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Abstract

With the rapid evolution of submicron technology, manufacturers are integrating

increasing numbers of components on one chip. Thus, the embedded multiprocessor

System-on-Chip (SoC) system becomes one of the most attractive trends currently and in the

future. By the limitation of portability and inexpensive packaging, SoC designers need an

efficient scheduling technique to assign applications to the target realization while meeting

both timing and power constraints. Genetic Algorithm (GA) is an appropriate scheduling

method to solve this multi-objective problem. In general, GA can obtain the near-optimal

solution but suffer from longer scheduling time. Hence, we propose two enhanced methods

named Constrained Genetic Algorithm (CGA) and Partitioned Genetic Algorithm (PGA) to

overcome this drawback. We also construct a simulation and evaluation environment to

evaluate their performance. According to our experimental results, both CGA and PGA can

not only obtain near-optimal solutions, but also dramatically decrease the scheduling time in

comparison with standard GA.
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1. Introduction

With the rapid evolution of submicron technology, manufacturers are integrating

increasing numbers of components on one chip. Because several kinds of processor will be

embedded and the heterogeneous architecture is adopted, the embedded multiprocessor

System-on-Chip (SoC) system becomes one of the most attractive trends currently and in the

future [1-2]. Fig. 1 contains a typical heterogeneous SoC architecture [3]. At the same time,

the portability and the need for inexpensive packaging will limit power consumption to a few

watts or less. Thus, SoC designers need a consistent system design technology that can cope

with such characteristics. And this technology should also efficiently schedule these

applications to the target realization while meeting all real-time and other constraints [4-5].

In order to consider more than one constraint during scheduling, Genetic Algorithm (GA)

is an appropriate candidate. GA is a modern heuristic technique based on the principles of

evolution and natural genetics, which can find a near-optimal solution usually [6]. However,

its main drawback is to spend much time doing scheduling. Hence, in this paper, we propose

two enhanced genetic algorithms to overcome this drawback, and construct a simulation and

evaluation environment to evaluate their performance.

The first method is named Constrained Genetic Algorithm (CGA), which uses a

restricted mechanism instead of randomness to generate the initial population with higher

quality. According to our experimental results, CGA can exactly spend shorter time to find the
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near-optimal solution as well as standard GA, because it doesn’t waste time to evaluate many

unfit individuals. Our second method is Partitioned Genetic Algorithm (PGA), which

integrates the concept of Divide-and-Conquer mechanism to partition the entire problem and

solve them individually. Like the essential advantage of Divide-and-Conquer mechanism, our

simulation results illustrate that PGA can dramatically decrease the time doing scheduling in

comparison with both standard GA and CGA.

The remaining of this paper is organized as follows. Section 2 introduces some

fundamental background. The design issues and principles of our CGA and PGA are

introduced in Section 3 and 4 respectively. In Section 5, we give some experimental results of

our methods to demonstrate their figure and merits. Finally, some conclusions and future

work are given in Section 6.

2. Fundamental Background

2.1 Problem Description

In order to formalize our scheduling problem, we first define an embedded

multiprocessor SoC system and a parallel program. An embedded multiprocessor SoC system
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Fig. 1. Typical heterogeneous SoC architecture.
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is composed of a set of m heterogeneous computation components. They are connected by a

common bus. Each component can execute at most one task at a time and task preemption is

not allowed. The parallel program is described by an acyclic task graph as follows.

Definition 2.1 A task graph TG = (T, E, et, pc) is an acyclic directed graph, where T and E are

sets of execution tasks and dependence edges, and et and pc are functions from E to integer,

representing execution time and power consumption of each edge respectively.

Because the embedded multiprocessor SoC system is heterogeneous, tasks executed by

different computation components will cost different execution time and power consumption.

In general, a component use less time executing a task usually costs much power consumption.

We simply use a relation table to describe the execution time and power consumption of tasks

in different components. Every exit task, which has no successors, is associated with a value

representing its deadline. Fig. 2 is examples of task graph and relation table.

Given a parallel program to be executed on an embedded multiprocessor SoC system,

the scheduling problem consists of finding a task schedule that minimize the power

consumption of the parallel program under its timing constraints. A solution to a scheduling

Fig. 2. (a) Task graph, (b) relation table.

Time Power
P1 P2 P1 P2

T1 18 16 5 11
T2 6 8 13 6
T3 20 7 5 12
T4 7 24 25 9
T5 11 13 9 11

(a) (b)
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problem is an assignment for each task of a starting time and a computation component. In

general, optimizing allocation under time, power, and precedence constraints in a

multiprocessor environment is an NP-hard problem [7-9].

