
A Novel Strategy for Pipelining Restricted Vector

Clocks in Distributed Systems

Hwa-Chuan Lin and SingLing Lee

Department of Computer Science and Information Engineering

National Chung Cheng University, Chiayi 62107

Taiwan, Republic of China

Abstract

The vector clocks (VC) mechanism has been employed to solve a wide variety

of problems in many applications, provided that the bit size of each component in

the VC is always suÆcient. However, this may lead to an extremely large overhead

in communication bandwidth and storage as the number of processes gets to be

very large. Otherwise, the VC resetting procedures must be deployed and invoked

carefully, which results in a restricted vector clock (RVC) property. The PVC

employs two di�erent representations to denote the meanings of VC in di�erent

cycles, so that the monotonic characteristic of VC is maintained for the execution

of any applications.

Keywords: Clock overow, distributed systems, timestamp, vector clocks.

1 Introduction

Due to lack of a standardized global time for distributed systems, using logical time is a

powerful concept to maintain causal relations among events [11, 15]. Traditional vector

clocks (VC), introduced independently by both Fidge [10] and Mattern [12], is a useful

mechanism for understanding the causal relation between events in distributed systems.

The concept of VC has been extensively used in many applications, such as distributed

debugging [14], detecting global predicates [6, 12], recovery [2, 14], snapshot [8], causal

multicast (or broadcast) [1, 4, 5, 7].

1.1 Motivation

Most protocols using VC take for granted that the bit size of each component in the VC

is always suÆcient for running an application. In other words, they neglect the clock

overow problem. Because VC can grow without bounds, applications that use VC may

require unbounded space. Thus, in realistic implementation, applications using VC may

have a serious problem with overhead in message-passing and overhead in storage as the

number of processes gets to be very large. This is exacerbated by the fact that the more

bits used in each element of the vector clock, the more overhead will be needed.

Invoking the VC resetting protocol before any clock overow happening is another

way to avoid the VC overow problem [17], although this restricts the VC property in

the course of executing an application. In addition, the VC may be reset to be zero

more frequently when running the protocol, which may violate the correctness if the VC

resetting is not carefully handled.

Another method is to �nd a bounded number of clock values for VC, such as resettable

vector clocks [3] and bounded timestamps [16]. The reusability of timestamps is one

of their characteristics, however, it is time-consuming for �nding and maintaining the

1

bounded timestamps.

In the proposed pipelining vector clocks (PVC), we dynamically employ the following

two di�erent representations for VC: magnitude representation and signed 2's complement

representation [13]. Our PVC has the same power as the traditional VC if the bit size

for each element in vector clocks is suÆcient, but it avoids pitfalls above-mentioned in

traditional VC.

1.2 Basic Idea

Suppose that there are three bits b2; b1; b0 used for the clock. We list two di�erent represen-

tations for bits b2; b1 and b0, as shown in Figure 1. One is magnitude representation, and

the other is signed 2's complement representation. In magnitude representation, these bi-

nary bits (from 000; 001; 010; 011; 100; 101; 110 to 111 in succession) can denote values from

0 to 7, respectively. However, these bits can also denote values from 0; 1; 2; 3;�4;�3;�2,

to �1, respectively, in signed 2's complement representation.

Note that b2 is a phase bit (i.e., sign bit) in signed 2's complement representation, but

it is a most signi�cant bit in magnitude representation. As an example, 1012 denotes the

values 510 in magnitude representation and �310 in signed 2's complement representation,

respectively.

The example of Figure 1 gives a good representation of the basic idea of our pro-

posed PVC. As Figure 1 indicates, there are several monotonic increasing-value cycles,

as denoted by arrows; the arrows on top (such as the arrow indexed by y0

1, y
0

2) indicate

the monotonic duration of a clock in signed 2's complement representation. On the other

hand, arrows at the bottom (such as the arrow indexed by y1, y2) indicate the mono-

tonic duration of clock in magnitude representation. To synchronize the process phases,

in Section 5.2 we introduce the concept of virtual synchronization, which simultaneously

2

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

����������������

�
�

�
�

�
�

�
������
�

�
�

�
�

�
�����

PDJQLWXGH UHSUHVHQWDWLRQ

VLJQHG �
V FRPSOHPHQW UHSUHVHQWDWLRQ

\
�

\
�

\

�

\

�

E
�
E
�
E
�

Figure 1: Example of two di�erent meanings in unsigned-magnitude representation and

signed 2's complement representation.

synchronizes all process phases into the same phase.

