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Abstract
In this paper we construct a graph that consists of the maximum number of directed
edge-digoint spanning trees on the alternating group graph. The paths that route from the
common root node to any given node through different spanning trees are node-digoint. This
graph can be used to derive fault tolerant algorithms for the broadcasting and scattering
problems under the all port communication mode!.
Keywords: Interconnection networks, alternating group graphs, node-digoint paths,
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1. Introduction

Jwo, Lakshmivarahan and Dhall [18] proposed Cayley graphs based on the alternating
groups as a topology for interconnecting processors in parallel computers. With respect to
contention problem for genera routing, it has been shown that alternating group graphs
perform better than the star graphs and are close to the hypercube.

The alternating group graphs are defined as follows. Let g denote the permutation (1 2

N, g denote (17 2). Lee W={g'|3£ /£ ME{g |3£i£ n}.Itiswel known that Wis a
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generator set for the set of al even permutations of nsymbols, denoted by A,.

Definition 1. An aternating group graph on n symbols, denoted by AG, = (V,, Ep), is an
undirected graph with /2 nodes, in which V;, is the set of /2 even permutations. E, = {(p,
Qlo. g As g= pxh, for A W

Fig. 1 shows the AG, graph. It can be verified that g>g"'=g , ¢ g =g/, (g7) *= ¢gi and
(12091 2) = g7, for 3£ i £ n. The diameter of AG, is &(r+ 2)/20 and the connectivity is
optimal, i.e., equal to the degree 2(n+ 2).

Alternating group graphs have received considerable attention. In [19], Lai and Tsay
presented algorithm for all-port al-to-all broadcasting and single-node scattering whose time
performances are one step more than the lower bounds. Hung and Huang [15] also introduced
an optimal one-port one-to-all broadcasting al gorithm on aternating group graphs. Yang et al.
[23] introduced a method to explore a set of edge-digoint paths between any two nodes. In
[20], it has been shown that the fault diameter of an alternating group graph is no more than
the origina diameter by one. Cheng and Lipman [5] have shown that the aternating group
graphs are a subclass of arrangement graphs. Day and Tripathi [9] introduced schemes for
constructing node-to-node disjoint paths in the arrangement graphs. Another scheme for
constructing node-to-node digoint pathsis givenin [21].

In this paper, we introduce a scheme for constructing on AG, 2(n 2) directed
edge-digoint spanning trees (EDSTS). This is the maximum number of edge-digjoint spanning

trees that can be constructed on AG,, since the degree of AG, is 2(r+ 2). The depth of the
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EDSTs graph we construct differs from the minimum possible depth by a small constant. The
root node of EDSTs has 2(r+ 2) node-digoint paths to each one of the other nodes, one path
through each of the 2(r+ 2) edge-digjoint spanning trees. Similar graphs have been previously
constructed on other interconnection networks, such as the binary hypercube [16], the
cube-connected-cycles (CCC) [13], and the star graphs [12]. The construction of the EDSTs
graph is equivalent to the problem of exploiting the digjoint paths between a node s and all the
other nl/2—1 nodes of AG,.. Using the EDSTs graph we can derive fault tolerant algorithms for
the single-node and multimode broadcasting, and for the single-node and multinode scattering
problem on AG,asin[12].

The remaining of the paper is organized as follows. In the next section, we will introduce
the notations and definitions that are throughout the paper. Section 3 presents the scheme of
embedding 2(r+ 2) directed edge-disoint spanning trees. Conclusions are finally drawn in
section 4.

2. Notationsand Definitions

We now define the rotation operation that is important for constructing the 2(n-2)

directed edge-digoint spanning trees.
Definition 2. Let usdefine abijection r fromtheset {1, 2, ...,n} to itself asfollows:
I ifi=1or?2
() =
((- 2) mod (r+ 2)) + 3, otherwise,

(notice that r maps symbols 1 and 2 to themselves and the remaining symbols as follows: 3®
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4®...® n1® n® 3). Therotation of anode p of AG,is defined to be the node:
Rp) = r(po) r(p2) (o) r (p3).- .- (- 1)
or equivalently R(p) = ptso that pty = r(p), LE £ n.

