part performs C=AB2 modulo αm+1+1; and

the second part performs modulo p(α).

Definition 2: The inner product of two extended elements in GF(2m) is defined as the sum of product for

each term; thus, the inner product of two elements is give by

A∗B2= A0B0+A1B1α3+A2B2α6+…+AmBmα3m. (19)

Definition 3: Let two extended elements be A(-2i) and [B2](i), respectively. Then i-th inner product is

defined as A(-2i)*[B2](i), thus, i-th inner product is depicted by

A(-2i) ∗ [B2](i)= ( A<2i>+A<1+2i>α+A<2+2i>α2+…+A<m+2i>αm)∗

        ( B<-i>+B<1-i>α2+…+B<m-1- i>α2m-2+B<m-i>α2m)

= A<2i>B<-i>+A<1+2i>B<1-i>α3+ …+A<m+2i>B<m-i>α3m

(20)

where A(0) ∗ [B2](0)= A∗B2, i = 0, 1, 2,…,m.

Theorem 1: Let S(i) = A(-2i) ∗ [B2](i), where i=0, 1, 2,…,m. Then, multiplication C=AB2 can be

represented as

C=AB2= (S(0)+S(1)+…+S(m) )(mod αm+1+1) (21)

Proof: The circular convolution method in discrete signal system[14] can efficiently multiply the two

sequences via two N-point sequences that need N inner product operations. A square element is

decomposed of m+1 recursive elements based on the configuration of circular convolution algorithm.

Therefore, the product of C=AB2 can be expressed accordingly:



C = AB2(mod αm+1+1)

      = ( A0+A1α+A2α2+…+Amαm)( B0+B1α2+B2α4+…+Bmα2m) (mod αm+1+1)

= ( A0+A1α+A2α2+…+Amαm)∗ ( B0+B1α2+B2α4+…+Bmα2m) (mod αm+1+1)

+( A0+A1α+A2α2+…+Amαm)∗ ( Bmα2m+B0+B1α2+…+Bm-1α2m-2) (mod αm+1+1)

+( A0+A1α+A2α2+…+Amαm)∗ ( Bm-1α2m-2+Bmα2m+B0+…+Bm-2α2m-4) (mod αm+1+1)

+…

+( A0+A1α+A2α2+…+Amαm)∗ ( B1α2+B2α4+B3α6+…+B0) (mod αm+1+1)

= ( A0+A1α+A2α2+…+Amαm)∗ [B2](0) (mod αm+1+1)

+( A0+A1α+A2α2+…+Amαm)∗ [B2](1)α-2 (mod αm+1+1)

+( A0+A1α+A2α2+…+Amαm)∗ [B2](2)α-4 (mod αm+1+1)

+…

+( A0+A1α+A2α2+…+Amαm)∗ [B2](m)α-2m(mod αm+1+1) (22)

From (6), A(-2i) = α-2iA, therefore, C=AB2 (mod αm+1+1) can be rewritten as

C = AB2 (mod αm+1+1)

= (A(0) ∗ [ B2
 ]

(0)+A(-2) ∗ [B2](1)+A(-4) ∗ [B2](2)+…+A(-2m) ∗ [ B2](m)) (mod αm+1+1) (23)

Let S(i) = A(-2i) ∗ [B2](i), where i = 0,1,2,…,m, then the multiplication of C = AB2 can be rewritten as

C = AB2= (S(0)+S(1)+…+S(m) )(mod αm+1+1)

Q.E.D.

