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Abstract

The Optimal multiple multicasts problem (OMMP) on wavelength division multiplexing (WDM )
ring networks without wavelength conversion is considered in this paper. When the physical network
and the set of multicast requests are given, OMMP is the problem that selects a suitable path or
(paths) and wavelength (or wavelengths) among the many possible choices for each multicast request
such that not any paths using the same wavelength pass through the same link. This problem can be
proven to be NP-hard problem. In the paper, a formulation of OMMP is given and a genetic algorithm
(GA) is proposed to solve it. Experimental results indicate that GA is robust for this problem.
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1 Introduction

All-optical network based on wavelength division multiplexing (WDM ) using the wavelength routing

technique is considered as a very promising approach for the realization of future large bandwidth net-

works [12][13]. WDM technology is used to accommodate several wavelength channels on a �ber. This

technology could enhance the line capacity of networks. Moreover, since the large bandwidth network re-

quires not only transmission line capacity enhancement but also cross-connect node processing capability

enhancement, WDM should be used in combination with wavelength routing [8][9].

In wavelength routing, data signals are carried on an unique wavelength from a source node to

a destination node passing through nodes where the signals are optically routed and switched without

regeneration in the electrical domain. When a physical network is given and connections among the nodes

in the network are required, we must establish an optical path (light-path) with a dedicated wavelength

for each required connection. The routing and wavelength assignment (RWA) problem is to select suitable

paths and wavelengths among the many possible choices for the required connections. To avoid collision,

no two paths using the same wavelength pass through the same link[8]. By practical limitations on

the transmission technology, the number of available wavelengths on a �ber is restricted. So, a good

solution to RWA problem is important to increase the e�ciency of WDM networks. Ring networks

are the predominant topology for current MAN/intero�ce networks, and are expected to be the �rst

topology to be used for WDM networks in real world. Wavelength conversion is the ability to convert

the data on one wavelength to another wavelength. Moreover, optical wavelength converters are still
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laboratory curiosities[11]. In ring networks, RWA without wavelength conversion is known to be NP-

hard [3]. Recently, several studies for RWA on ring networks have been performed [4][7][8][10][12][13],

researchers have concentrated on the development of heuristic algorithms. A genetic algorithm for solving

RWA problem on WDM ring has been proposed in [2].

In order to solve various application problems on a WDM network, mechanisms must be developed

to handle not only point-to-point communication but also group communication involving transporting

information in the network. A typical group communication is multicast that transports information

from one source to a set of destination nodes. A more general version of group communication is multiple

multicast that contains multiple groups of multicast, each with its own source node and destination set

[11]. Multiple multicast covers all existing types of communications. In [6], H. Shen et al studied the

multiple multicast problem in multi-hop WDM networks, they presented three heuristic e�cient algo-

rithms to construct an optimal/sub-optimal multicast tree for each multicast and minimize the network

congestion on wavelengths. To my knowledge, there is no other work reported on the problem of multiple

multicast in WDM networks.

In this paper, each WDM node is assumed to be multicast incapable and has some functions as

follows[10]:

� drop only : When the locally attached router is a destination, and there is no need to forward a

copy to any downstream node.

� continue only : When the locally attached router is not a destination and there is a down-stream

destination.

� drop and continue: When the locally attached router is a destination and there is a down-stream

destination.

Assume that each node has the function that it is possible to send multiple copies to the same

output using di�erent wavelengths and along clockwise and counter-clockwise paths. That is, each node

has multiple transmitters, and hence can transmit to as many children as needed when constructing a

multicast path. Similarly, a source can transmit to its children on di�erent wavelengths using di�erent

transmitters.

In this paper, the optimal multiple multicast problem (OMMP) on WDM ring networks without

wavelength conversion and with static tra�c is considered, since �nding an optimal solution to this

problem is NP-hard [3], an exact search for optimal solutions is impractical due to exponential growth

in execution time. Moreover, traditional heuristic methods and greedy approaches should trap in local

optima. Genetic algorithms (GA) have been trusted as a class of general-purpose search strategies

that strike a reasonable balance between exploration and exploitation. Genetic algorithm proposed by
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John Holland [5] has been constructed as robust stochastic search algorithms for various optimization

problems. GA searches by exploiting information sampled from di�erent regions of the solution space.