This means that the position of each symbol of p and the symbol itself are mapped
through r. For example, R4132) = 3124 and R4321) = 3412. Notice that Rg") =
9 2 mod(n 2)+3 ANd KRG ) = 9. 2 mod (- 2)+3-

By rotation of a network we mean that rotation is applied to each node of the network.
The rotation operation is an automorphism on AG, that possesses the following properties.

1. It maps the identity node to itself. As an extension to this, nodes p and Rp) are aways at
the same distance from the identity node.

2. Let (v, 1) be an edge and u = wg®. Then (RV), RU)) is an edge of generator
9. 2 mod(n- 2))+3- (S denotesthe sign+ or - )
The conjugation operation is aso important for constructing the 2(n-2) directed

edge-digoint spanning trees.

Definition 3. The conjugation of anode p of AG,is defined to be the node (1 2)>pX1 2).

3. Theedge-digoint spanning trees

In this section we construct the 2(r+ 2) directed edge-digoint spanning trees graph,
rooted at the identity node of AG,. The spanning tree rooted at the neighbor of the identity
node over generator g, node g°, is denoted by 7;°. Each spanning tree includes all nodes of

AG,, except the identity node. The reverse-direction spanning tree of 7;° is arendezvous result
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of the disjoint paths whose last generator is (g°)™ from each one of the other nodes to the

identity node. Since the alternating group graphs are symmetric, the EDSTs graph can be

easily trandated into that rooted at any other node.

Before proceeding to description of the spanning trees algorithms, we need the following

definition.

Definition 4. For each node p (excluding the identity node and its neighbor), we define wq

and v asfollows:

LIf thecycle structureof pis(x X ... 1)(2)... or (1 X2 ...x 1 2)..., t > 1, we define wy = x.
For example, for node p= 42351 = (45 1)(2)(3) of AGs, we have ws = 4.

2.1f the cycle structure of pis (x 1)(2)... or (x 1 2)..., we define ws to be the first position in
p, among xi+1, ..., n, 3, ..., x—1 that does not include its correct symbol. If ns cannot be
found, we let wa= 0 and py, = 0. For example, for node p= 52431 = (5 1)(2)(3 4) of AGs, we
have py, = ps = 4. For node 25341 = (5 1 2)(3)(4) of AGs, we have wy = py,= 0.

3.If the cycle structure of pis ()4 )o ... Vs 2)(1)... or (4 Ve ... ¥s2 1)..., s> 1, we define us = .
For example, for node p= 31452 = (345 2 1) of AGs, we have us, = 3.

4.1f the cycle structure of pis ()1 2)(1)... or ()4 2 1)..., we define ws to be the first position in
p, among yi+l, ..., n, 3, ..., y—1 that does not include its correct symbol. If ns cannot be
found, we let ws= 0 and py, = 0. For example, for node p = 13254 of AGs, we have pu, = s

= 5. For node 41325 = (4 2 1)(3)(5) of AGs, we have ws = py,, = 0.

5.1f the cycle structure of pis(xa X% ... )WV )o ...Vs2)...or (X1 X% ... X L 1 Vo ... s 2)..., S8



International Computer Symposium 2002, Workshop on Computer Systems

1, t3 1, wedefine wp = x3 and ws = y4. For example, for node p=43521= (3514 2) of AG,
we have wy = 3and ws = 4.

We now describe an algorithm, Parent(p, 77°), that for given node p (excluding the
identity node and its neighbors) computes the parent node of p in each one of the spanning
tree 7°, 3£ i £ n. In what follows, by f(p) we denote the parent of node pin spanning tree 7;°.
Since the first two symbols is determinate if the other symbols are known, an even
permutation p= ..., can be represented by {p, o} ps...pn or { P2, pu} Ps... P Without
ambiguity.

