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Abstract 

This paper describes the architecture of Squid proxy cache. It discusses the 

improvements in Squid achieved by three principles: reducing the file management 

overheads by using a large file, increasing CPU utilization for Squid with 

asynchronous I/O, and using scalable event notification facility, Kqueue, to improve 

proxy server under heavy loads. We implemented our proxy server based on the Squid 

according to the above three principles. From test results, we improve 390 req/sec to 

the version of Squid 2.3 stable 4. We also have about 310 req/sec improvement 

compared with the version of Squid 2.4 stable 6, the newest stable version now. 
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1. Introduction 

From some statistics, there are about 27 million web sites over the world [9] 

[11]. Since Internet is so developed, the traffic load of Internet becomes heavier than 

before.  

In Internet world, the proxy server is a good choice for saving network 

bandwidth and reducing users’ waiting time. From recent research, some results show 

that disk I/O overhead is an important factor of proxy performance. For example, 

Rousskov and Soloviev found that disk delay time contributes about 30% toward total 

hit response time [13]. Mogul said that they find the disk I/O overhead of caching is 

much higher than the latency improvement from cache hit in the web proxy at Digital 

Palo Alto firewall, so the server runs in non-caching mode for saving the disk I/O 

overhead [8]. 

Proxy server needs a large number of disk I/O accesses. If we can reduce the 

overhead of disk I/O, we may get large performance improvement of proxy server.  

We use two approaches to improve the performance of disk I/O. First, we reduce file 

management overheads. We try to store all objects in a large file, and then we can 

reduce system calls of file operations. Moreover, we implement the large file with raw 

device to increase performance. Second, we try to raise the usage of CPU by using 

asynchronous I/O. 
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Squid uses select() and poll() system calls to detect network I/O events. The 

performance is not good when load is heavy. So, we use the Kqueue [4] to increase 

the Squid performance under heavy load.  

2. Background 

Squid [12] springs from the Harvest cache project [2]. It was designed to use a 

single process to eliminate CERN’s [5] overheads of process creation and termination. 

Rousskov and Soloviev analyzed the performance of the Squid and observed that disk 

delays contribute about 30% toward total hit response time. Markatos, Katevenis, 

Pnevmatikatos, and Flouris [7] studied the overheads associated with disk I/O for web 

proxies with their proxy simulator and proxy trace, and proposed some secondary 

storage management alternatives that improve performance. 

   Operating system researchers and vendors have investigated the impact of various 

kernel mechanisms on Internet server performance. Banga and Mogul [1] reported 

that their scalable versions of the select() system call and the descriptor allocation 

algorithm have led to an improvement of up to 58% in Web proxy throughput. Lemon 

implemented Kqueue: a generic and scalable event notification facility for FreeBSD.  

3. Squid Architecture 

The objective of a Web proxy is to save the backbone WAN bandwidth, and to 

reduce the request response time to the clients. The performance gain provided by 
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Web proxies is significant. Typically a Web proxy, as part of the network system, is 

installed in LANs and is directly attached to the gateway router connecting the LAN 

to the backbone WAN. 

The Squid proxy is a public domain Web cache sprang from the Harvest cache 

project. It is commonly used for caching Web data. Figure 1 illustrates the architecture 

of the Squid. Functionally, the Squid was designed to be an event-driven server 

consisting of a single thread. The thread, event manager in figure 1, polls the network, 

disk, and timeout events by select( ) or poll( ) system call and then decides which 

events are ready to be proceeded. Once the ready events have been decided, the thread 

invokes the event handlers in protocol manager or storage manager corresponding to 

the ready events. 

 

 

 

 

 

 

 

 Figure 3.1 Squid block diagram.
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To achieve high performance through parallelism, the thread simulates the 

finite-state machine. Each connection to the Squid must go through several states 

before the request from a connection is satisfied. The states of all connections are 

maintained into a large file descriptor table in the Squid. 

