
E�cient Parallel I/O Scheduling For Clusters

*** submitted to Workshop on Computer Systems ***

Lien-Wu Chen Jan-Jan Wu

Institute of Information Science
Academia Sinica

Taipei 115
Taiwan, R.O.C.

E-mail: flwchen,wujg@iis.sinica.edu.tw
phone: (02)2788 3799
fax: (02) 2782 4814

Abstract

This paper studies scheduling of parallel I/O operations in cluster environments. Due to

dynamic nature of clusters, fault tolerance has been a crucial issue in executing data-intensive

applications on clusters of workstations/PCs. One key strategy for enhancing fault tolerance is

data replication, that is, replicating multiple copies of a data �le and striping them over multiple

disks. Parallel I/O scheduling aims to reducing �nish time of a batch of parallel I/O operations

by �nding an optimal sequence in executing these I/O oprations. Most existing works in parallel

I/O scheduling, however, have not taken data replication into consideration.

In this paper, we study parallel I/O scheduling for systems that provide data replication. The

main contribution of this paper is a complexity analysis of the scheduling problem and a set

of scheduling algorithms. We show that �nding an optimal schedule for systems that provide

data replication is NP-complete, and then we propose a set of heuristic algorithms. We evaluate

the I/O performance of these algorithms using a software simulator and report our experimental

results.

Keywords: parallel I/O, scheduling, data replication, clusters, heuristic algorithms.

1 Introduction

Parallel processing has been an e�ective vehicle for solving large scale, computationally intensive

problems. In the past decades, signi�cant research e�orts have been devoted to exploiting par-

allelism and e�ective mapping of computation problems to parallel computing platforms so as

to maximize performance of the parallel programs. However, while the speed, memory size, and

disk capacity of parallel computers continue to grow rapidly, the rate at which disk drives can

read and write data is improving much more slowly. As a result, the performance of carefully

tuned parallel programs can slow down dramatically when they read or write �les. As the gap

between improvement of processor speed and that of disk drive's becomes larger, the performance

bottleneck is likely to get worse.

1

Parallel input and output techniques can help solve this problem by creating multiple data

paths between memory and disks, that is, exploiting parallelism in the input and output system.

To develop promising solutions for parallel I/O requires novel technologies in hardware design, un-

derstanding of application program's I/O behavior, and most importantly, software techniques for

management of I/O resources and e�cient implementations of parallel I/O operations. Numerous

e�orts in attempting to provide suitable hardware support have emerged in a number of standard

storage technologies (e.g. RAID [7, 22], distributed RAID [15], network attached storages [16, 17],

active disks [1, 23], and cluster parallel I/O system). Sophisticated tools for analysing program's

I/O behavior have also become available in the past few years (e.g. Vesta [2], Charisma [20]).

Research in software support and optimization strategies for e�cient implemenations of parallel

I/O operations have not received much attention until recently.

One active research area in software support for parallel I/O is parallel �le systems. PIOUS

[18], VIP-FS [11], Galley [21], PPFS [12] and VIPIOS [3], to name a few, are popular parallel �le

systems. However, each of these lacks one or more of the features desired for parallel applications

running on cluster parallel systems: collective I/O, special consideration for slow message passing,

and minimized data transfer over the network. More recent parallel �le systems (such as PVFS

[4, 25]) and parallel I/O libraries (such as Panda [26, 27] and PASSION [28]) that are designed

for network of workstations/PCs have provided collective I/O [28, 27].

The performance of collective I/O and general parallel I/O operations is dominated by how

fast data transfers between processing nodes and disks are performed. Serveral optimizations

for reducing data transfer time for parallel I/O have been proposed in the past few years. The

two-phase I/O optimization [24] reduces disk access time by breaking an I/O operation into two

phases: inter-processor data exchange through the network, and bulk accesses to the disks. The

Panda I/O library exploits data locality by choosing proper placement of I/O servers [6]. Parallel

prefetching and caching strategies were proposed in [14, 29] to improve I/O performance. Several

algorithms were proposed for scheduling parallel I/O operations to minimize the completion time

of a batch of I/O operations [13]. In this paper, we focus on the parallel I/O scheduling problems.