The combination of crossover and mutations helps GA escape from local optima. These properties of GA

provide a good global search methodology for the OMMP problem. In this paper, �rst, an formulation

of OMMP is proposed, then a genetic algorithm for �nding the minimal number of required wavelengths

on ring network without wavelength conversion is presented.

This paper is organized as follows. In Section 2, the formulation of the OMMP problem is described.

The background of Genetic Algorithm is discussed in Section 3. In Sections 4, the proposed genetic

algorithm for �nding the optimal solution of the OMMP problem is described. Experimental results and

conclusions are given in Sections 5 and 6.

2 Problem Formulation

Consider a ring network G(V;E), which has n nodes, indexed from 1 to n in the clockwise direction. In

general and most practical cases, each edge in G is bidirectional so that messages can be transmitted

in either direction. Let V be the set of nodes, V= f1; 2;...; ng; E be the set of undirected links, E =

f(1; 2); (2; 3);...; (n� 1; n); (n; 1)g; and for each link, there are W wavelengths associated with it.

There are r groups of multicast Mi =(si, Di), where Di=fd
1
i ; d

2
i ; :::; d

ki
i g, si is the source and

d1i ; d
2
i ; :::; d

ki
i are the destinations of multicast request Mi, for integers i and ki, 1 � i � r, 1 � ki � n.

Assume d1i < d2i < ::: < dkii and si=d
l
i, for some l, 1 � l � ki. Let Mi alone (without considering the

existence of other groups) can be realized by a multicast tree MTi, and all groups of multicast can be

realized by multicast forestMF=[ri=1MTi. Clearly, in the general case, many edges of MF will fail into

the same edge of G and use the same wavelength at that edge, thus causing congestion when broadcasting

these r sources simultaneously and violating the wavelength continuous constraint of WDM network.

At each node, assume that no wavelength conversion will occur and no light splitting will available.

But a separate transmitter is required for transmitting optical signals for each outgoing link. The op-

timal multiple multicast problem (OMMP) is then de�ned as follows. Given graph G(V;E) and a set

of multicast requests fMi=(si; Di)ji = 1; 2; :::; rg, �nd a multicast forest MF of requests and the wave-

length assignment of each multicast tree MTi (i=1, 2, ..., r) such that the number of used wavelengths

is minimized. The optimal multiple multicast problem (OMMP) can be proved to be NP-hard because

a special case of it is equivalent to the RWA problem.

Let MTi be the multicast tree for the multicast request Mi=(si; Di) with source si and destinations

set Di=fd
l
iji = 1; 2; :::; kig. Since d1i < d2i < ::: < dkii and si=d

l
i, for some l, 1 � l � ki. Let P c(si; d

q

i )

be a path from source node si to destination d
q

i on ring G in clockwise direction, q 2 f1,2, ..., kig, i=1,

2, ..., r. Let P r(si; d
q

i ) be a path from source node si to destination dqi on ring G in counter-clockwise
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Figure 1: (a) MulticastMi= (si, Di); (b) P
c(si; d

l�1
i ); (c)P r(si; d

l+1
i ); (d) P c(si; d

q

i ) and P
r(si; d

q+1

i ).

direction, k 2 f1, 2, ..., kig, i=1, 2, ..., r. That is,

P c(si; d
q

i ) = f
si = dli ! dl+1i ! dl+2i ! :::! dqi ifq > l

si = dli ! dl+1i ! dl+2i ! :::! dkii ! d1i ! d2i ! :::! dqi otherwise
and

P r(si; d
q
i ) = f

si = dli ! dl�1i ! dl�2i ! :::! dki ifq < l

si = dli ! dl�1i ! dl�2i ! :::! d1i ! dkii ! dki�1i ! :::! dqi otherwise
:

Thus, each MTi can be established by following methods:

(1) a clockwise-direction path: P c(si; d
l�1
i ) (as in Fig. 1-(b))

(2) a counter-clockwise-direction path: P r(si; d
l+1
i ) (as in Fig. 1-(c)), or

(3) two paths: clockwise-direction path P c(si; d
q

i ) and clockwise-direction path P r(si; d
q+1

i ) for some

q 2 Di (as in Fig. 1-(d)).