The multiplication of C=AB2 is very regular and simple since it multiplies two extended elements by

the inner product and cyclic shifting as mentioned above. Operation (18) proves this multiplication

algorithm clearly requires a m+1 inner product proceeding for performing C=AB2 (mod αm+1+1). Each

inner product is proceeded by the multiplication of two elements, in which the element A must be a periodic

shifting-left-by-two-bits and the square element must be a periodic shifting-right-by-one-bit. The results of

each inner product are arranged as the formula in Equation (18). The ab2 in GF(2m) can be multiplied by

Theorem 1 as a simple computing ab2 algorithm:

Algorithm 1:

A=a and B= b

C(0)= 0



S(0) =A(0) ∗ [B2](0) (mod αm+1+1)

For i=1 to m

{

C(i) = (C(i-1)+S(i-1) ) (mod αm+1+1) (24)

     S(i) =A(-2i) ∗ [B2](i) (mod αm+1+1) (25)

}

C = (C(m)+S(m)) mod αm+1+1

(26)

c = C mod p(α)

The following example illustrates the bit-parallel multiplication in the case m=4.

Example 1: Here we verify the correctness of Theorem 1. Assume that m=4, p(x)= 1 +x +x2 +x3 +x4 is

an irreducible AOP over GF(2), and α is a root of p(x). For ∀ a, b ∈ GF(24), the product

c=ab2, where

a = a0+a1α+a2α2+a3α3,  ai∈ GF(2) for i=0,1,2,3

b = b0+b1α+b2α2+b3α3,  bi∈ GF(2) for i=0,1,2,3

c = c0+c1α+c2α2+c3α3,  ci∈ GF(2) for i=0,1,2,3

Here we define C=AB2 (mod α5+1), where

A = A0+A1α+A2α2+A3α3+A4α4 = a0+a1α+a2α2+a3α3

B2= B0+B1α2+B2α4+B3α6+B4α8 = b0+b1α2+b2α4+b3α6

C = C0+C1α+C2α2+C3α3+C4α4

Then A4=B4=0, Ai=ai, and Bi = bi for i=0,1,2,3. Hence, product c=ab2 contains two part

proceeding. First, multiplication C=AB2(mod α5+1) is based on Theorem 1, and assume the coefficients of

B2 are cyclic shifting to right for each step operations; the coefficients of A are cyclic shifting to left-2-bits

for each step operations. Second, the modulo unit is given by c= C mod p(α), where C is the result of

multiplication C=AB2. Therefore,

Step1:

C(0) = 0

S(0) = A∗B2 (mod α5+1)



= (A0+A1α+A2α2+A3α3+A4α4)∗ (B0+B1α2+B2α4+B3α6+B4α8) (mod α5+1)

= (A0B0+A1B1α3+A2B2α6+A3B3α9+A4B4α12) (mod α5+1)

= A0B0+A1B1α3+A2B2α+A3B3α4+A4B4α2

step 2: first cyclic shifting
C(1) = C(0) + S(0)

= A0B0+ A1B1α3+ A2B2α+ A3B3α4+ A4B4α2

S(1) = A(-2) ∗ [B2](1) (mod α5+1)

= (A2+A3α+A4α2+A0α3+A1α4)∗ (B4+B0α2+B1α4+B2α6+B3α8) (mod α5+1)

= (A2B4+A3B0α3+A4B1α6+A0B2α9+A1B3α12) (mod α5+1)

= A2B4+A3B0α3+A4B1α+A0B2α4+A1B3α2

step 3: 2nd cyclic shifting
C(2) = (C(1) + S(1)) (mod α5+1)

= (A0B0+A2B4)+(A1B1+A3B0)α3+(A2B2+A4B1)α+(A3B3+A0B2)α4+(A4B4+A1B3)α2

S(2) = A(-4) ∗ [B2](2) (mod α5+1)

= (A4+A0α+A1α2+A2α3+A3α4)∗ (B3+B4α2+B0α4+B1α6+B2α8) (mod α5+1)

= (A4B3+A0B4α3+A1B0α6+A2B1α9+A3B2α12) (mod α5+1)

= A4B3+A0B4α3+A1B0α+A2B1α4+A3B2α2

step 4: 3rd cyclic shifting
C(3) = (C(2) + S(2)) (mod α5+1)