In prior works, the I/O scheduling problem was modeled by a bipartite graph. Dubhashi,

et. al. [8] and Durand, et. al. [9] proposed various bipartite graph edge-coloring algorithms for

solving the scheduling problems. Jain, et. al. [13] proposed edge-coloring-based approximation

algorithms for scheduling I/O transfers for systems that only allow at most k transfers at a time.

Narahari, et. al [19] investigated network contention in parallel I/O transfers on mesh networks.

All prior works mentioned above do not take data replication into consideration. Data repli-

cation is commonly used in executing data-intensive applications in cluster environments for two

reasons. First, it is typical for a data-intensive application to take a long period of time to com-

plete its execution. Failure of any disk will cause lost of data and thus faults in program execution.

Data replication is necessary to ensure fault tolerance. Secondly, clusters usually lack dedicated

I/O servers. Instead, a subset of processing nodes are chosen to do part-time I/O services (that

is, these nodes switch between computing and I/O). Since cluster environments are usually highly

dynamic, some processing nodes (including part-time I/O nodes) may leave during execution of an

2

application program due to heavy load demands from other jobs. Data replication is an e�ective

way to ensure availability of data.

The only work we have noticed that takes data replication into consideration is by Chen

and Majumdar [5]. The authors proposed the Lowest Destination Degree First (LDDF) heuristic

algorithm for scheduling a batch of I/O operations. Their model only allows data transfers with

uniform costs, which we refer to as UniIO.

In this paper, we study the problem of scheduling parallel I/O operations on systems that

provide data replication. We consider a more general model where data transfers may have non-

uniform costs, which we refer to as VarIO. The main contribution of this paper is a complexity

analysis of the scheduling problem and a set of scheduling algorithms. We show that �nding an

optimal schedule for systems that provide data replication is NP-complete, and then we propose

a heuristic algorithm, Lowest Combined Degree First (LCDF), for UniIO, and a set of heuristic

algorithms for VarIO. We compare the I/O performance of these algorithms using a software

simulator. We show that our proposed algorithm LCDF compliments the existing algorithm LDDF

in di�erent cases and outperforms LDDF on systems with heavy data transfer tra�c. Our proposed

algorithm Earliest Available Time First for VarIO is shown to be consistently superior to the other

algorithms.

The rest of the paper is organized as follows. Section 2 describes our model of parallel I/O, the

scheduling problem, and its complexity analysis. Section 3 presents the set of heuristic algorithms

we propose. Section 4 uses an example to illustrate the schedules generated by these algorithms.

Section 5 reports the experimental results. Section 6 gives some concluding remarks.

2 Parallel I/O Scheduling

We �rst state the parallel I/O scheduling problem we will consider in this paper, and give an

analysis of its complexity.

2.1 Parallel I/O Model

We consider I/O intensive applications in an architecture where the processors are connected by

a complete network where every compute node can communication with each I/O node. Our

model also assumes that a node is allowed to simultaneously participate in at most one send and

one receive operation. When a node has multiple send operations to do, it performs these send

operations one after another. If multiple nodes simultaneously send to any node Pj , these data

transfers are received one after the other at Pj . The data transfers may occur in any order, and

each transfer requires a speci�ed compute node and I/O node.

Our approach involves a scheduling stage, during which I/O requests are assigned to time

slots, followed by a data transfer stage, during which the data transfers are executed according

to the schedule. The scheduling stage requires exchange of request information among computing

nodes. We make the assumption that these request messages are much shorter than the actual

data transfer, so their costs is amortized by the reduction in the time required to complete the

3

data transfers. This assumption is appropriate for data intensive applications.

Each compute node has a queue of data transfer requests destined for various I/O servers.

Since the data volume to be transferred in an I/O operation is large, communication overhead

is dominated by the time for transmitting the data through the network, making start-up cost

negligible. Therefore, we represent the time for data transfer between any pair of compute node

and I/O node (Pi; Pj) using mij , the amount of data transmitted between them.