Let yw=1, if wavelength w 2 f1; 2; :::;Wg is used; yw=0, otherwise. From the discussion above,

it is easily to �nd that each multicast Mi = (si, Di) can be routed by using at most two paths

P c(si; d
q

i ) and P r(si; d
q+1

i ) for some q 2 Di. Let M be the set of selected pairs of nodes, M=f(s1; d
q1
1 ),
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(s1; d
q1+1
1 ); (s2; d

q2
2 ); (s2; d

q2+1
2 ); :::;(sr; d

qr
r ), (sr; d

q1+1
r )g. Thus, the goal is to assign wavelengths to paths

in M so that the number of used wavelengths can be minimized.

Let P c
k
be the path for connection cz = (sz ; dz) 2M having clockwise-direction and P r

k
be the path for

connection cz = (sz; dz) 2M having counter-clockwise direction. The set of possible paths for all cz inM

is denoted by P = [cz2MfP
r
k ; P

c
kg. Then, the set of connections whose clockwise and counter-clockwise

direction paths pass edge e 2 E are denoted by M c
e and M r

e [8].

In WDM network, given the multiple multicast request, the problem is to select paths on G for all

required multicast request and determine the wavelength assignments of paths such that no two paths

using the same wavelength pass through the same link. The objective is to minimize the number of

required wavelengths.

With the above notation, the OMMP problem can be formulated as the follows:

Objective : min

X
w2W

yw (1)

s.t.

X
w2W

xkwc � 1; for all e 2 P c
k (2)

X
w2W

xkwr � 1; for all e 2 P r
k (3)

X
w2Mc

e

xkwc +
X

w2Mr
e

xkwr � yw ; for all w 2 W; e 2 E (4)

xkwc; x
k
wr 2 f0; 1g; for all ck 2 M (5)

yw 2 f0; 1g; for all w 2 W (6)

The binary decision variable xkwc = 1, if wavelength w is selected to establish clockwise-direction path

P c
k ; x

k
wc = 0, otherwise. Similar, the binary decision variable xkwr = 1, if wavelength w is selected to

establish counterclockwise-direction path P r
k ; x

k
wr = 0, otherwise. The binary decision variable yw = 1,

if wavelength is used; yw = 0, otherwise. The objective is to minimize the number of wavelengths used.

Constraints (2) and (3) mean that every required multicasts must be established. Constraints (4) ensure

that the paths using wavelength can be selected only when wavelength is used and at most one path

using wavelength passes edge. The number of available wavelengths is assumed to be large enough to

establish all the required connections.
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Figure 2: Example of multiple multicast.

Example 1. Consider the graph shown in Fig. 2. There are eight nodes and links in ring network

G; each �ber between two nodes can provides 4 wavelengths, i.e., W=4. r=4 groups of multicast are re-

quested to be established, they are M1=(1,f1,3,7g),M2=(2,f2,7,8g),M3=(4,f3,4,5,6g),M4=(6,f3,6,8g).

A possible assignment of Fig. 2 is shown in Fig. 3. Observation form Fig. 3 shown that four wavelengths

are used to assign these multicast requests.

Figure 3: Possible assignment of the Example 1.