= (A0B0+A2B4+A4B3)+(A1B1+A3B0+A0B4)α3+(A4B1+A4B1+A1B0)α+(A3B3+A0B2+ A2B1)

α4+(A4B4+A1B3+ A3B2)α2

S(3) = A(-6) ∗ [B2](3) (mod α5+1)

= (A1+A2α+A3α2+A4α3+A0α4)∗ (B2+B3α2+B4α4+B0α6+B1α8) (mod α5+1)

= (A1B2+A2B3α3+A3B4α6+A4B0α9+A0B1α12) (mod α5+1)

= A1B2+A2B3α3+A3B4α+A4B0α4+A0B1α2

step 5: 4th cyclic shifting
C(4) = (C(3) + S(3)) (mod α5+1)

= (A0B0+A2B4+A4B3+A1B2)+(A1B1+A3B0+A0B4+A2B3)α3+(A4B1+A4B1+A1B0+ A3B4)α
+(A3B3+A0B2+ A2B1+ A4B0)α4+(A4B4+A1B3+ A3B2+ A0B1)α2

S(4) = A(-8) ∗ [B2](4) (mod α5+1)

= (A3+A4α+A0α2+A1α3+A2α4)∗ (B1+B2α2+B3α4+B4α6+B0α8) (mod α5+1)

= (A3B1+A4B2α3+A0B3α6+A1B4α9+A2B0α12)  (mod α5+1)



= A3B1+A4B2α3+A0B3α+A1B4α4+A2B0α2

step 6: Based on above operations, we can obtain the following coefficients of C:
C = (C(4) + S(4)) (mod α5+1)

=(A0B0+A2B4+A4B3+A1B2+A3B1)+(A1B1+A3B0+A0B4+A2B3+A4B2)α3+

(A4B1+A4B1+A1B0+A3B4+A0B3)α+(A3B3+A0B2+ A2B1+ A4B0+ A1B4)α4+

(A4B4+A1B3+ A3B2+ A0B1+ A2B0)α2

C0 = A0B0+A2B4+A4B3+A1B2+A3B1

C1= A2B2+A4B1+A1B0+A3B4+A0B3

C2= A4B4+A1B3+A3B2+A0B1+A2B0

C3 = A1B1+A3B0+A0B4+A2B3+A4B2

C4= A3B3+A0B2+A2B1+A4B0+A1B4

Finally, the element C modulo p(α) can obtain the coefficients of the element c using

ci = Ci+C4,    for i=0, 1, 2, 3

From step 1 to 5, the output of each step is fixed location by (α0, α3, α, α4, α2) order arrangement.

Therefore, our ideal proceeding, each step is very simplify and regular multiplying ab2 using the properties

of inner product and bi-directional cyclic shifting, and suited for implementing bit-parallel multiplication. As

above mentions, in the next section we will present a cellular array for performing AB2 computation.

4 The novel bit-parallel cellular multipliers

This section uses Algorithm 1 to construct cellular multiplier for performing ab2 multiplication, as

shown Fig. 2. This circuit contains two parts: the multiplication and modulo p(α) units. The multiplication

unit uses the properties of inner product and cyclic shift to perform C=AB2 (mod αm+1+1). Modulo p(α)

unit is performs c= C (mod αm+1+1), where the element C is the output of the multiplication unit. Our ideal

multiplier has the following features:

(1) This multiplier is simple and regular multiplying operations, which uses the properties of cyclic

shifting and inner product.

(2) This multiplier has the multiplication and modulo p(α) units.

(3) The time complexity of our proposed multiplier only requires m+3 2-input XOR gate delays.
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Fig. 2: The multiplier architecture for GF(24)

A. The multiplication unit:

Based on Algorithm 1, the multiplication unit is comprised of (m+1)2 inner-product cells and m

summation cells. The basic inner-product cell of the multiplication unit computes Ci as indicated in

Equations (24) and (25). The basic summation cell of the multiplication unit is indicated in Equation (26).