2.2 The Scheduling Problem

The scheduling problem in parallel I/O can be modeled by a bipartite graph in which the vertices

on the left rerpesent compute nodes (denoted by Pi) and those on the right repesent I/O nodes

(denoted by Ij). An edge is placed between Pi and Ij if a data transfer request from Pi can

be served by Ij . There are no dependence between the requests. Note that multiple edges can

exist between a compute node and I/O nodes due to data replication, since the same I/O request

can be served by multiple I/O nodes. Note that although a request can be served by multiple

I/O nodes, the goal is to choose one from them so as to shorten the �nish time of the batch of

requests. This goal holds for both read and write operations, assuming that the multiple writes

for maintaining data consistency in data replication can be done by background jobs and can fully

overlap with other I/O operations.

Figure 1 illustrates a system with four I/O nodes. An array A is replicated on these four I/O

servers in the following way. A master copy of array A is striped (with block size four) over the

four servers in a wrap-around fashion, such that the �rst server stores A[1..4], the second server

stores A[5..8], and so on. A replicated copy is striped over the servers with the same block size

but with an o�set of four elements. Suppose the compute node P1 is to read data elements A[5..8]

and A[25..28] from disks. The read operation can be satis�ed by two data transfers from two

distinct disks, one for A[5:8] and one for A[25..28]. The request for A[5..8] can be satis�ed by

either I2 or I3, and the request for A[25..28] can be satis�ed by either I3 or I4. The scenarior can

be represented by the bipartite graph in Figure 1, in which two edges exist between P1 and I3,

while one edge exist between P1 and I2 and between P1 and I4 respectively. In this particular

example, all the edges have the same weight of four.

A Parallel I/O operation usually involves multiple compute nodes performing data transfers

concurrently. An example of parallel I/O is illustrated in Figure 2. P1 requests for A[5..8] and

A[25..28], while P4 requests for A[9..12], which can be satis�ed by either I3 or I4 as shown in

the bipartite graph in Figure 2. Our goal is to schedule these requests in proper time slots in

order to minimize the completion time. We use the notion of timing diagram to help describe the

scheduling problem.

Timing Diagrams We use timing diagrams to represent data transfer schedules for a given

request pattern. Figure 5 shows an example of timing diagram for the request pattern depicted

in Figure 4(a). The diagram consists of two I columns (i.e. the I/O nodes) and four P columns

(i.e. the compute nodes). The vertical axis represents time. The data transfers in column j of

4

21-24

5-8

17-20

1-4

i2

17-20

1-4

29-32

13-16

i1

25-28

9-12

21-24

5-8

i3

29-32

13-16

25-28

9-12

i4

master
copy

replica
copy

p1

p2

p3

p4

Compute nodes I/O nodes

i1

i2

i3

i4

Figure 1: An example of data replication and data transfer.

5

21-24

5-8

17-20

1-4

i2

17-20

1-4

29-32

13-16

i1

25-28

9-12

21-24

5-8

i3

29-32

13-16

25-28

9-12

i4

master
copy

replica
copy

p1

p2

p3

p4

Compute nodes I/O nodes

i1

i2

i3

i4

Figure 2: An example of data replication and parallel I/O.

6

I columns represent the messages sent from I/O node Ij . The rectangle labeled i in column j

represents the message sent from Ij to Pi. The height of the rectangle represent the time for

the data transfer, which is determined by the size of the message. Similarly, the data transfer in

column j of P columns represent the message receive by Pj . The rectangle labeled i in column j

represents the message sent from Ii to Pj . The height of the rectangle represent the time for the

data transfer.

1

2

3

4

1

i1 i2

2

p1 p2

4

p3 p4
0

Time
i3

4

i4

3

1

Figure 3: An example of time diagram

The parallel I/O scheduling problem is to determine the position of the individual data transfer

events in the timing diagram so that the completion time is minimized. A valid schedule must

satisfy the following rules. Since a node can only send/receive one message at a time, none of

the rectangles in a column can overlap in time, and all the rectangles with the same label must

have mutually disjoint time intervals. To analyze the complexity of this scheduling problem, we

�rst consider the special case where only one copy of data is stored in the disks (i.e. number of

replication is zero).