Algorithm Parent(p, 77°) {
if (s==+){ // Lisat position / right before reaching the identity node
(1) if (=={1, 3 ps...p) { (D) ={ Z P} Ps..-Pi- 11Pi+1...Pm} /] zmay be2or y1

eseif (=={2, X} ps... o) {

k=p(D);
2 if (7t kand it py, and it x) { (D) ={/, 2} ps... D}
(3) dseif (i==R) { f(0) ={ Pus, 2 Ps..- Puy- 14Dy D}
4 dseif (i==x) {f(0) ={1, 2} ... P 1X4Pks1... D}
dseif (i==pu,) {
(5) if (a==R) { () ={L, 2} ps.... Dk 4 Die1... P}
(6) dse{f(p) = {k 2} ps... o}

} [l end of if (p=={2, xi} ps...pn)



(2)

(3)

4)

(6)

(7)

(8)

9)
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elseif (=={x, Y1} ps...0n) { /I x, y1 are as those stated above
ki=pi(L); k=P
if (1 { k., pwy, xadand i1 {31, 35, ..., y&) { (D) ={ )1, 1} ... pmi}
if (I==kq) { (D) ={ P, X1} 03 P 1Y1Pusrt1- - P}
elseif (I==x) { f(P) ={ )1, 1} Ps... Py 4P +1- - O}
elseif (I==puw,) { f{P) ={ 1. ki} Ps... o}
elseif (i==k) { fi(p) ={1, X1} Ps... Py- 1Y4Pky+1- - P}
elseif (i==y1) { f(p) =11, Ko} P3... D'}
ese{f(p) ={ 11, } ps... P}

} Il end of if (0=={ xi, y1} ps... o)

} 1/ end of if (s==+)

if (s==-){ // 2isat position / right before reaching the identity node;

(1)

2

3)

(4)

/I 1t isthe conjugation of the case s==+.
if (=={2, 3 ps...00) { (P) ={ Z p}P5...p-12Pj+1...P} [/ Zzmay belor x
dseif (=={1, yi} ps...pn) {
k=p(2);
if (2 kand * pu, and * y1) {f(p) ={/, 1} ps... pm}
elseif (I==K) { (D) ={ Puyy 1} P3- Pry 1Y1Puye1- - P}
dseif (i==)1) { f(p) ={ 1, 2} p5... Pk 11Dk 1--- P}

dseif (i==p,) {
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(5) it (15==R) { () ={ L, 2} s.... D YiDwe1..- P}
(6) dse{f(p) ={k 1} ps...pn}
} [l end of if (o=={1, yi} ps...0n)
dseif (=={x, yi} ps...0) { /I x, yi are asthose stated above
ki=p'1); k=p(2);

2) i {k puyy i} and i1 {0, %, X3) { (D) ={ X0, 1} p.... o}

(3) elseif (i==ka) {#(0) ={ Pw, Y1} Ps--. Puy- 14 Pwy 1. P}

4) dseif (I==)1) { (D) ={ X0, 2} Ps... Ph- 1Y1Pky+1.--- P}

(6) elseif (I==pw,) { f{P) ={ %, Ko} P3... o}

(7) elseif (I==ky) { f{D) ={2, yi} Ps... Pk 1X9 Pk 1. PO}
(8) elseif (I==x) { f{p) ={ . ki} ps... o}

9) ese{#(p) ={x, 1} ps...Pn}

} Tend of if (p=={ x, i} ps... P)
} Il end of if (s==-)
} // end of agorithm
For example, the EDSTs graph on AGs are shown in Fig.2. The following lines illustrate the
usage of rules (6') and (9) in the case p= 43156287 = (31456 2) (7 8) through 75 and 75"
respectively on AGsg:
Ts: 43156287 %2 94® 36154287 %1 A® 53164287 ¥, 94® 32164587 %PA® 43162587® ...

Ts': 43156287 % 94® 54136287 3%4¥)® 65134287 %4 FA® 16534287 ¥43A® 64531287® ... .
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Theorem. The Parent(p, T7;°) agorithm defines a spanning tree, rooted at the node g°. The

2(n—2) spanning trees constructed by the Parent algorithm possess the following properties:

1)

2)

3)

4)

If al the edges of the spanning trees are directed from parent to children nodes, these

spanning trees are edge-digoint. Consequently, the EDSTs graph with node 12...n as the

common root contains all edges of AG, except those edges that are directed towards node

12...n.