3 Concept of GA

The search space in GA is composed of possible solutions to the problem. A solution in the search

space is represented by a sequence of 0s and 1s. This solution string is referred as a chromosome in
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the search space. Each chromosome has an associated objective function called the �tness. A good

chromosome is the one that has a high/low �tness value, depending upon the nature of the problem

(maximization/minimization). The strength of a chromosome is represented by its �tness value. Fitness

values indicate which chromosomes are to be carried to the next generation. A set of chromosomes and

associated �tness values is called the population. This population at a given stage of GA is referred to

as a generation. The general GA proceeds as follows:

Genetic Algorithm()

Begin

Initialize population;

while (not terminal condition) do

Begin

choose parents from population; /* Selection */

construct o�spring by combining parents; /* Crossover */

optimize (o�spring); /* Mutation */

if suited (o�spring) then

replace worst �t (population) with better o�spring;

/*Survival of the �ttest */

End;

End.

There are three main processes in the while loop for GA:

(1) The process of selecting good strings from the current generation to be carried to the next

generation. This process is called selection/reproduction.

(2) The process of shu�ing two randomly selected strings to generate new o�spring is called crossover.

Sometimes, one or more bits of a chromosome are complemented to generate a new o�spring. This process

of complementation is called mutation.

(3) The process of replacing the worst performing chromosomes based on the �tness value.

The population size is �nite in each generation of GA, which implies that only relatively �t chromo-

somes in generation (i) will be carried to the next generation (i+ 1). The power of GA comes from the

fact that the algorithm terminates rapidly to an optimal or near optimal solution. The iterative process

terminates when the solution reaches the optimum value. The three genetic operators, namely, selection,

crossover and mutation, are discussed in the next section.
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3.1 Selection / Reproduction

Since the population size in each generation is limited, only a �nite number of good chromosomes will

be copied in the mating pool depending on the �tness value. Chromosomes with higher �tness values

contribute more copies to the mating pool than do those with lower �tness values. This can be achieved

by assigning proportionately a higher probability of copying a chromosome that has a higher �tness

value[1]. Selection/reproduction uses the �tness values of the chromosome obtained after evaluating the

objective function. It uses a biased roulette wheel[1] to select chromosomes, which are to be taken in the

mating pool. It ensures that highly �t chromosomes (with high �tness value) will have a higher number of

o�spring in the mating pool. Each chromosome (i) in the current generation is allotted a roulette wheel

slot sized in proportion (pi) to its �tness value. This proportion pi can be de�ned as follows. Let Ofi be

the actual �tness value of a chromosome (i) in generation (j) of g chromosomes, Sumj =
Pg

i=1Ofi be

the sum of the �tness values of all the chromosomes in generation j, and let pi = Ofi=Sumj.

When the roulette wheel is spun, there is a greater chance that a better chromosome will be copied

into the mating pool because a good chromosome occupies a larger area on the roulette wheel.

3.2 Crossover

This phase involves two steps: �rst, from the mating pool, two chromosomes are selected at random

for mating, and second, crossover site c is selected uniformly at random in the interval [1; n]. Two new

chromosomes, called o�spring, are then obtained by swapping all the characters between positions c+ 1

and n. This can be shown using two chromosomes, say P and Q. each of length n = 6 bit positions

chromosome P: 111j000;

chromosome Q: 000j111.

Let the crossover site be 3. Two substrings between 4 and 6 are swapped, and two substrings between

1 and 3 remain unchanged; then, the two o�spring can be obtained as follows:

chromosome R: 111j111;

chromosome S: 000j000.

3.3 Mutation

Combining the reproduction and crossover operations may sometimes result in losing potentially useful

information in the chromosome. To overcome this problem, mutation is introduced. It is implemented

by complementing a bit (0 to 1 and vice versa) at random. This ensures that good chromosomes will not

be permanently lost.
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4 Genetic Algorithm (GA) for WDM multiple multicast

In this section, the details of GA developed to solve the optimal multiple multicast problem (OMMP) on

WDM ring network are given. The development of GA requires: (1) a chromosomal coding scheme, (2)

a �tness function de�nition, (3) genetic crossover operators, (4) mutation operators, (5) a replacement

strategy, and (6) termination rules.