Fig. 3 shows a two dimension signal flow graph array of the multiplication unit. Each inner-product cell is

contained of one 2-input AND gate and one 2-input XOR gate as depicted in Fig. 4. Each summation cell

is composed of one 2-input XOR gate as depicted in Fig. 5. The whole multiplication unit desires (m+1)2

2-input AND gates and (m+1)2 + m+1 2-input XOR gates. The overall computation delay of the

multiplication unit demands m+1 2-input XOR gate delays, where let AND gate delay is shorter than XOR

gate delay.
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Fig. 3: The multiplication unit for GF(24)

Assuming that the inner-product cell illustrated in Fig.4 is located at the i-th low and j-th column of

the multiplication unit, denote by (i,j)-cell, where 0≤i,j≤m. The coefficients of elements A and B enter the

array from the top in parallel form. In the (i,j) inner-product cell, the AND gate is used to perform B(i-1,j)

and A(i-2,j+1) computation, and the output is put in the temporary storage S(i,j); the XOR gate is used to

execute the temporary storage S(i-1,j) and sum C(i-1,j) total, where B(i-1,j) is the output of B in (i-1,j)cell,

A(i-2,j+1) is the output of A in (i-2,j+1)cell, and C(i-1,j) is the output of C in (i-1,j)cell.



A(i-1,j+2)C(i-1,j) S(i-1,j)B(i-1,j-1)

A(i+1,j-2) C(i+1,j) S(i+1,j) B(i+1,j+1)

Fig. 4: The inner-product cell (i,j)

Fig 5: The summation cell (i)

B. The modulo p(α ) unit:

Fig. 6 shows a two-dimension signal flow graph array of the modulo p(α) unit. Each summation cell

includes one 2-input XOR gate, as depicted in Fig. 5. This unit is given by c=C (mod p(α)), where p(α) is

an irreducible AOP, then ci = mi CC + . Therefore, this unit wants m 2-input XOR gates. Based on the

structures of the multiplication unit, the coefficients of C finally arrange by (C0+ C1α3+...+ Cmα3m) mod α
m+1+1 forms for example GF(24). Hence, the output of this multiplier is permuted by (c0,  c1,c3,c2)

arrangement.

c0 c3 c1 c2

C0 C4

(1)

C4

(2)

C1 C4

(3)

C2 C4

(4)

C3

: Summation cell

Fig. 6: The mod p(α) unit for GF(24)



C. Comparison

 For the circuit complexity of the multiplication and mod p(α) units, the circuit complexity requires

(m+1)2 2-input AND gates and (m+1)2 + 2m 2-input XOR gates; the computation time requires m+3 2-

input XOR gate delays. The comparisons of circuit complexity and per cell computation time between the

presented cellular multiplier, Law’s developed cellular multiplier [7], is listed in Table 1. The computation

speed of our presented multiplier improved by per cell computation delay and complexity over the other

multiplier. Our proposed architecture of circuit complexity are less than the other multiplier.

Table 1: Comparison of the related celluar-array  multiplier computations
Multiplier

Item
Wei [8] Law, et al.[7] New proposed

Number of cells m2 m2 Inner-product cell: (m+1)2

summation cell: 2m+1

Circuit complexity
per cell

3 2-input AND
1 2-input XOR
1 3-input XOR

1 3-input XOR
2 2-input AND

Inner-product cell:
1 2-input AND
1 2-input XOR

summation cell:
1 2-input XOR

Computation time
per cell

TAND+T3XOR TAND+T3XOR TAND+TXOR

Computation delay 2m gates delay 2m gates delay m+3 gates delay

Pre-computed
polynomial

yes yes No

5 Pipeline architecture for exponentiation in GF(2m)

Let β  and S be elements of GF(2m), where m+1 is a prime, then the exponentiation of β  is defined [8]

         S=βN,      0≤N≤2m-1 (27)