PIO NO REPLICA: Given n compute nodes (P1; :::; Pn), m I/O nodes (I1; :::; Im), a deadline

T , and a n�m matrix C, where Ci;j is the time for the data transfer between Pi and Ij . Is there

a schedule with completion time less than T ?

Theorem 1 PIO NO REPLICA is NP-Complete for m > 2.

Proof. The theorem can be proved by reducing PIO NO REPLICA to the shop scheduling

problem [10]. The problem consists of m machines and n jobs. Each job has m tasks. There is

no precedence constraint on the tasks. Each machine i performs task tj;i of job j. The execution

time of tj;i is given in an n�m matrix. Each machine can work on only one job at a time, and

each job can be processed by only one machine at a time. The goal is to schedule the tasks on

the machines so as to minimize the completion time. The problem is known to be NP-Complete

for m > 2.

Since the parallel I/O scheduling problem for systems without data replication (PIO NO REPLICA)

is NP-Complete, parallel I/O scheduling for systems with data replication is also NP-Complete.

7

3 Scheduling Algorithms

3.1 Algorithms for Uniform-Length Data Transfers

This section presents the two algorithms, Lowest Combined Degree First (LCDF) and Lowest Des-

tination Source Degree First (LDSDF), we propose for scheduling uniform-length I/O operations

for systems with data replication. The set of heuristic algorithms are based on the degrees of the

nodes. The degree of a node in the bipartite graph is equal to the number of edges incident on it.

Each edge has a source and a destination degree. The source degree is the degree of the compute

nodes it is coming from and the destination degree is the degree of the I/O node it is going into.

The combined degree of an edge is the sum of its source and destination degrees.

Lowest Destination Degree First (LDDF). This algorithm is proposed by Chen and

Majumdar [5]. For self-content of the paper, we give an overview of this algorithm. At the

beginning of each iteration, the destination nodes are ordered in increasing order of degree. An

inner loop is executed next. The I/O node j, with the lowest degree is picked and any one of the

requests for this I/O node is mapped to j. The next I/O node from the sorted set is then chosen,

in the inner loop, and an attempt is made to match it with a request coming from a processor

that has not been assigned an I/O node in the current (main) iteration. The algorithm stops

when all requests are scheduled. In each iteration, it requires O(MlogM+M) steps to sort the

destination nodes and pick the pair. The algorithm iterates N times. Therefore, the total time

for LDDF algorithm is O(N(MlogM +M)).

Lowest Combined Degree First (LCDF). An intuitive explanation for this algorithm

is given. The assignment of a request to a node can result in removal of multiple edges from the

graph due to data replication. The pair of compute node and I/O node with a smaller combined

degree has a small number of requests to choose from. If this pair is not considered earlier and

the only requests they can handle are assigned to other pairs, this pair of nodes will idle while

other nodes may have a long queue of waiting requests. LCDF works iteratively as LDDF. Instead of

the I/O nodes, the edges are sorted in increasing order of the combined degree of their source and

destination. In each iteration of the inner loop, the unscheduled requests are mapped from each

processor to a di�erent I/O node by traversing the sorted list of edges in order. In each iteration,

it requires O(NMlogNM +M) steps to sort the edges and pick the pair. The algorithm iterates

N times. Therefore, the total time for LCDF algorithm is O(N(NMlogNM +M)).

Algorithm LCDF:

Repeat until all requests are scheduled

Mark all source nodes (compute nodes) as unchosen.

Sort the edges (requests) in increasing order of combined degree

and store in the list SL.

Repeat until all source nodes as chosen

Map the unchosen source node i to a different destinstion node j

8

by traversing the sorted list SL in order.

Reduce the degree of i by 1.

Reduce the degree of j by 1.