4.1 Encoding

Since the problem involves representing paths of multiple multicasts and wavelengths, a coding scheme

that uses integral numbers is employed. A chromosome (one-dimension arrays with size 4�r) is introduced

to represent the routing paths and assignments of paths which denoted routing chromosome R. Another

chromosome is used to represent the usage of the wavelength, denoted as wavelength chromosome Y . The

structure of routing chromosmeR is divided into two parts, the �rst part denoted asMG (multicast gene),

MG = fmg11; mg
2
1; mg

1
2; mg

2
2; :::; mg

1
r; mg

2
rg, where the element mg

k
i 2 Di, for i = 1; 2; :::; r;k = 1; 2. If

mg1i = si (1 � i � r), the ith multicast request is routed through the counter-clockwise-direction path

P r(si; d
j+1
i ); if mg2i = si (1 � i � r), the ith multicast request is routed through the clock-direction path

P c(si; d
j�1
i ); otherwise, the ith multicast request is routed through the clockwise-direction path P c(si; d

q
i)

and clockwise-direction path P r(si; d
q+1
i ) for some dqi 2 Di. The second part of the routing chromosome

R denoted as AG (assignment gene); AG = fag11; ag
2
1; ag

1
2; ag

1
2; :::; ag

1
r; ag

2
rg, where both elements ag1q

and ag2q , q=1, 2, ..., r; are fell in f1; 2; :::;Wg and used to represent the wavelength assignments of

paths P c(si; d
q
i ) and P r(si; d

q+1
i ); respectively. The structure of the routing chromosome R is shown in

Fig. 4-(a) and the routing chromosome of the possible assignment of the Example 1 in Fig. 2 is shown in

Fig. 4-(b).

A one-dimension array Y=fyw jw = 1; 2; :::;Wg is used to represent the wavelength chromosome,

where yw = 1, if the wth wavelength is used; yw = 0, otherwise. For example, the chromosome of the

possible routing paths and wavelength assignment of the Example 1 in Fig. 2 is shown in Fig. 5. It is

worth noting that if there exist one element agki in AG such that agki = w and agki 6= si ; then yw = 1,

for i=1, 2, ..., r; k=1, 2; w = 1, 2, ..., W . For example, the relationships of routing and wavelength

chromosomes of the possible assignment of the Example 1 in Fig. 2 is shown in Fig. 5.

4.2 Fitness function de�nition

Generally, genetic algorithms use �tness functions to map objectives to costs and achieve the goal of

�nding optimally results. According to the content of the routing chromosome, the value of wavelength

chromosome can be determined. Since the goal is to minimize the number of required wavelengths, the

�tness function is
PW

w=1 yw . A �tness function value is associated with each wavelength chromosome,
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Figure 4: (a) Structure of routing chromosome R. (b) Routing chromosome of the Example 1.

Figure 5: Routing chromosome of the Example 1.
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which is the same as the measure mentioned above. The objective function is

minimize

WX
w=1

yw: (7)

Note that if constraints (2), (3) and (4) in Section 2 are considered with this objective function,

then a complete problem formulation is found. While breeding chromosomes, the genetic algorithm does

not require the chromosome to reect a feasible solution. Thus, a penalty is needed to attach to the

�tness function in the event that the solution is not constraint-satis�ed. For a pair of routing paths

pki=P
c(si; d

li
i ) ( if k=1 or p

k
i = P r(si; d

li
i ) if k=2) and p

k0

j =P (si0 ; d
l
i0

i0 ) (if (k=1 or p
k0

j = P r(sj ; d
l0
i

j ) if k =

2) in routing chromosome R, let conflict(pki ; p
k0

j ) = 1, if pki and pk
0

j are assigned to the same wavelength

and the routing paths of these paths are overlapped. Then, the formulation above can be rewrote in an

unconstrained form:

minimize cost =
WX
w=1

yw + �
rX

i=1

rX
j=1

2X
k=1

2X
k0=1

conflict(pki ; p
k0

j ); (8)

where � is the penalty weight. It is worth noting that the value of � should be greater than W . Since

the best-�t chromosomes should have a probability of being selected as parents that is proportional to

their �tness, they need to be expressed in a maximization form. This is done by subtracting the objective

from a large number Cmax. Hence, the �tness function becomes:

maximum Cmax �

0
@

WX
w=1

yw + �
rX

i=1

rX
j=1

2X
k=1

2X
k0=1

conflict(pki ; p
k0

j )