1.3 Contribution

This work presents the �rst algorithm that implements VC by using two di�erent rep-

resentations. To the best of our knowledge, only one representation (i.e., the unsigned-

magnitude representation) is used to denote the meanings of traditional VC.

As Yen [17] pointed out, prior knowledge about process behavior is necessary for

�nding an adaptive bit size for each element of VC. As the bit size for each element of

VC is determined, the proposed method has the following salient features:

1. The proposed PVC can make the protocols using VC highly scalable. In our pro-

posed PVC, we use two representations (i.e., magnitude representation and signed

2's complement representation) to denote the meanings of VC in di�erent cycles

(i.e., zero-one cycle and one-zero cycle) such that the VC property is valid during

the execution of any short-term or long-term applications using PVC.

3

2. Our scheme does not have the drawback of clock overow; it can avoid the trouble

of determining a triggering condition for initiating the VC resetting protocol.

2 Related Work

Yen et al. proposed a clock resetting protocol that is invoked carefully by satisfying

the prede�ned threshold de�ned in [17]. In that method, each process must carefully

count the number of events and invoke the reset protocol immediately when the counting

value reaches a prede�ned threshold. After executing the clock resetting protocol, all

processes reset their VCs, so the condition of clock overow can be prevented in any

process. Clearly, with Yen's protocol, there are many timestamping phases that occur in

an application, implying that the monotonic characteristic of the VC is maintained only

in each timestamping phase. In other words, the monotonic characteristic of VC is invalid

even for two adjacent timestamping phases. Hence, the monotonic property of the VC in

Yen's protocol is limited to a timestamping phase, and this is why it is called restricted

vector clock (RVC) property. Furthermore, application messages are not allowed to be

transmitted during the execution of Yen's resetting protocol.

Singh in [16] proposed a technique of bounded timestamps, supposing that values

x1,..., xn are used in round-robin fashion. Process Pi can reuse a timestamp value xk

when all old messages with value xk in the ith element of VC have been delivered in all

the processes of the system. As mentioned above, it is impossible to �nd an adaptive bit

size for each element of VC without any prior knowledge about process behavior. Clearly,

it is time-consuming to �nd and monitor the bounded timestamps.

Based on the observation that applications can be structured in phases and track

causality only within a bounded number of adjacent phases, Arora et al. [3] proposed

a bounded-space resettable vector clocks with a bounded number of adjacent phases.

4

Resettable vector clocks, which can be viewed as a variation of [17], allow nonblocking

reset to be performed by a process when it reaches the bound of its local clock. However,

not all applications using VC can be directly substituted by bounded-space resettable

vector clocks because the total number of events may be unbounded and unpredictable

[3].

3 System Model

Letting Vi be the VC of process Pi, and supposing that there are n processes running an

application in the system, Charron-Bost [9] has proven that the size of Vi maintained by

each process Pi must be at least n (i.e., Vi[1::n]) in order to capture the causal relation

between events. In addition, let Vi[j] denote the jth element of Vi. Initially, the n-element

scalar vector clocks Vi of every process is set to zero (i.e., 8j : Vi[j] 0), which is denoted

as Vi 0 for the sake of simplicity.

There are three kinds of events in a distributed system: the event of sending a

message, the event of delivering the message, and the internal event. Internal events

represent the local computation events of processes. Generally, Vi[i] is incremented by

a value of one each time process Pi sends a message, process Pi receives a message, or

an internal event occurs in Pi. Note that each sending message m by a process Pi is

timestamped with the VC of the process Pi at the time the event occurs, which is called

m's timestamp.