Mark the source node i as chosen.

end repeat

end repeat

Lowest Destination Source Degree First (LDSDF). The prior work, LDDF, assumes

that a data request can be served entirely by an I/O node. Given the �xed number of replication,

it su�ce to choose the I/O nodes with the lowest degree. In a more realistic setting, a data request

may spread over multiple I/O nodes, which would require that the degree of compute nodes be

taken into consideration too. The LDSDF strategy is that in each iteration we choose I/O node j

that has the lowest degree, then choose the lowest-degree compute node i from the set of compute

nodes that are connected with j. In each iteration, it requires O(MlogM +MN) steps to sort the

destination nodes, source nodes, and pick the pair. The algorithm iterates N times. Therefore,

the total time for LDSDF algorithm is O(N(MlogM +MN)).

Algorithm LDSDF:

Repeat until all requests are scheduled

Sort the destination nodes (I/O nodes) in increasing order of

degree and store in the list SL.

Repeat until the sorted list SL become empty

Pick the edge (request) which is connected to the lowest

degree destination node j in the list SL and the source

node i (compute node) that has the lowest degree.

Reduce the degree of i by 1.

Reduce the degree of j by 1.

Remove j from SL.

end repeat

end repeat

3.2 Algorithms for Variable-Length Data Transfers

This section presents the three algorithms, Shortest Job First (SJF), Earliest Available

Time First (EATF), and Random Selection (Random), that we propose for scheduling non-uniform-

length I/O operations for systems with data replication.

Shortest Job First (SJF). This algorithm schedules the data transfer requests according

to their data transfer time. In each iteration, each I/O node chooses the request that has the

shortest data transfer time (edge weight) as the next request to serve. It requires O(NMlogNM)

9

steps to sort the edges. The algorithm iterates NM times. Therefore, the total time for SJF

algorithm is O(NMlogNM +NM).

Algorithm SJF:

Repeat until all requests are scheduled

Mark all destination nodes (I/O nodes) as unchosen.

Repeat until all destination nodes are chosen

Pick the lowest weight (time) edge k which is connected to the

unchosen destination node j.

Mark the destination nodes j as chosen

Remove the edge k.

end repeat

end repeat

Earliest Avaliable Time First (EATF). The SJF algorithm only consider data transfer

time of a request regardless of whether the compute node and I/O node of that request is ready to

serve the request. Therefore, SJF may cause unnecessary holes in the timing diagram, which will

delay the completion of the batch of requests. The algorithm EATF attemps to solve this problem

by taking the available times of compute nodes and I/O nodes into consideration.

Some data structures are used in EATF. Each I/O node i maintains a receiver set Ri, and each

compute node j maintains a sender set Sj . Initially, Ri contains all the compute nodes that are

connected to I/O node i and Sj contains all the I/O nodes that are connected to compute node j.

Each I/O node i (compute node j) maintain an available time SAvail(i) (RAvail(j)). Initially

SAvail(i) and RAvail(j) are all zeros.

The algorithm proceeds as follows. In each iteration, the algorithm chooses the earliest avail-

able I/O node and then chooses the earliest available compute node that has requests to be served

by that I/O node. In each iteration, it requires O(M +N) steps to search the earliest avaliable

pair. The algorithm iterates N �M times. Therefore, the total time for EATF is O(NM(M +N)).

Algorithm EATF:

Repeat until all R_i become empty

choose the earliest available I/O node i from the set S.

Search R_i for compute node j that has the earliest available time.

The new pair (i,j) will be scheduled a time t, where

t = max(SAvail(i), RAvail(j))

!! The available time of node i and node j should be updated accordingly as:

SAvail(i) = t + w(i,j,m)

RAvail(j) = t + w(i,j,m)

!! Remove P_j from R_i

R_i -= {P_j}

end repeat

10

Random Selection (R). In this strategy, an I/O request is selected randomly from the

pending requests. The total time for Random algorithm is O(NM).

Algorithm Random:

Repeat until all requests are scheduled

Mark all destination nodes (I/O nodes) as unchosen.

Repeat until all destination nodes are chosen

Pick randomly any edge k which is connected to the

unchosen destination node j.