2.2 Genetic Algorithm

A GA is a search algorithm that is based on the principles of evolution and natural

genetics [6]. It combines the exploitation of past results with the exploration of new areas of

the search space. By using survival of the fittest techniques combined with a structured yet

randomized information exchange, a GA can mimic some of the innovative flair of human

search [7].

A GA maintains a population of candidate solutions that evolves over time and

ultimately converges. The individuals in the population are represented with a chromosome.

Each individual has a numeric fitness value that measures how well this solution solves the

problem. GA has a selection mechanism that chooses the fittest individuals of the current

population to serve as parents of the next generation. GAs use two operators crossover and

mutation to explore the search space. The crossover operator chooses randomly a pair of

individuals among those selected previously, and exchanges some part of the information. The

mutation operator takes an individual randomly and alters it. As natural genetics, the

probability of applying mutation is very low while that of crossover is usually high [9].

The structure of the GA is a loop composed of a selection followed by a sequence of
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crossovers and mutations. Moreover, the termination condition may be the number of

iterations, execution time, results stability, etc. [7].

3. Constrained Genetic Algorithm (CGM)

Although GA usually can find a near-optimal solution, its main drawback is to spend

much time doing scheduling. The aim of the Constrained Genetic Algorithm (CGA) presented

in this section is to overcome this drawback.

3.1 Representation

A tricky question is how to represent a schedule in a way suitable for a heuristic

algorithm. Fig. 3(a) is a schedule of task graph in Fig. 2(a). In Fig. 3(a), a pair Ti, Comp(Ti)

means that task Ti should be executed on component Comp(Ti). The interpretation of the order

in the schedule is that two tasks are explicitly ordered only if they are executed on the same

component. Furthermore, tasks are ordered according to their precedence constrains defined

in the task graph.

3.2 Initial Population

Most GAs generate individuals of the initial population randomly. This mechanism is

intuitive, but qualities of these individuals may be uneven and need more generations to

converge. In CGA, we determine a schedule with following rules:

Ti T1 T2 T3 T4 T5

Comp(Ti) 2 2 1 2 1

T1 E12 T2 E13 T3 E14 E34 T4 E35 T5

2 N 2 B 1 N B 2 N 1
(a) (b)

Fig. 3. (a) Schedule, (b) modified schedule.
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I. Choose a task at random among those for which all predecessors are already scheduled.

II. Choose a component by the roulette wheel principle according to the power consumption.

These rules make a task have larger probability to be assigned to a component that

causes less power consumption. Because this mechanism can prevent CGA from wasting time

to evaluate many unfit individuals, it can achieve the quality of the initial population and let

CGA converge much quickly.

3.3 Fitness Function

Before evaluating individuals, communication overheads should be considered. We

insert edges into every schedule by using As Late As Possible (ALAP) mechanism. Fig. 3(b)

is the modified schedule from Fig. 3(a). In Fig. 3(b), Eij with marker B means that this

communication overhead must be considered because Ti and Tj are executed by different

components. Otherwise, marker N indicates this communication overhead is zero.

Next, the execution time and power consumption of an individual can be calculated

straightforward. Power consumption of an individual is the summation of power cost by all

tasks. As for the execution time, starting times of all tasks must be assigned at first. Each task

can be started after all its predecessors are completed and the allocated component is free. We

associate a flag Start(T) with every task T. If the starting time of T is determined by the

maximal completing time of its predecessors, Start(T) is set to P. Otherwise, Start(T) is set to

C representing its starting time is determined by the finish time of Comp(T). This flag will be
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used later in Chapter 4. After assigning starting times to all tasks, the execution time of an

individual can also be determined.

The aim for our scheduling problem is to minimize the power consumption under its

timing constraints. A schedule is legal if and only if it doesn’t violate any deadline constraint.

We use formulas (3.1) and (3.2) to calculate fitness values.

[ ] [ ]



×−×−
−

=
(3.2)scheduleillegalfor001.0)()(
(3.1)schedulelegalfor)(

)(
sTimeMTsPoserMP

sPowerMP
sF

Power(s) and Time(s) are power consumption and execution time of schedule s

respectively. MP and MT are two constants representing the maximal power and time, which

can be calculated by executing all tasks sequentially at their worst components. The goal of

formula (3.2) is giving illegal schedules a chance to be reproduced. This fitness function will

assign a larger value for better schedule and make it survive in the next generation easily.