1
A ; (9)

where Cmax denotes the maximum value observed, so far, of the cost function in the population. Let

Ccost be the value of the cost function for the chromosome; Cmax can be calculated by the following

iterative equation:

Cmax = maxfCmax; Ccostg; (10)

where Cmax is initialized to zero.

For the computation of penalty cost, consider a routing chromosome R, if two routing paths are

assigned to the same wavelength and the routing paths are overlapped then conict occurred. For each

pair of routing paths, if conict occurred then a penalty should be attached into the cost function. Then

give that

conflict(pki ; p
k0

j )=f
1 if (agki = agk'j ) and (paths pki and p

k0

j are overlapped)

0 otherwise:

Clearly, whether two given paths are overlapped or not can be determined in constant time on ring

network. Thus, the time spent for computing penalty cost is O(r2).
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4.3 Genetic crossover operator

Five types of crossover operators were used to develop this algorithm: (1) single point crossover (SPC ),

(2) Single point wavelength crossover (SPWC), (3) Single point routing path crossover (SPRPC), (4)

Single assigning wavelength exchanging operator (SAWEO), and (5) Wavelength exchanging operator

(WEO). These operators only operated on the routing chromosome.

� Single point crossover (SPC): Randomly select a crossover point from 1 to r. Two routing chromo-

somes are crossovered as following example.

Parent P1 is

7 1 2 7 6 3 3 8 1 2 2 2 3 2 3 4 and

parent P2 is

1 7 7 2 3 4 6 3 2 1 2 2 1 2 1 4 .

Assume crossover point is 2, after operating, children C1 and C2 are as follows:

C1: 7 1 2 7 3 4 6 3 1 2 2 2 1 2 1 4

C2: 1 7 7 2 6 3 3 8 2 1 2 2 3 2 3 4 .

� Single point wavelength crossover (SPWC): Randomly select a crossover point from 1 to r. Two

routing chromosomes are crossovering as following example, it it worth notice that only the AG

part of the routing chromosome is applied.

Parent P1 is

7 1 2 7 6 3 3 8 1 2 2 2 3 2 3 4 and

parent P2 is

1 7 7 2 3 4 6 3 2 1 2 2 1 2 1 4 .

Assume crossover point is 2, after operating, children C1 and C2 are as follows:

C1: 7 1 2 7 6 3 3 8 1 2 2 2 1 2 1 4, and

C2: 1 7 7 2 3 4 6 3 2 1 2 2 3 2 3 4 .

� Single point routing path crossover (SPRPC): Randomly select a crossover point from 1 to r. Two

routing chromosomes are crossovering as following example, it it worth notice that only the MG

part of the routing chromosome is applied.

Parent P1 is

7 1 2 7 6 3 3 8 1 2 2 2 3 2 3 4 and
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parent P2 is

1 7 7 2 3 4 6 3 2 1 2 2 1 2 1 4 .

Assume crossover point is 2, after operating, children C1 and C2 are as follows:

C1: 7 1 2 7 6 3 3 8 1 2 2 2 1 2 1 4, and

C2: 1 7 7 2 3 4 6 3 2 1 2 2 3 2 3 4 .

� Single assigning wavelength exchanging operator (SAWEO): First, randomly select one chromosome

for operating from previous generation. Then randomly select i from 1 to r, the values of ag1i and

ag2i in these routing chromosome are exchanged. Assume

parent P1 is

7 1 2 7 6 3 3 8 1 2 2 2 3 2 3 4 ,

i=4, and routing paths agk4 are selected.