The identity node has 2(n2) digoint paths to each other node of AG,, one path through

each one of the 2(n-2) spanning trees. The lengths of these paths differ from the shortest

possible lengths by a small additive constant.

The depth of the EDSTs graph is less than or equal to &(n— 2)/20+4, which is optimal to

within a small additive constant. This constant is less than or equal to 3.

Each spanning tree can be derived from its preceding one, by the application of arotation

or conjugation. From the properties of the rotation and conjugation operations, we

conclude that all the spanning trees are isomorphic.

Proof: We prove each of the properties separately.

1)

It is sufficient to prove that the parent of a node p in each one of the spanning trees, is a

different one of its neighbor nodes. Four cases of p are distinguished:

) p={1, 2}ps...0n Its parent in T, f(p) ={2, p}ps... - 11Px1... P iS derived from
moving 1 to position / and its parent in T;, f(p) ={1, p} ps... P 120j+1... Py, IS derived

from moving 2 to position /, for 3 £ / £ n. Clearly, the parent of the node in each one
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of the 2(n-2) spanning treesis adifferent one of its neighbor nodes.

i) p={1, i} ps...pn, Where y1 1 2. Its parent in T;', f(p) ={)4, P} P3... P 110i1...Pn 1S
derived from moving 1 to position /, while its parent in 7;” has symbol 1 at one of the
first two positions and y; at some position j, 3 £ j £ n. Clearly, the parent nodesin 7;",

are different. The parentsin T;” are again different neighbors of p because the j's are

different.
P = p(2) P D= P (2) P Pt p(2) and it p(2)
Ti=p (2 Rule (3); /= p(Pw)
T i=yn Rule (3) Rule (4); j= p(2)
Ti:i=pw, | Rue();j=p (2 Rule (3) | Rule(6);j=p (p(2)
T i = other Rule (2);j=p ()

i) p = {x, 2}ps...pn where x; 1 1.The proof is similar to the case b) except by
conjugation.

iv) p={x, i} ps...pn, Where {xq, 4} * {1, 2}. It can be verified that the parent nodes in
T by rules (2), (4), (6), (8) and (9), and those in 7; by rules (3') and (7), y is a
one of the first two positions and the positions of symbol x; are al different. Similarly,
the parent nodesin 7; by rules (2), (4'), (6'), (8) and (9), and those in 7;" by rules (3')
and (7), xi is a one of the first two positions and the positions of symbol y; are all
different.

2) We explain how the path from each node p to the identity node is created through each
one of the spanning trees. Let us first consider 7;". If p; = 1, the parent is that derived by
rule (3) or (3'), which has the properties:

i) 1lisfixed at position /. Hence, the parent of f(p) is also derived by applying rule (3) or

10
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(3) if it exists.

ii) If 2isat one of thefirst two positions of p, 2 is also at one of the first two positions of
(p).

iii) f(p) is closer the identity node than p, that is, p has a path of minimum length to
12...nthrough T;'.

In case ;= 1 or p,= 1, the parent of pis that derived by rule (1), in which 1 is at
position 7. If LT {1, p, p}, we first apply a sequence of rule(s) to move 1 to one of the
first two positions, and then apply rule (1) to move 1 to position /. By a careful trace of
the Parent algorithm, the possible sequences of rules applied before symbol 1 has moved
to one of the first two positions are as follows:

{2, X} ps...on VHA® {i, 2} ps...pn ¥H® {1,2} ps...p,

{2, %} ps...0n Va9® {1, 2} ps...0ks Xa Prs1...Pn

{2, %} ps...0n Va9® {1, 2} ps... 01 Xa Prs1...Pn

{2, X} ps...on V9A® {k 2} ps...on ¥H® {1, 2} ps... n

{2, X} ps...on V9A® {k 2} ps...00 YA® {i, 2} ps...0n ¥H® {1, 2} ps... 00
{x, Yi} Ps...0n Y9® {34, } ps...on ¥91® {1, yi} ps... o