3.4 Selection

The selection is done using a biased roulette wheel principle. Thus, the better the fitness

of an individual, the better the odds of it being selected.

3.5 Crossover

Crossover produces new individuals that have some portions of both parent’s genetic

material. Let s1 and s2 be two individuals that should generate two offsprings s1’ and s2’. s1’

and s2’ are generated by the following rules:

I. Choose a task Ti randomly as the crossover point to separate s1 into two parts.
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II. Keep the left part of s1 to s1’ and right part of s1 to s2’.

III. Scan s2. If Ti belongs to the left part of s1, put Ti and Comp(Ti) into s2’. Otherwise put Ti

and Comp(Ti) into s1’.

Fig. 4 shows an example of crossover operation.

3.6 Mutation

Mutation ensures that the probability of finding the optimal solution is never zero. It

also acts as a safety net to recover good genetic material that may be lost through selection

and crossover. We use two kinds of mutation operators. The first kind selects two tasks Ti and

Tj randomly and swaps Comp(Ti) and Comp(Tj) . The second kind selects a task Ti and alters

Comp(Ti) at random.

4. Partitioned Genetic Algorithm (PGA)

CGA can converge quickly compared with standard GAs, but it still needs considerable

scheduling time when the number of tasks becomes large. Obviously, scheduling time of GA

directly depends on the number of tasks being scheduled. Hence, we present a Partitioned

Genetic Algorithm (PGA), which integrates the concept of Divide-and-Conquer mechanism

Fig. 4. An example of crossover operation.

T1 T2 T5 T3 T7 T8 T4 T9 T6

1 1 3 3 2 3 2 3 2
T1 T3 T2 T5 T4 T6 T7 T9 T8

1 2 1 3 1 3 3 1 3

Child 1 Child 2

T1 T2 T5 T3 T4 T6 T7 T9 T8

1 1 3 3 1 3 3 1 3

Parent 1 Parent 2

T7 T8 T1 T4 T3 T9 T2 T5 T6

2 3 1 2 2 3 1 3 2



10

into CGA to decrease the number of tasks being scheduled at a time.

4.1 Deadline Partition Algorithm

The main steps of Divide-and-Conquer algorithm is to partition the problem into several

parts, solve them individually, and merge them to form the final solution. In this subsection

we present a Deadline Partition algorithm to partition the original task graph according to the

deadline of every task. Unfortunately, by the definition of task graph, only exit tasks are

associated with deadline values. Thus, before partitioning we simply use formula (4.1) to

calculate deadline values of other tasks.

componentsallamongtimeexecutionimalmaxtheisTtimeandTofsuccessoraisTwhere
TtimeTdeadlineTdeadline

jij

jji 14
)(

).()}()(MIN{)( −=

Steps of Deadline Partition algorithm are shown below:

I. Calculate the deadline value of each task by formula (4.1).

II. Sort tasks in increasing order according to their deadline values.

III. Partition tasks into subgroups evenly in sequence.

Fig. 5 is the result of partitioning task graph in Fig. 2(a) into two subgroups. Notice that

any two subgroups cannot depend on each other; otherwise they both cannot be executed and

Fig. 5. An example of partitioning a task graph.

(a)

Ti T1 T2 T3 T5 T4

deadline 21 40 41 55 65

T1 T2 T3 T5 T4

S1 S2

T1

T2 T3

T4 T5

deadline: 40

deadline: 65 deadline: 55

deadline: 21

deadline: 41

(b)
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will cause a deadlock. Fortunately, the following Lemma shows that Deadline Partition

algorithm can always generate legal partition result.

Lemma 4.1 Partition result generated by Deadline Partition algorithm is always legal.

Proof: Assume that S1 … Sn are subgroups generated by Deadline Partition algorithm and

tasks Ti ∈ Si, Tj ∈ Sj, for i < j. Because Deadline Partition algorithm sorts and partitions tasks

in sequence, it is obvious that deadline(Ti) ≤ deadline(Tj). From formula (4.1), Ti cannot be a

successor of Tj. Thus, tasks in Si will not depend on any task in Sj and the partition result is

always legal.

4.2 Partitioned Genetic Algorithm (PGA)

After partitioning original task graph into subgroups, we apply CGA to schedule all

subgroups individually in sequence. Finish time of every computation component in a

subgroup is transferred to the next subgroup as the starting time of corresponded component.