After operating, parent P1 is changed to

7 1 2 7 6 3 3 8 1 2 2 2 3 2 4 3 .

� Wavelength exchanging operator (WEO): Randomly select one chromosome for operation from

previous generation. Then, randomly select two wavelength assignment agki and agk
0

j , 1 � i; j � r;

k, k0=1,2 and the assigned wavelengths of these two paths are exchanged. Assume

parent P1 is

7 1 2 7 6 3 3 8 1 2 2 2 3 2 3 4 ,

and assignments ag12 and ag24 are selected.

After operating,

parent P1 is changed to

7 1 2 7 6 3 3 8 1 2 4 2 3 2 3 2 .

4.4 Mutations

Five types of mutations are used to develop the genetic algorithm: (1) Single routing path mutation

(SRPM), (2) Multiple routing paths mutation (MRPM), (3) Single wavelength assignment mutation

(SWAM), (4) Multiple wavelength assignment mutation (MWAM), and (5) Multicast assignment mu-

tation (MAM).

� Single routing path mutation (SRPM): Randomly select a multicast Mi in routing chromosome,

the single routing path mutation (SRPM) changes the destination of the clockwise routing path
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P c(si; mg
1
i ) to a random integral number dqi , which is in Di = f d1i , d

2
i , ..., d

ki
i . Then the value of

the gene mg2i is changed to d
q+1

i :

Assume parent P1 is

7 1 2 7 6 3 3 8 1 2 2 2 3 2 3 4 ,

routing path mg13 is selected, D3 = f3; 4; 5; 6g, and assume new destination dq
3
= 5:

After operating,

parent P1 is changed to

7 1 2 7 5 6 3 8 1 2 4 2 3 2 3 2 .

� Multiple routing paths mutation (MRPM): Randomly select z (1 � z � jM j) multicasts in routing

chromosome R, the MRPM changes each destination of the clockwise routing path P c(si; mg
1
i ) to

a random integral number dqi , which is in Di. Then the value of the gene mg2i is changed to dq+1i .

� Single wavelength assignment mutation (SWAM): Randomly select a path, the single wavelength

assignment mutation (SWAM) changes the assignment wavelength of the path to a random integral

number w, which is in f1, 2, ..., Wg.

Assume

parent P1 is

7 1 2 7 6 3 3 8 1 2 2 2 3 2 3 4 ,

ag12 is selected and w = 4.

After mutation,

parent P1 is changed to

7 1 2 7 6 3 3 8 1 2 4 2 3 2 3 4 .

� Multiple wavelength assignment mutation (MWAM): Randomly select z (1 � z � jM j) paths, the

MWAM changes the assignment wavelengths of these paths to random integral integers, which are

in f1, 2, ...,Wg.

Assume

parent P1 is

7 1 2 7 6 3 3 8 1 2 2 2 3 2 3 4 ,

z=4, ag12; ag
1
3; ag

2
3; ag

2
4 are selected and the corresponding wavelengths are f4, 2, 3, 2g.

After mutation,
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parent P1 is changed to

7 1 2 7 6 3 3 8 1 2 4 2 2 3 3 2 .

� Multicast assignment mutation (MAM): Randomly select a multicast, the MAM changes the as-

signment wavelengths of the clockwise path and the counter-clockwise path to the same random

integral number w, which is in f1, 2, ..., Wg.

Assume

parent P1 is

7 1 2 7 6 3 3 8 1 2 2 2 3 2 3 4 ,

ag13 and ag
2
3 are selected, and w=4.

After mutation,

parent P1 is changed to

7 1 2 7 6 3 3 8 1 2 2 2 4 4 3 4 .

4.5 Replacement strategy

This subsection discusses a method used for creating new generation after crossover and mutation is car-

ried out on the chromosomes of previous generation. There are several replacement strategies proposed in

the literature, a good discussion can be found in [1] . The most common strategies are to probabilistically

replace the poorest performing chromosomes the previous generation. The elitist strategy appends the

best performing chromosome of a previous generation to the current population and thereby ensures that

the chromosome with the best objective function value always survives to the next generation.