Mark the destination nodes j as chosen

Remove the edge k.

end repeat

end repeat

4 An Example

We use two examples (Figure 4(a) and Figure 4(b)) to illustrate these algorithms. In Figure 4(a),

each compute node Pi initiates a request which can be satis�ed by either one of the I/O server.

Pi (j) means that compute node Pi performs a data transfer of size j.

All of LCDF, LDSDF, and LDDF generates the same schedule which transfers the data in two

iterations. In the �rst iteration, data are transfered from i1 to p1, and i2 to p2 concurrently. It

takes two time units to complete the �rst iteration. In the second iteration, data are transfered

from i1 to p3 and i2 to p4 concurrently. It also takes two time units to complete the second

iteration. Totally, it takes four time units to complete all the data transfers.

EATF and SJF also generates the same schedule which completes the data transfer in two

iterations. In the �rst iteration, data are transfered from i1 to p2 and from i2 to p4 concurrently.

In the second iteration, data are transfered from i1 to p1 and from i2 to p3 concurrently. Totally,

it takes three time units to complete all data transfers.

When the available times of compute and I/O nodes are taken into account, EATF will be

superior to SJF. For the example graph shown in Figure 4(b), let the available times of i1, i2, and

p2 be at �ve time units and the available time of p1 be at 15 time units. SJF will generate the

schedule: i1 to p1 and i2 to p2 concurrently. The generated schedule will take 16 time units to

serve the two requests. EATF will result in two iterations. In the �rst iteration, data is transfered

from i2 to p1. In the next iteration, data is transfered from i2 to p2. The generated schedule will

only take eight time units to serve all requests.

5 Experimental Results

To evaluate the e�ectiveness of the scheduling algorithms, we have developed a software simulator

for cluster parallel I/O systems. In the simulated cluster, the processing nodes are interconnected

by wormhole switches, and each processing node is equipped with local disks so that every pro-

11

p1(2)

i1

i2

i1

i2

p1(1)

p2(2)

p4(1)

p3(2)

p2(1)

(a) (b)

Figure 4: An example of parallel data transfer and scheduling.

1

3

1

2

3

4

2

4

i1 i2

1
2

2

p1 p2

1

2

p3 p4
0Time

Figure 5: Schedule generated by LCDF, LDSDF, and LDD.

1

1

2

3

4

4

i1 i2

1

1

p1 p2

2

2

p3 p4

2

3

0Time

Figure 6: Schedule generated by EATF and SJF.

12

cessing node can perform the job of a compute node and an I/O node. This gives us exibility in

experimenting with di�erent numbers of compute nodes and I/O nodes.

The simulator takes the following parameters as inputs: the number of I/O nodes and compute

nodes, the number of data elements transferred in each I/O request (referred to as message

lengths), and the data transfer patterns. Disk and network bandwidth are chosen based on the

current hardward con�guration of the small cluster we have built: an average disk bandwidth

of 22.77 MB/s is observed on the IDE disks we have recently installed, and an average network

bandwidth of 10.10 MB/s is observed on the Fast Ethernet network that is used in our small

cluster. We chose message length (data size in a data transfer) of 1MB for UniIO (uniform-length

data transfers), and message range of 1MB to 1GB for VarIO (non-uniform-length data transfers).

Number of data replication is limited to two; that is, a data transfer request can be served by two

I/O nodes.

In this paper, we report the results of read operations. Results of write operations are similiar.

In each experiment, the �nish time of I/O operations is measured by the average time of one

hundred runs. We compare the �nish times of the schedules produced by the set of algorithms

(LDDF, LCDF, LDSDF, SJF, EATF, and Random). Since the algorithm EATF is consistently

superior to all the other algorithms, we use EATF as the base for comparison. All the timing

results are presented as the ratio of the algorithm's �nish time against that of the EATF.

Several factors are taken into consideration in our experiments: the size of the cluster, the

ratio between compute nodes and I/O nodes, and the data transfer patterns. Two kinds of data

transfer patterns are experimented: random requests and all-to-all requests. In random requests,

data transfers between compute nodes and I/O nodes (the edges in the bipartite graph) are

generated randomly. In all-to-all requests, a data transfer request exists between each pair of

compute node and I/O node, which is the case with heaviest data transfer tra�c. Figure 7 and

Figure 8 show the timing ratios of the algorithms under di�erent system con�gurations, with

random requests and all-to-all requests respectively.