Assuming that an application message m arrives at the protocol at process Pi, we say

that process Pi receives and deliversm until the protocol forwardsm up to the application.

Like [1, 5, 17], we suppose that the communication between any two adjacent processes

is reliable and FIFO-ordered. Notice that many network transport protocols support the

FIFO order property. We also assume that message transmission delays are arbitrary but

5

�nite. The system model assumed here is quite common in the context of distributed

computing systems.

Lamport de�nes the \happen-before" relation (denoted by \!") to solve the diÆculty

of determining the causal ordering of events occurring in systems [11]. Letting sendi(m)

and delivj(m) represent the events of the sending m from Pi and delivery of m by Pj,

respectively, the \happen-before" relation is as follows:

1. For any two events e and e0, if event e occurs at process Pi before e
0, then e! e0.

2. For any two events e and e0, if event e is the event sendi(m) and event e0 is the

event delivj(m), then e! e0.

3. If e! e0 and e0
! e00, then e! e00.

4 Pipelining Vector Clock

4.1 Pipelining Vector Clock Property

A close look at Figure 1 will reveal that the monotonic characteristic of a clock can be

maintained if we can properly denote the meanings of a clock, such as cycles y1, y
0

1, y2,

y0

2 in the �gure.

Generally, let the leftmost signi�cant bit of a clock be a special bit, called the phase-

bit, which records the process's phase when timestamping. Taking Figure 1 for example,

let b2 denote the phase bit, and the other bits (i.e., b1; b0) are used for the scalar clock.

Clearly, the phase bit is altered when scalar clock overows.

Note that Pi is in phase 0 (phase 1) when the phase bit of Pi is 0 (1). In order to

synchronize all the process phases into the same phase, virtual synchronization (introduced

in Section 5.2) will be invoked if necessary. For the sake of simplicity, we assume that

6

there are two phases in the system: phase 0 and phase 1.

De�nition 1 Let a zero-one cycle, y, be the duration composed of two adjacent phases

such that phase 0 is before phase 1. In contrast, a one-zero cycle, y0
, has phase 1 before

phase 0.

For example, cycles y1 and y2 shown in Figure 1 are zero-one cycles. Note that each pair

of adjacent cycles (yi, y
0

i
) has a common duty phase 1, and each pair of adjacent cycles

(y0

i
, yi+1) has a common duty phase 0.

Property 1 In PVC, each pair of adjacent cycles (yi, y
0

i
) has a common duty phase 1,

and each pair of adjacent cycles (y0

i
, yi+1) has a common duty phase 0.

We use \k" (i.e., concatenation) to de�ne a composite timestamp >a of event a, which

is composed of a phase bit }a and a scalar timestamp Ta (i.e., >a = }akTa). Suppose

that <u is a less-than relation in magnitude representation. Let us assume that <s is a

less-than relation in signed 2's complement representation. Then, we obtain the following

properties of PVC.

Property 2 Let E
y
be the set of all the events occurring in a zero-one cycle y and let E

y
0

be the set of all the events occurring in one-zero cycle y0
.

(a) From the viewpoint of the zero-one cycle, y, 8a; b 2 Ey : a! b, >a <u >b:

(b) From the viewpoint of the one-zero cycle, y0
, 8a; b 2 Ey

0

: a! b, >a <s >b:

4.2 Requirements of PVC

The goal of PVC's requirements is that the sending and corresponding reception of each

message must be kept in the same cycle. Let us assume that sendi(m) and delivj(m)

represent the events of sending m from Pi and delivery of m by Pj, respectively. Let y(t)

7

denote the phase t of zero-one cycle y, where t 2 f0; 1g. Similarly, the same observation

applies to the one-zero cycle y0. The requirements for PVC are as follows.

R1. All messages sent in the phase 0 of zero-one cycle y from process Pi to process

Pj can be received by Pj in the duration of zero-one cycle y. In other words, if

sendi(m) 2 Ey(0), then delivj(m) 2 Ey.