Squid keeps meta-data about the cache contents in main memory. This enables 

the Squid to determine whether it can serve a given request from its cache without 

accessing the disk. Squid has a memory buffer used for storing intrinsic objects, for 

storing the most recently used objects, and for storing error responses which resulted 

from bad requests. This buffer is usually organized into a high-level main cache. To 

reduce DNS overheads, Squid implements its own DNS cache and uses a configurable 

number of “DNS server” which cooperates with the Squid to achieve non-blocking 

DNS requests. 

Architecture of the Squid architecture has some interesting consequences [6]: 

• A large number of file descriptors must be managed by a single process. 

• Many operating system facilities must be replicated within the Squid. 

• Storing the meta-data for each cached object in memory means that main 

memory utilization grows with the number of objects cached or the proxy 

cache size. Increasing the cache size requires increasing both disk and main 

memory. 
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4. Principles of Improving Squid Performance  

In this paper, we use three approaches to improve the Squid’s single node 

performance. 

4.1 Reduce the file management overheads:  

In the Squid, one object is saved within a unique file. Since there are so many 

objects that the Squid should handle, it needs many system calls to deal with the file 

operations (such as file open, file close). Markatos, Katevenis, Pnevmatikatos, and 

Flouris observed file management overheads incurred by “one file per objects”. So, 

we try to store all objects in a large file cache. We can reduce system calls of file 

operations and then reduce file management overheads. In our implementation we 

only need to open file one time.  

Usually there are two methods in UNIX-like system to implement a large file: 

one by UNIX File System, the other by raw device. A raw device, also known as a 

raw partition, is a disk partition that is not mounted and not written to via the UNIX 

file system, but is accessed via a character-special device driver. It is up to the 

application how the data are written since there is no file system to do this on the 

application's behalf. Raw devices are not like regular file management systems. The 

information they store cannot be identified or accessed by users. There can be a 

performance benefit from using raw devices, since a write to a raw device bypasses 
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the UNIX buffer cache, the data is transferred directly to the disk. Another benefit of 

raw devices is that no file system overhead is incurred in terms of I-node allocation 

and maintenance or free block allocation and maintenance. 

The major disadvantage of using a raw device file is that the maximum file size 

is fixed by the size of the partition. If the partition becomes full, the raw device file 

must be moved to a larger partition. In the worst case, the disk must be partitioned in 

order to create a larger partition.  

They are almost the same for coding on raw device and on the UNIX file system 

except for the file open. Figure 4.1 shows two examples for file open in raw device 

and UNIX file system. 

 

 

Raw device: 
#define CacheFile "/dev/ad0s2“ 
cache_fd = open(CacheFile, O_RDWR); 

Unix File System: 
#define CacheFile "/cache/Cache“ 
cache_fd = open(CacheFile, O_RDWR); 

Figure 4.1 The usage of file open on raw device and on the UNIX file system 

The first field of open system call is the position and name of the file you want 

to open in the UNIX file system. But it is the position and device name in raw device. 

In this example of raw disk, “ad0s2” means the second partition of the first IDE hard 
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disk, and device names are always in “/dev”. These are fixed when you select a 

partition. In the other hand, when you select the UNIX file system to handle your file 

operation, you can decide the position and name of the file you want to open. In the 

example of UNIX file system, “/cache/Cache” just means the name of the file is 

“Cache”, and the position is in “/cache/”. 

To get speedier, we modify the Squid to use raw device as a large file cache. 

Some important points need to be considered when we use the raw device:  

• The first 10KB must be reserved for the header. 

• Overlapping partitions must be manually avoided.  

• It should be verified that backup procedures include raw devices.  

• Always take a complete backup before enabling use of a raw device.  

4.2 Squeeze more CPU out to the Squid:  

In recent research, asynchronous I/O outperforms synchronous I/O over 35% [3]. 

Because the Squid just uses a single thread to manage all events, if it uses 

synchronous I/O read or write, that makes it poor performance. So it is better for the 

Squid to use asynchronous I/O rather than synchronous I/O. Some UNIX systems 

(such as FreeBSD) provide asynchronous I/O mechanisms, which allow processes to 

perform I/O without blocking. Using asynchronous I/O can improve I/O performance. 