Results of Random Requests

We varied the number of I/O nodes from 4 to 20 in di�erent ratio of compute nodes vs. I/O nodes

(1:1, 2:1, 4:1). Figure 7 shows that, for UniIO, our proposed algorithm LCDF is superior to the LDDF

algorithm on systems that have larger number of I/O nodes. For VarIO, our proposed algorithm

EATF outperforms all the other algorithms. This is because that EATF takes both message lengths

and the available time of compute nodes and I/O nodes into consideration when scheduling the

I/O requests. We also observed that EATF improves the �nish time more for VarIO than for

UniIO. This is because that message length is an important factor in e�ecting the available time

of each node.

Results of All-to-All Requests

In Figure 8, we also varied the number of I/O nodes from 4 to 20 in di�erent ratio of compute

nodes vs. I/O nodes (1:1, 2:1, 4:1). Comparing with the results in Figure 7, we can see that the

13

Variable

Variable

Variable

Figure 7: Performance comparison of the algorithms. The data transfer requests are generated

randomly.

14

Variable

Variable

Variable

Figure 8: Performance comparison of the algorithms. Each compute node initiates one data transfer

request to each of the I/O nodes.

15

I/O performance improvement by LCDF and EATF becomes more signi�cant on systems with heavy

data transfer tra�c. EATF performs best in both request patterns: a performance improvement

of up to 30% for random requests and up to 50% for all-to-all requests.

6 Conclusion

In this paper, we have studied parallel I/O scheduling problem for cluster-based parallel systems

that provide data replication. We have shown that �nding an optimal schedule for such systems

is NP-Complete. We have also proposed a set of heuristic algorithms for solving this problem.

Our proposed algorithm Lowest Combined Degree First (LCDF) compliments the existing algo-

rithm Lowest Destination Degree (LDDF) in di�erent cases. LCDF is superior to LDDF on systems

with heavier data tranfer tra�c or with larger number of I/O nodes. This indicates that both

the source degree and destination degree of a data transfer request should be considered when

scheduling I/O operations. Our algorithm Earliest Available Time First (EATF) is superior to the

Shortest Job First (SJF) algorithm in all cases. This implies that considering data transfer time

alone may not generate good schedules. Available time of the compute nodes and I/O nodes is a

crucial factor in scheduling I/O operations.

References

[1] A. Acharya, M. Uysal, and J. Saltz. Active Disks. In Proc. Architectural Support for Pro-

gramming Language and Operating Systems (ASPLOS), 1998.

[2] S. J. Baylor and C. E. Wu. Input Output in Parallel and Distributed Computing Systems,

chapter Chapter 7: Parallel I/O workload characteristics using Vest. The Kluwer Interna-

tional Series in Engineering and Computer Science. Kluwer Academics, 1996.

[3] P. Brezany, T. A Mueck, and E. Schikuta. A software architecture for massively parallel

input-output. In Proc. 3rd International Workshop PARA'96, LNCS Springer Verlag, 1996.

[4] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. Pvfs: A parallel �le system for

linux clusters. In Proc. 4th Annual Linux Showcase and COnference, pages 317{327, 2000.

[5] F. Chen and S. Majumdar. Performance of parallel i/o scheduling strategies on a network of

workstations. In Proc. IEEE International Conference on Parallel and Distributed Systems,

pages 157{164, 2001.

[6] Y. Cho, M. Winslett, M. Subramaniam, Y. Chen, S. W. Kuo, and K. E. Seamons. Exploiting

local data in parallel array i/o on a practical network of workstations. In Proc. �fth Workshop

on I/O in Parallel and Distributed Systems (IOPADS), 1997.

[7] drapeau:94. RAID-II: A high bandwidth network �le server. In Proc. International Sympo-

sium on Computer Architecture, pages 234{244, 1994.