R2. All messages sent in the phase 1 of one-zero cycle y0 from process Pi to process

Pj can be received by Pj in the duration of one-zero cycle y0. In other words, if

sendi(m) 2 Ey
0(1), then delivj(m) 2 Ey

0

.

5 The Implementation

Granted that the system model described in Section 3 is used in the implementation. Let

N (Pi) be the set of processes with a FIFO-ordered communication channel connected to

Pi; and let 	i denote Pi's phase bit and Vi denote Pi's scalar VC. Initially, 	i and Vi are

initialized to be zero. As noted before, each process Pi can operate in phase 1 or phase

0. Suppose that the system begins with phase 0. Our procedure consists of three major

parts: the sending message, receiving message, and virtual synchronization parts.

5.1 The Modules of Sending and Receiving Application Mes-

sages

First, we introduce actions at process Pi when an application message m is to be sent.

When sending a message m, process Pi attaches scalar VC Vi and Pi's phase 	i to m, as

denoted by m:T and m:	, respectively.

Second, upon �rst receiving message m, process Pi checks the delivery condition to

decide what action should be taken next. If R1 listed in Section 4.2 is satis�ed, Pi performs

8

the actions: for all k 6= i: 	ikVi[k] maxu(ikVi[k]; m:	km:T [k]). Otherwise, if it sat-

is�es R2, Pi performs the actions: for all k 6= i: 	ikVi[k] maxs(ikVi[k]; m:	km:T [k]).

Afterwards, advance Vi[i]. The actions of sending the application message and receiving

the application message are as follows.

1. When an internal or sending event e occurs at process Pi do:

(a) Vi[i] Vi[i] + 1;

(b) If Vi[i] = 0 and Si = normal then

Si trans;

	i :	i;

Vi 0;

send NewPhase req to all Pk 2 N (Pi);

(c) If sending an application message m, process Pi attaches Vi and 	i to the

outgoing message m, as are denoted by m:T and m:	, respectively.

2. When an application message m sent by process Pj arrives at process Pi do:

(a) If (i = 0 and m:	 = 	i) or (i = 1 and m:	 6= 	i) then

for all k 6= i: Vi[k] maxu(Vi[k]; m:T [k]);

elseif (i = 1 and m:	 = 	i) or (i = 0 and m:	 6= 	i) then

for all k 6= i: 	ikVi[k] maxs(ikVi[k]; m:	km:T [k]);

(b) Vi[i] Vi[i] + 1;

(c) If Vi[i] = 0 and Si = normal then

Si trans;

	i :	i;

Vi 0;

send NewPhase req to all Pk 2 N (Pi);

9

Note that the virtual synchronization will be invoked when clock overow occurs in any

one of the processes due to advancing Vi[i], such as Steps 1(b) and 2(c) in the above

actions. In next subsection we present the details of virtual synchronization.

5.2 Virtual Synchronization Module

When clock overow occurs in any one of the processes in the system, the \virtual syn-

chronization" is initiated automatically, forcing all the processes to change their current

phases and eventually enter normal status. Note that each process Pi can operate in

either status: normal or trans. A process Pi is usually in normal status except during

virtual synchronization. Taking Figure 2 for example, the thick line shown in the �gure

denotes the duration of virtual synchronization.

In order to synchronize the process phases, we need the following variables in each

process Pi. Let Si be a variable that records Pi's current status; and Ni;j be a variable

that records neighboring process Pj's status, where Pj 2 N (Pi), currently known to Pi.

Also, suppose that Si and Ni;j are initialized to normal for all i; j.

Any process Pi that �rst invokes the execution of the virtual synchronization is

called an initiator, and it performs the following jobs (see Step (a) of Procedure Re-

ceiving NewPhase req): (1) set Si to trans (i.e., Si trans); (2) change phase (i.e.,

	i :	i); (3) reset scalar VC (i.e., Vi 0), and (4) send NewPhase req to all

Pj 2 N (Pi).