We modify the Squid to run with parallel reads and parallel writes by asynchronous 
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I/O. That thereby reduces I/O waiting time. The Squid with asynchronous I/O 

maximizes I/O throughput by parallelizing reads and writes. 

4.3 Use scalable kernels:  

In Gaurav and Jeffrey study [1], they investigated scalable kernel performance 

for Internet servers under realistic loads and found their scalable version of select( ) 

improving the performance of Web servers. Kqueue is a new mechanism on FreeBSD 

that allows the application to register its interest in a specific event, and then 

efficiently collect the notification of the event later. The primary function of Kqueue 

is to create a system that would be efficient and scalable to a large number of 

descriptors. The secondary function is to make the system flexible. We use the 

primary function to increase the Squid performance under heavy load. The Squid uses 

select( )or poll( ) to register events and poll the ready events. In this paper, we use 

Kqueue to replace select( ) and poll( ) in the Squid. Table 4.1 summarizes our 

modification. 

The first column of the table is activities that the event-driven server should take, 

the second one is description of variables and function calls, and the third one is the 

code locations we need to modify. 
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5. Benchmark 

5.1 Web polygraph 

Table 4.1: The summary of modifying the Squid to use Kqueue 

Activity Variables and Function Calls Code Location 
 
Create Kqueue 

1. int  kq : queue for all events  
2. kqueue( ) : creates a new Kqueue.   

1. comm._select.c 
2. comm._select.c : 

comm._select_init( )  
 
Register events 

1. kevent[ ] : This data structure would be 
 passed to Kqueue. 

2. ke_change( ) : This is an addition to the 
Squid original code. 

1.comm.c: 
commSetSelect( ) 

2.comm.c: 
  ke_change( ) 

 
Poll Kqueues  

1. kevent[ ] : This data structure would be 
passed to Kqueue 

2. kevent( ): Polling Kqueue to detect the 
ready events. 

1. comm._select.c : 
comm._select( ) 

2.comm_select.c : 
comm._select( ) 

Handle the 
ready events 

1. Invoke handlers corresponding the ready 
events 

1. comm._select.c : 
comm._select( ) 

Polygraph [10] is a set of programs that simulate Web clients and servers. 

Polygraph can be configured to send HTTP requests through a proxy. The scheme is 

shown as Figure 5.1. The benchmarking results can be used for tuning proxy 

performance, evaluation of caching solutions, and for many other interesting activities. 

There are two main processes “polysrv” and “polyclt” to simulate server and client 

behavior in Internet. 

5.2 Workload 

The workload file is polymix-3.pg. There are some important features. We will 

mention these as the following. 
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Figure 5.1: Polygraph working structure 
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5.2.1 Phase schedule  

Table 5.1 describes all the important phases in a PolyMix-3 test. Not counting 

the fill phase, the test takes about 12 hours. Filling the cache usually takes an 

additional 12-24 hours, depending on the product. 

5.2.2 Content types  

PolyMix-3 defines a mixture of content types. Each content type has the 

following properties: popularity, content size distribution, cachability percentage, 

life-cycle parameters, and file name extensions distribution. The approximate 

parameters for the first four properties are given in Table 5.2. 
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5.2.3 Simulated robots and servers 

A single Polygraph client machine supports many simulated robots. A robot can 

emulate various types of Web clients, from a human surfer to a busy peer cache. All 

Table 5.1: Phase schedule 

Phase Name Duration Activity 
framp 30 min The load is increased from zero to the peak fill rate. 

fill variable The cache is filled twice, and the working set size is 
frozen. 

 
fexit 

30 min The load is decreased to 10% of the peak fill rate. At the 
same time, recurrence is increased from 5% DHR to its 
maximum level. 

inc1 30 min The load is increased during the first hour to reach its 
peak level. 

top1 4 hours The period of peak ``daily'' load. 

dec1 30 min The load steadily goes down, reaching a period of low 
load. 

idle 30 min The ``idle'' period with load level around 10% of the 
peak request rate. 

inc2 30 min The load is increased to reach its peak level again. 
top2 4 hours The second period of peak ``daily'' load. 
dec2 30 min The load steadily goes down to zero. 