{X0, Y} P3...Pn Ya94® {14, 1} Ps... Pp-1 X0 Plg1- .- P

{x, Y} ps...pn %90® {4, k) ps...pn %90® (i, i} ps...pn %9® {14, 1} ps... on
{x, Yi} Ps...0n ¥aY4® {1, X4} Ps... Dyt Vi Phgs1- .- P

{X0, Y} P3...on YHA® {1, ke} ps...on %a9A® { ko, 1} ps... 0

11
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{x, Vi ps...0n ¥94® {1, N p3...0n ¥A® {i, ko} p3...pn ¥aFI® {ko, 1} p3... 00

It can be observed that for p = {2, x1} ps...p, symbol 2 is aways at one of the first
two positions through this part of paths, and for p={x, yi} ps...p, sSymbol y; is aways at
one of the first two positions through the sequences if the first rule is (2), (4’) or (6).
We have similar properties for 7, if we exchange the roles of 1 and 2 and the roles of x
and y.

To prove the paths are node-dig oint, we now distinguish among different of nodes.
a) p={1, 2} ps...p, The paths are node-digjoint since that through 7", 1 is at position /
while 2 is at one of the first two positions, and that through 7;, 2 is a position / while 1
isat one of the first two positions.
b) p={1, wi}ps...pn where y1 1 2. Node p has a path to 12...nthrough 7;" in which
any node has 1 fixed at position /, and if the node has 2 at one of the first two positions,
its parent node has 2 at one of the first two positions, too. Thus, these paths through 7;"'s
are node-digoint to one another. They are node-digjoint to the paths through 7;”s since
in those any node has symbol 1 at one of the first two positions. We have to prove that
the paths through T7;”'s, are a'so node-digoint to one another. Through 7;, symbol 2 is
moved first to one of the first two positions by applying a sequence of rule(s) unless 2 is
initially at position /. Thereafter, 2 isfixed at position / and 1 is always at one of the first
two positions, so the last parts of these paths are node-digjoint. Therefore, we have to

prove that the first parts of the paths are also node-digoint. The possible sequence of

12
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rules applied are as follows:

{1, i} ps...pn YA® {i, 1} ps...pn ¥H® {1,2} ps...p,

{1, i} ps...pn ¥¥A® {1, 2} ps... D1 Y4 Pret.- P

{1, i} ps...pn ¥a¥4® {1, 2} ps... D1 Y4 Prst.-- P

{1, i} ps...pn V9® {k 1} ps...pn ¥H® {1, 2} ps... n

{1, i} ps...pn Va9® {k 1} ps...00 YA® {i, 1} ps...00 ¥%¥® {1, 2} ps...00

These paths also start at different neighbors of node p. In AG, there are no paths of
length 3 or less that start at different neighbors of a node of the form {1, *}*, end at a
node of the form {1, 2}*, have 1 aways at one of the first two positions, and are not
node-digoint. ({1, 2}* denotes a node of AG, whose set of the first two symbolsis {1,
2}, and {1, *}* denotes a node whose set of the first two symbols contains 1.)
Furthermore, the lengths of these paths differ from the minimum possible length by a
small additive constant because the part of each path from node {1, 2}* to 12...n are
shortest paths through the subgraph of AG, that fixes 1 at position /.

¢ p={x, 2ps...pn, Wwhere x; 1 1. The proof is similar to case b) except by
conjugation.

d p={x, y}ps...pn, where {x, y} * {1, 2}. The last parts of these paths are
node-digoint, since symbol 1 (symbol 2) isfixed at position / and if symbol 2 (symbol 1)
is at one of the first two positions, symbol 2 (symbol 1) is aso at one of the first two

positions of the parent node. (Either the position of 1 or the position of 2 is different.)