For any integer N≤2m-1, N can be expressed by

N = n0+n12+n222+…+nm-12m-1, ni∈GF(2), i=0, 1, 2,…, m-1 (28)

By means of polynomial form of representation, substrate Eq. (28) to Eq. (27) can obtain the

exponentiation of β  by means of a polynomial form as follows:

S = βN

= βn0+n12+n222+...+nm2m-1



= (βn0)(βn1)2(βn2)22
...(βnm)2m-1

(29)

where  if ni = 1, then βni = β , else βni = 1

In order to reconstruct computing exponentiation for recursive architectures which is based on our

proposed bit-parallel multipliers, hence, the exponentiation can be delineated powers form as follows:

βN = (βn0)(βn1)2(βn2)22
...(βnm)2m-1

= βn0[βn1(βn2)2...(βnm)2m-2
]2

= βn0[βn1[βn2...(βnm)2m-4
]2]2

= …

= βn0[βn1[βn2...[βnm-2(βnm-1)2]2...]2 (30)

Equation (30) is suitable for our proposed performing multiplier, because its possessed recursive

function of polynomial form operations by the multiplication of AB2. Based on our proposed multiplier, the

exponentiation can be presented as follows algorithm:

Algorithm 2:

if nm-1 = 1 then F = β  else F = 1

for i = m-2 to 0

{

if ni = 1 then E = β  else E = 1

F = EF2

}

c= F mod p(α)

According to algorithm 2, Fig. 7 shows computing exponentiation in GF(24). In Fig. 7 the MUX of

proceeding is controlled selection ni , i=0, 1, 2, ..., m-1, respectively. If ni=1 then the output of the

multiplier of input element is element β , else fixed value α0=1. In order to make the signals arrive

concurrently at each input of the multipliers. However, latches are required. In this architecture, the latch

can be constructed by a combination of m+1 pieces of D-type flip-flops in parallel. In Fig.7 the Di, if the

multiplication unit uses by our proposed multiplier, then Di= τ(m+3)i, where τ is one 2-input XOR gate

delay time. The basis function of our proposed multiplier can be realized m-1 pipeline multipliers for

computing exponentiation. Hence, the latency complexity of our proposed exponentiation requires m-1



clock cycles.
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A
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1 1

MUX

1β
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i

(if n =1, then E =   , else E = 1)
E

i β

Fig. 7: Computing exponentiation for GF(24)

6 Conclusion

In this paper, we have explored circular convolution algorithms for computing AB2 multiplication into

low-complexity systolic architecture in a class field GF(2m). These functions have the following properties:

(1) The new proposed structure possesses - both the multiplication and modulo p(α) units, where

p(x) is an irreducible AOP.

(2) The multiplication unit uses the properties of the inner product and cyclic shifting to construct

low-complexity cellular architecture.

(3)  The computation time of the designed multiplier is less than the conventional cellular multipliers.

For finite field multiplication, we conclude that our proposed circular convolution algorithms are more

efficient as their basic cells have less computation time. Comparison of the related cellular architecture

reveal that our constructed cellular architecture is shorter than the conventional multipliers for per cell circuit

complexity and computing time. In addition, comparison of parallel multiplier of GF(2m) defined by an

irreducible AOP of m is listed in Table 2. The complexity of our proposed multiplier is similar to the

conventional low-complexity multipliers. Moreover, in complexity resembles presented low-complexity

articles, our proposed multipliers are the only reality for bit-parallel cellular architectures ( shown in table 2).



In addition, we also uses pipeline configuration to perform the exponentiations.

Table 2: Comparison of parallel multipliers of GF(2m) defined an irreducible AOP of degree m
Multiplier Structure Based used
ITM[3] Modular Polynomial

HWBM[10] Modular Polynomial
M_MOM[11] Modular Normal

WDBM[5] Modular Weakly dual
New Proposed Cellular Polynomial
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