Initially, assume Npopulation be the number chromosomes to be generated and Nparent connection

chromosomes are randomly constructed. In the process of selection, Npopulation=2 pairs of connections

are randomly selected for crossover to generated the new generation of chromosomes. After crossover,

chromosomes are sorted according to the �tness function in increasing order.

The algorithm developed here combines both the concepts maintained above. Each o�spring generated

after crossover is added to the new generation if it has a better objective function value than both of its

parents. If the objective function value of an o�spring is better than only one of the parents, then we

select a chromosome randomly from the better parent and the o�spring. If the o�spring is worse than

both parents then any one of the parents is selected at random for the next generation. This ensures that

the best chromosome is carried to the next generation, while the worst is not carried to the succeeding

generations.
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4.6 Termination rules

Execution of GA can be terminated when the number of generations exceeds an upper bound (Ngeneration)

speci�ed by the user.

5 Experimental Results

In order to evaluate the performance of the proposed genetic algorithm, the algorithm has been imple-

mented and applied it to solve problems that were randomly generated. The results of these experiments

are reported below. In all the experiments, the implementation was conducted in C, and all the experi-

ments were run on a personal computer (PC) with a Pentium III 1GHZ CPU and 512MB RAM.

The algorithm has been test on ring network with 20 nodes. For the test, a set of multicast requests

is generated in all nodes in the networks. Assume W=30, r=20, and the maximal number of destinations

of each multicast request is set to be constant MAXD=5.

In the following, the e�ects of the various parameters of the genetic algorithm are discussed. The

parameters of GA are: crossover probability Pc=1.0, mutation probability Pm=0.3, population size

Npopulation =1000, generation size Ngeneration=2000, and �= W .

(1) E�ect of crossover probabilities: In Fig. 6, the e�ect of the crossover probability on the evolution

of the required wavelengths in GA is presented. In this experiment, assume Pc is in f0.50, 0.55, 0.60, 0.65,

0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00 g It can be found that the algorithm leads to both fast convergence

and to the global optimal when the crossover probability is large (0.75, 0.90, 1.00).

(2) E�ect of mutation probabilities: In Fig. 7, the e�ect of the mutation probability on the evolution

of the required wavelengths in GA is presented. In this experiment, assume Pc is in f0.00, 0.10, 0.20, 0.30,

0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00 g It can be found that the algorithm leads to both fast convergence

and to the global optimal when the mutatio probability is large (0.70, 0.80, 0.90).

(3) E�ect of population size: In Fig. 8, the e�ect of the di�erent number of chromosome in populations

(Npopulation), where Npopulation is in f200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000g. It can be

easily to �nd that Npopulation =1600 or 2000 get the best results; Npopulation= 400 is the worst.

6 Conclusions

In this paper, the optimal multiple multicast problem (OMMP) on WDM ring networks without wave-

length conversion and with static tra�c is investigated and formulated. Since �nding the optimal solution

of this problem can be found to be NP-hard, a genetic algorithm is proposed to solve this problem. Sim-

ulation results show that the proposed genetic algorithm is robust for this problem.

In the proposed method, routing and wavelength chromosomes are used to represent the routing
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Figure 6: Experiment of di�erent values of crossover probabilities.

paths of multicasts and the usage of wavelengths, respectively. In the GA method, three general genetic

operators - selection, crossover, and mutation - are employed. Five types of operators (SPC, SPWC,

SPRPC, SAWEO, and WEO) and �ve types of mutations (SRPM, MRPM, SWAM, MWAM and MAM)

are employed in the proposed genetic algorithm. Experimental results indicate that GA runs e�ciently.
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Figure 7: Experiment of di�erent values of mutation probabilities.

Figure 8: Experiment of di�erent values of population size.
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