Because subgroups are scheduled one by one, we don’t need an additional merge algorithm

like standard Divide-and-Conquer mechanism. The final solution can be directly cascaded by

local schedules generated by all subgroups.

4.3 Power Minimization Algorithm

In PGA, number of tasks scheduled by CGA each time is much less, so it can

significantly decrease the scheduling time compared with original CGA. Nevertheless, PGA

usually obtains inferior solution to CGA, or it cannot find a legal schedule even if the solution
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is existed essentially. This is because PGA only can obtain local optimal solutions, and the

combination of local optimal solutions is usually not equal to the global optimal solution. In

order to overcome this side effect, we present a Power Minimization algorithm to improve the

solution generated by PGA.

Suppose that task T is executed by component i, and variable EPDij(T) is defined as the

difference of power consumptions while T is executed by component i and j. For each

subgroup, we maintain a voluntary table to record EPD values of every task and component

pair. Fig. 6 illustrates schedules of subgroups in Fig. 5 and their voluntary tables. In the

voluntary table, a positive EPDij(T) value indicates that if we reallocate T from component i

to j can decrease the power consumption. This voluntary table is used as a referential material

in Power Minimization algorithm.

Before improvement we analyze two reasons that cause the side effect of PGA. The first

is about the precedence constraints. Suppose tasks Ti ∈ Si, Tj ∈ Sj, and Ti is a predecessor of Tj.

When we schedule Si, Ti is allocated to Comp(Ti) which causes less power consumption but

completes Ti just in time. In order to satisfy the deadline constraint of Tj, CGA will be forced

to select Comp(Tj) which costs much more power to execute Tj quickly. The second is caused

Ti T1 T2 T3

Comp(Ti) 1 2 1
S1

Ti T5 T4

Comp(Ti) 1 1
S2

Ti EPDi1 EPDi2

T1 0 -6
T2 -7 0
T3 0 -6

S1

Ti EPDi1 EPDi2

T4 0 16
T5 0 -3

S2

(b)(a)

Fig. 6. (a) Schedules, (b) voluntary tables.
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by the finish time of the computation component. According to precedence constraints, we

expect that Tj can be started from time t at component i to satisfy its deadline. But in fact

component i finishes another task Tk ∈ Si later than time t, which causes Tj to violate its

deadline constraint. It also forces Tj being allocated to component j that costs more power

consumption. Both these two situations will let PGA generate worse solution than CGA.

During scheduling process of CGA, every task T is assigned a flag Start(T) indicating

the factor that determines its starting time. This flag also can distinguish the reason why the

solution generated by PGA is inferior to CGA. After scheduling a subgroup, we construct its

voluntary table and check every task in this subgroup to see if they can be reallocated to

Fig. 7. (a) Task graph, (b) relation table, (c) schedule generated by PGA, (d)
voluntary tables, (e) schedule improved by Power Minimization algorithm.

(c)

T1

T2 T3

T4 T5

(3, 9)

(2, 4)

(1, 3)

(4, 14) (3, 9)
deadline: 40

deadline: 65 deadline: 55

edge: (et, pc)

deadline: 41

deadline: 21 Time Power
P1 P2 P1 P2

T1 18 16 5 11
T2 6 8 13 6
T3 20 7 5 12
T4 7 24 25 9
T5 11 13 9 11

(a) (b)

T1 T3 T5 T4
18 38 49 56

T2

21 29

P1

P2

T4
64

P1

P2 T1

T3

T2

T5
17 37 48

16 24 40

(e)

Ti EPDi1 EPDi2

T1 0 -6
T2 -7 0
T3 0 -6

Ti EPDi1 EPDi2

T4 0 16
T5 0 -3

S1

S2

(d)

Power: 40

Power: 50



14

decrease the power consumption. If Start(T) is P, predecessors of T are tried to be reallocated.

Otherwise, we try to reallocate tasks executed by the same component with T. Based on the

voluntary table, we only need to try components corresponded to positive EPD values. We

still use task graph in Fig. 2(a) as an example. Fig. 7 and 8 are two examples that individuals

generated by PGA are improved using Power Minimization algorithm. The entire scheduling

flow of PGA is shown in Fig. 9.

5. Experimental Results

We construct a simulation and evaluation environment to evaluate proposed methods.