On �rst receiving NewPhase req from Pj, any process Pi operating in normal behaves

like an initiator and sends out NewPhase req to all its neighbors and then enters trans.

In other words, the initiator plays a role in spreading the NewPhase req over every com-

munication channel, so that every process will receive NewPhase req from its neighboring

processes. Afterwards, Pi sets Ni;j to trans (i.e., Ni;j trans; see Step (b) of Procedure

10

Receiving NewPhase req). After ensuring that Ni;k = trans for all Pk 2 N (Pi), Pi sets

Si to normal and Ni;k to normal for all Pk 2 N (Pi) (see Step (c) of Procedure Receiv-

ing NewPhase req). That is, Pi enters a normal stable status. When all processes are in

normal status, that implies that the virtual synchronization is �nally �nished.

Receiving NewPhase req

When NewPhase req sent from Pj arrives at Pi do:

(a) If Si = normal then

Si trans;

	i :	i;

Vi 0;

send NewPhase req to all Pk 2 N (Pi);

(b) Ni;j trans;

(c) If Ni;k = trans for all Pk 2 N (Pi) then

Si normal;

for all Pk 2 N (Pi) do

Ni;k normal;

6 Example

Figure 3 shows an example diagram based on our method and the proposed model. Sup-

pose that there are three processes (P1, P2, and P3) in the system and each pair of processes

is connected with each other by FIFO-ordered communication channels. Assume that the

system is in phase 0 of zero-one cycle y (i.e., 	1 = 	2 = 	3 = 0).

11

3
�

3
M

3
Q

\

L��

\

L

\
L��

\
L

3KDVH �3KDVH �

�

�

�

�

�

�

3KDVH � 3KDVH �

Figure 2: Example of phase diagram.

6.1 Virtual Synchronization

First, we introduce the e�ect of virtual synchronization. From the left part of Figure 3,

we can see that P1 invokes virtual synchronization at event a1. As noted in Section 5.2,

we know that P1 will change its phase, reset its scalar vector, and enters trans status at

that time. In other words, 	1 = 1, S1 = trans, and V1 = 0. Upon receiving NewPhase req

sent by P1, P2 or P3 will send out NewPhase req to its neighboring processes. Afterwards,

the system has 	1 = 	2 = 	3 = 1, S1 = S2 = S3 = trans, and V1 = V2 = V3 = 0. In

other words, the system is in the beginning of virtual synchronization.

From Section 5.2, we know that the beginning of virtual synchronization implies that

the following actions have been performed in each process Pi: (1) set Si to trans (i.e.,

Si trans); (2) change phase (i.e., 	i :	i); (3) reset scalar VC (i.e., Vi 0). Clearly,

events a1, b1 and c1 indicate the beginning of the virtual synchronization, as indicated by

a dotted line, denoted a1b1c1, which passes through P1, P2, and P3, respectively.

As noted in Step (c) of Procedure Receiving NewPhase req (shown in Section 5.2),

after ensuring all neighboring processes have reset their clocks, each process Pi must reset

12

Si to normal. This implies that all processes are now back to normal status eventually

after virtual synchronization. Figure 3 shows the dotted line passing through events a3, b2

and c2, indicating the ending of virtual synchronization, denoted by a3b2c2, which implies

that all processes are back to normal status at that time.

Similarly, the other example of virtual synchronization shown in Figure 3 begins at

events a01, b01 and c01, represented by a dotted line passing those events (i.e., a01b01c01).

Note that two NewPhase req messages are sent from P1 and P3, indicating that P1 and

P3 invoke the virtual synchronization at events a01 and c01, respectively. As mentioned

above, we know that V1 = V2 = V3 = 0, S1 = S2 = S3 = trans, and 	1 = 	2 = 	3 = 0

all occur at events a01, b01, and c01. The other dotted line passing through events a03, b02

and c02 indicates the ending of this virtual synchronization, denoted by a03b02c02.