13
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We have to prove that the first parts of the paths are a'so node-digoint. The paths that
first apply rule (2'), (4') or (6’) can be classified into the following two kinds:
1. Those have y; always at one of the first two positionsin the first part of the path;
2. Those have x; always at one of thefirst two positions in the first part of the path.
Since x, or y; does not appear at the first two positions in the counterpart, two paths of
different kinds are node-digoint in the first part of the paths. These paths also start at
different neighbors of node p. In AG, there are no paths of length 3 or less that start at
different neighbors of a node of the form {*, y1}*, end a a node of the form {1, y1}*,
have )1 dways at one of the first two positions, and are not node-disjoint. Hence, the
paths of the first kind are node-disjoint to each other. Similarly, the paths of the second
kind are node-digjoint to each other. The paths that first apply rule (8) are node-digoint
to the other paths because they distinguish themselves by moving symbol k or k. The
paths that first apply rule (9) are node-digoint to the other paths because they
distinguish themselves by moving symbol / through 7;" or 7;. It can be verified that the
parent nodes of p by rule (7) do not happen to be one of the nodes in the other paths.
Therefore, they are all node-digoint.
3) From part 2 of this lemma, we notice the depth of each spanning tree (from node g°) is
less than or equa to the diameter of AG,1 plus 4, 8(n-3)/2t4 £ &3(n-2)/20+3.
Consequently, the depth of the EDSTs graph (from node 12...n) is less than or equal to

&3(n — 2)/2t+4, which is the diameter of AG, plus 4. A lower bound for the depth of the

14
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EDSTs graph is posed by the fault diameter of AG,. The fault diameter of AG, is the
diameter of the remaining graph when an arbitrary set of 2(n-2)—1 nodes are removed
from AG, and has been shown to be one more than the fault free diameter of AG,,
€3(n-2)/20 +1. Therefore the depth of the EDSTs graph is optimal to within a small
constant. This constant is less than or equal to 3.

According to the definition of the rotation operation, when we say that each spanning tree
can be obtained as arotation of its preceding one cyclically, it is equivalent to saying that
spanning tree Ty;)° can be obtained as a rotation of spanning tree 7°, 3£ /£ nands =+
or — According to the definition of the conjugation operation, when we say that each
spanning tree can be obtained as a conjugation of its preceding one, it is equivaent to
saying that spanning tree 7;" (T;) can be obtained as a conjugation of spanning tree 7;”
(T, 3£iEn.

We first prove that edge (p, f{p)) belongs to spanning tree 7;" if and only if edge ((1
21 2), (1 24(p)X1 2)) belongs to spanning tree 7;. From the properties of the
conjugation operation, (1 2)’X1 2) preserves the cycle structure of p except 1 is replaced
by 2 and vice versus. Consequently, from the definition of o, (p4,) it can be verified that
therole of xisreplaced by y, the role of w is replaced by ws, and vice versus. From these
we conclude that node p derives its parent in 7;° from a specific rule (1) to (9) of the
Parent(p, 7;") algorithm if and only if node (1 2)»pX1 2) derives its parent from the same

statement of the Parent((1 2)>pX1 2), 7;") algorithm.

15
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We will prove that if edge (p, f(p)) belongs to spanning tree 7;°, then edge (R(p),
R(f(p))) belongs to spanning tree T,;°. From the properties of the rotation operation, the
rotation of anode pis node R(p) = p¢ sothat p%, = r(p). If pi=1or 2 then node pg,
=1 or 2. Furthermore, p& = r(py), p& = r(p2) and from the definition of py, (o4, it can be
verified that pG, = r(ow,) (similarly, p&, = r(ps,)). From these we conclude that if node p
derives its parent in 7;° by a specific rule (1) to (9) of the Parent(p, T;°) algorithm, then
node ptderives its parent by the same rule of the Parent(p¢ 7,)°) agorithm.

It can be verified for nodes that derive their parents through each different rule of the
Parent algorithm, that if node p is connected to its parent in 7;° through dimension j then
node peis connected to its parent in 7,)° through dimension r()).
Since the rotation operation is an automorphism on AG,, all spanning trees 7°, 3£/ £ n,
areisomorphic. Q.E.D.

Concluding remarks

In this paper, we have introduced a scheme to construct 2(1n-2) edge-dijoint trees in

AG;. Our scheme is different from that developed by Chen et al.[4] since AG, isisomorphic to

the arrangement graph A, 2, not A,». Asin [12], these spanning trees can be used to derive

fault tolerant algorithms for the broadcasting and scattering problems under the al port

communication model.
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