[8] D. Dubhashi, D. A. Grable, and A. Panconesi. Near-optimal distributed edge coloring via

the nibble method. In Proc. of the 3rd European Symposium on Algorithms, 1998.

[9] D. Durand, R. Jain, and D. Tseytlin. Applying randomized edge coloring algorithms to

distributed communication: An example study. In ACM Symposium of Parallel Algorithms

and Architectures, 1995.

16

[10] T. Gonzalez and S. Sahni. Open shop scheduling to minimize �nish time. Journal of the

ACM, 23(4):665{679, October 1976.

[11] M. Harry, J. Rosario, and A. Choudhary. Vipfs: A virtual parallel �le system for high per-

formance parallel anddistributed computing. In Proc. 9th International Parallel Processing

Symposium, 1995.

[12] J. Huber, C. L. Elford, D. A. Reed, A. A. Chien, and D. S. Blumenthal. Ppfs: A high

performance portable parallel �le system. In Proc. 9th ACM International Conference on

Supercomputing, pages 485{394, 1995.

[13] R. Jain, K. Somalwar, J. Werth, and J. C. Brown. Heuristics for scheduling i/o operations.

Proc. IEEE Trans. On Parallel and Distributed Systems, 8(3):310{320, March 1997.

[14] T. Kimbrel and A. R. Karlin. Near-optimal parallel prefetching and caching. In Proc. of the

IEEE Symposium on Foundations of Computer Science, 1996.

[15] D.D.E. Long, B.R. Montague, and L. Cabrera. Swift/RAID: A Distributed RAID System.

Computing Systems, 7(3):333{359, 1994.

[16] G. Ma, A. Khaleel, and A.L. Narasimha Reddy. Performance Evaluation of Storage Systems

Based on Network-Attached Disks. IEEE Trans. Parallel and Distributed Systems, 11(9):956{

967, 2000.

[17] R. Van Meter. A Brief Survey of Current Work on Network Attached Peripherals. Operating

Systems Review, 30(1), 1996.

[18] S. Moyer and V. Sunderam. Pious: A scalable parallel i/o system for distributed computing

environments. Technical Report Computer Science Report CSTR-940302, Department of

Math and Computer Science, Emory University, 1994.

[19] B. Narahari, S. Subramanya, S. Shende, and R. Simba. Routing and scheduling i/o transfers

on wormhole-routed mesh networks. Journal of Parallel and Distributed Computing, 57(1),

April 1999.

[20] N. Nienwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and M. Best. File access characteristics

of parallel scienti�c workloads. IEEE Trans. Parallel and Distributed Systems, 7(10):1075{

1088, 1996.

[21] Nils Nieuwejaar. Galley: A New Parallel File System for Scienti�c Workload. PhD thesis,

Dept. of Computer Science, Dartmouth College, 1996.

[22] D. A Patterson, G. Gibson, and R.H. Katz. A case for redundant arrays of inexpensive disks

(raid). In Proc. SIGMOD, pages 109{116, 1988.

[23] E. Riedel, G. Gibson, and C. Faloustos. Active storage for large-scale data mining and

multimedia. In Proc. 24th VLDB Conference, 1998.

[24] J. M. Del Rosario, R. Bordawekar, and A. Choudhary. Improved parallel i/o via two-phase

run-time access strategy. ACM Computer Architecture News, 21(5):31{38, 1993.

[25] R. B. Ross. Providing parallel i/o on linux clusters. In Proc. Annual Linux Storage Manage-

ment Workshop, 2000.

[26] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed collective

i/o in panda. In Proc. of Supercomputing, 1995.

17

[27] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Reading in Disk Array

and Parallel I/O, chapter Server-directed collective I/O in Panda. IEEE Computer Society

Press, 2001.

[28] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S. Kuditipudi. Passion: Optimized

I/O for parallel applications. IEEE Computer, 29(6):70{78, 1996.

[29] A. Tomkins, R. H. Patterson, and G. A. Gibson. Informed multi-process prefetching. In

Proc. of the ACM Interanational Conference on Measurement and Modeling of Computer

Systems, June 1997.

18