Note that, due to the FIFO-ordered assumptions, no messages sent in phase 0 of the

zero-one cycle y will cross the dotted line denoting the ending of corresponding virtual

synchronization (i.e., a3b2c2) shown in the �gure. For example, messages m0 and m1 will

not cross a3b2c2. Similarly, all messages sent in phase 1 of zero-one cycle y will have been

received by destination processes before the ending of the next virtual synchronization

(i.e., a03b02c02). For example, messages m2, m3, m4, m5, m0

0, and m0

1 will not cross

a03b02c02. Similarly, the same observation can be applied to the one-zero cycle y0.

6.2 Application Messages

Second, we would like to focus on the application messages shown in Figure 3. Suppose

that an application message m sent by source process Pj arrives at destination process

Pi. It is clear that we can classify the application messages into the following classes.

1. 	i = 0 and m:	 = 	i: See, e.g., messages m0, m
0

2, m
0

3, m
0

4, and m0

5. From Section

4.2, we know that messages sent to process Pi in phase 0 of the zero-one cycle y

13

can be received by Pi during the zero-one cycle y. In other words, those messages

satisfy R1, as shown in Section 4.2.

2. 	i = 1 and m:	 6= 	i: Such as m1. Figure 3 shows that message m1 is sent to

process P1 by P3 in phase 0 of the zero-one cycle y. According to R1, we know that it

can be received by P1 during the zero-one cycle y. In other words, send3(m1) 2 E
y(0)

and deliv1(m1) 2 E
y satisfy R1.

3. 	i = 1 and m:	 = 	i: Examples of this case are m0

0, m2, m3, m4, and m5. From

R2 (shown in Section 4.2), we know that all messages sent in phase 1 of the one-zero

cycle y0 from a process Pj to a process Pi can be received by Pi during the one-zero

cycle y0.

4. 	i = 0 and m:	 6= 	i: Such asm0

1. From Figure 3, we know that send3(m
0

1) 2 E
y

0(1)

and deliv1(m
0

1) 2 E
y

0

. Hence, m0

1 satis�es R2.

Note that no application messages are blocked during virtual synchronization. With Yen's

method, messages like m2, m3, m
0

2 and m0

3 are not allowed to be sent, and messages like

m4 and m0

4 must be bu�ered until after the resetting protocol.

7 Comparison

Assuming that the bit size of each component in the VC is always suÆcient, VC has

been used to solve a wide variety of problems in many applications; and we call this

VC, suÆcient VC. However, this may lead to a serious overhead in message-passing and

storage.

With Yen's protocol [17], the VC resetting protocol must be invoked carefully, such

as the dotted line shown in Figure 4(b), before any clock overow happens in order to

14

F
�

D
� D
� D
�

E
�
E
�

F
�

6
�
 WUDQV

P

� P

�

P

�

P

�

P

�

P

�

Ψ
L
 �

3
�

3
�

3
�

F�

D� D�
D�

E�
E�

F�

Ψ
L
 �

6
�
 WUDQV

P
� P

�

P
�

P
�

P
�

P
�

Ψ
L
 �

6
�
 QRUPDO

\

\

Figure 3: Example.

avoid the VC overow problem. However, this can restrict the VC property (i.e., RVC)

in the course of executing an application.

The dotted line shown in Figure 4(a) denotes the virtual synchronization by the PVC

method. With virtual synchronization associated with the proposed two representations in

PVC method, the VC property can be maintained and not be a�ected by clock overow.

Figure 4 indicates the major di�erence between PVC and RVC in time domain. Like

Yen's method, there are many phases in our PVC method. However, no auxiliary rule

is needed when we need to compare timestamps of events occurring in adjacent phases.

Note that in Yen's method process Pi is not allowed to send any application messages

when it is in trans status. Unlike Yen's method, the transmission of application messages

are not inhibited during the execution of virtual synchronization.

Due to FIFO-order and reliable channel properties, which ensure the liveness property,

8m : sendi(m) ! delivj(m), implying that m sent by Pi will be delivered on Pj after a

15

7LPH

�D� 39&

�E� 59&

Figure 4: Time Diagram of PVC and RVC.