Instead of randomly generating instances, we prefer to use four instances extracted from

Fig. 8. (a) Task graph, (b) relation table, (c) schedule generated by PGA, (d)
voluntary tables, (e) schedule improved by Power Minimization algorithm.

(c)

T1

T2 T3

T4 T5

(3, 9)

(2, 4)

(1, 3)

(4, 14) (3, 9)
deadline: 40

deadline: 65 deadline: 55

edge: (et, pc)

deadline: 43

deadline: 28 Time Power
P1 P2 P1 P2

T1 15 6 5 8
T2 12 9 4 12
T3 15 8 4 14
T4 20 9 9 25
T5 7 12 11 7

(a) (b)

T4
57

P1

P2 T1

T2 T3

T5

9 21 37

6 39 51

(e)

Ti EPDi1 EPDi2

T1 0 -3
T2 0 -8
T3 0 -10

Ti EPDi1 EPDi2

T4 16 0
T5 0 4

S1

S2

(d)

Power: 32

Power: 49

T1

T4

T5
15 27 42 49

T2

45 54

P1

P2

T3
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[10-11]. But number of tasks in these instances is less than 60, which is not large enough for

our evaluation. Therefore, we use a tool TGFF (Task Graph For Free) developed by [12] to

provide larger task graphs with hundred tasks. Meanwhile, we also choose method proposed

in [4] as the standard GA to compare with, because its process is similar as CGA except for

the generation of initial population.

In the following evaluation, we use the same system architecture and probabilities of

crossover and mutation to compare the scheduling time spent by standard GA and CGA. Fig.

10(a) shows that with the same number of populations, CGA needs less number of

generations than standard GA to obtain the optimal solution. On the other hand, as shown in

Fig. 10(b), with the same number of generations CGA also needs less number of populations

to converge. Both above two results indicate that CGA spends shorter scheduling time than

standard GA to obtain the same solution. We also use task graphs with 100 and 200 tasks

generated by TGFF to evaluate the scheduling time while the number of computation

components increases. Fig. 11 indicates that CGA is superior to standard GA obviously.

task graph

schedule all
subgroups?

Power Minimization

CGA

done

Deadline Partition

Y

N

Fig. 9. Scheduling flow of PGA.
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From Fig. 12, we can see that PGA dramatically decreases scheduling time in both task

graphs extracted from [10-11] and generated by TGFF. In these results, PGA with only one

subgroup is essentially the same as CGA. Finally, Fig. 13 shows the results of PGA with and

without applying Power Minimization algorithm. It is obvious that PGA may obtain inferior

solution when the number of subgroups increases as mentioned in previous section. After

applying Power Minimization algorithm, it can be decreased in some degree, although the

final result is usually worse than CGA.

Fig. 10. Experimental results.

(a)

* 2 computation components

* The number in the parenthesis on x-axis is
the number of populations

* 2 computation components

* The number in the parenthesis on x-axis is
the number of generations

(b)

(a) (b)

Fig. 11. Experimental results.
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6. Conclusions and Future Work

In this paper we have proposed two enhanced genetic algorithms to schedule parallel

program on embedded multiprocessor SoC system, and constructed a simulation and

evaluation environment to evaluate them. We assume the embedded multiprocessor SoC

Fig. 12. Experimental results.

(c)

(a) (b)

(a) (b)

Fig. 13. Experimental results.

PM: Power Minimization algorithm

100 tasks 200 tasks
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system is heterogeneous, and our scheduling goal is to find a task schedule that minimizes the

power consumption under the predefined precedence and deadline constraints.

Because GA searches solutions randomly, it usually suffers from longer scheduling time.

Therefore, we propose CGA to generate individuals in the initial population more restricted,

which can make CGA converge much quickly. Besides, we also propose PGA that partitions

the parallel problem into subgroups and schedules them by CGA individually, to further

decrease entire scheduling time. According to our experimental results, both CGA and PGA

can not only obtain near-optimal solutions as well as standard GA, but also spend less time

doing scheduling.

In addition to previous features, there are still several promising issues in future

researches. In standard Divide-and-Conquer mechanism, subgroups can be proceeded in

parallel, and an additional merge algorithm are designed to cascade these individual solutions

to form the final solution. But in our PGA, subgroups must be scheduled one by one in

sequence, which cannot fully utilize the feature of Divide-and-Conquer mechanism.

Therefore, it may be an interesting research topic to design another enhanced GA to eliminate

this limitation. If the new algorithm can be successfully constructed, it is able to decrease the

scheduling time more dramatically.
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