�nite time. Furthermore, based on [17] and Property 2, we can determine that what is

true for the RVC property in a timestamping phase of Yen's protocol is to a considerable

extent also true for a zero-one cycle or one-zero cycle in our proposed PVC property.

The strength of PVC is that it o�ers a mechanism to pipeline short-term VC segments

into a long-term VC, so that clock overow can be tolerated. In other words, we may also

say that the PVC has the power to pipeline RVCs into suÆcient VC.

8 Conclusion

Without assuming that the bit size of each component in the VC is always suÆcient for

running an application, we overcome the clock overow problem, in which the VC's repre-

sentation requires a tune-up when the clock overows. In our proposed PVC, we use two

representations (i.e., magnitude representation and signed 2's complement representation)

to denote the meanings of VC in di�erent cycles (i.e., zero-one cycle and one-zero cycle)

such that the VC property is valid during the execution of any short-term or long-term

16

applications using PVC. The proposed PVC contributes to enlightening the power of tra-

ditional VC. Besides, unlike RVC, PVC relieves us from the diÆcult task of determining

the triggering condition for the clock resetting protocol because the clock overow can be

tolerated.

References

[1] G. Anastasi, A. Bartoli and F. Spadoni, A reliable multicast protocol for distributed

mobile systems: design and evaluation, IEEE Transactions on Parallel and Dis-

tributed Systems 12 (10) (2001) 1009-1022.

[2] S. Alagar and S. Venkatesan, An optimal algorithm for distributed snapshots with

causal message ordering, Information Processing Letters 50 (1994) 311-316.

[3] A. Arora, S. Kulkarni, and M. Demirbas, Resettable vector clocks, Proceedings of the

nineteenth annual ACM symposium on Principles of distributed computing (2000)

269-278.

[4] R. Baldoni, A positive acknowledge protocol for causal broadcasting, IEEE Transac-

tions on Computers 47 (12) (1998) 1341-1350.

[5] K. Birman and T. Joseph, Reliable communications in presence of failure, ACM

Transactions on Computer Systems 5 (1) (1987) 47-76.

[6] �O: Babao�glu and K. Marzullo, Consistent global states of distributed systems: fun-

damental concepts and mechanisms, in S. Mullender (editor) Distributed Systems,

Addison-Wesley, (1993) 55-96.

[7] K. Birman, A. Schiper, and P. Stephenson, Lightweight causal and atomic group

multicast, ACM Transactions on Computer Systems 9 (3) (1991) 272-314.

17

[8] K. M. Chandy and L. Lamport, Distributed snapshots: determining global states of

distributed systems, ACM Transactions on Computer Systems 3 (1) (1985) 63-75.

[9] B. Charron-Bost, Concerning the Size of logical clocks in distributed systems, Infor-

mation Processing Letters 39 (1) (1991) 11-16.

[10] J. Fidge, Timestamps in message-passing systems that preserve the partial ordering,

Proceedings of the 11th Australian Computer Science Conference 10 (1) (1988) 56-66.

[11] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Com-

munications of the ACM, 21 (7) (1978) 558-565.

[12] F. Mattern, Virtual time and global states of distributed system, in M. Cosnard

et al. (editors) Parallel and Distributed Algorithms Elsevier, North-Holland, (1989)

215-226.

[13] M. Mano and C. Kime, Logical and computer design fundamentals, Second edition,

Prentice Hall, (2000).

[14] M. Raynal, A. Schiper, and S. Toueg, The causal ordering abstraction and a simple

way to implement it, Information Processing Letters 39 (1991) 343-350.

[15] M. Raynal and M. Singhal, Logical time: capturing causality in distributed systems,

IEEE Computer 29 (2) (1996) 49-56.

[16] A. Singh, Bounded timestamps in process networks, Parallel Processing Letters 6 (2)

(1996) 259-264.

[17] L.-H. Yen, T.-L. Huang, Resetting vector clocks in distributed systems, Journal of

Parallel and Distributed Computing 43 (1997) 15-20.

18