 

Table 5.2: Content types 

Type Portion Reply Size Cachability Expiration 
Image 65.0% exp(4.5KB) 80% logn(30day, 7day) 
HTML 15.0% exp(8.5KB) 90% logn(7day, 1day) 
Download 0.5% logn(300KB,300KB) 95% logn(0.5year, 30day) 
Other 19.5% logn(25KB,10KB) 72% unif(1day, 1year) 
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robots in PolyMix-3 are configured identically, except that each has its own IP 

address. It limits the number of robots (and hence IP aliases) to 1000 per client 

machine. A PolyMix-3 robot requests objects using a Poisson-like stream, except for 

embedded objects (images on HTML pages) that are requested simulating cache-less 

browser behavior. A limit on the number of simultaneously open connections is also 

supported, and may affect the request stream. PolyMix-3 servers are configured 

identically, except that each has its own IP address. 

5.3 Experimental platform 

Our proxy server is based on the Squid-2.3 stable 4 and we use FreeBSD 4.1 

version as the operation system. Table 5.3 summarizes the hardware and software of 

experimental platform. 

Table 5.3: Experimental equipment 

 Proxy server Server machine Client machine 

 
Hardware 

CPU:PIII 650*2 
Memory: 1G MB 
HDD: SCSI 9G*6 

CPU:PIII 800*1 
Memory: 256 MB 
HDD: IDE 30G*1 

CPU:PIII 800*1 
Memory: 256 MB 
HDD: IDE 30G*1 

 
Software 

OS: FreeBSD 4.1 
Our proxy server 

OS: FreeBSD 3.4.TMF
Polygraph-2.5.4 
Polymix-3.pg 

OS: FreeBSD 3.4.TMF
Polygraph-2.5.4 
Polymix-3.pg 

 

6. Results 

Before we discuss our results, we first define some terminologies: 
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Throughput: The number of requests that proxy server replies to client in one second.  

Response time: The time it spends from the client side requesting to proxy server to 

receiving a response from proxy server. Its acceptable value is under 

3 seconds. 

Peak request rate: The maximum rate that client side offers. The unit is requests per 

second. 

Miss time: The response time when request is a miss request. 

Hit time: The response time when request is a hit request. 

Hit ratio: (The amount of hit requests) / (the amount of total requests) 

Errors: The percentage of errors happened during the experiment.  

Duration: Test duration. 

Phases: The phases we extract data to make this report. We usually use the data of 

Top 1 and Top 2 to be our test source.  

6.1. Test result of traditional Squid 

6.1.1. The Squid 2.3 stable 4 

This version is what we are based on. The test result is as Table 6.1. 
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Table 6.1: Test result of the Squid 2.3 stable 4 

Throughput: 60.02 rep/sec
Response time: 1809.19 msec

- misses: 3426.94 mese
- hits: 393.26 msec

Hit Ratio: 56.14 %
Errors: 0.00 %

Duration: 8.00 hour
Phases: top1 & top2

 

6.1.2 The Squid 2.4 stable 6 

This version is the newest stable version now. So, we take it to be a comparison 

with our proxy server. The test result is as Table 6.2. 

Table 6.2: Test result of the Squid 2.4 stable 6 

Throughput: 139.96 rep/sec
Response time: 1481.91 msec

- misses: 2847.03 mese
- hits: 172.05 msec

Hit Ratio: 53.71 %
Errors: 0.00 %

Duration: 8.00 hour
Phases: top1 & top2

 

6.2 The test results of our proxy server 

6.2.1 Version 1 of our proxy server 

Version 1, we call expv1, mainly includes the usage of one large file with raw 

device and asynchronous I/O. The best peak request is 400 req/sec. The result is as  
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Table 6.3: 

Table 6.3: Test result of expv1 

Throughput: 399.95 rep/sec
Response time: 2631.29 msec

- misses: 4205.21 mese
- hits: 1039.02 msec

Hit Ratio: 52.91 %
Errors: 0.00 %

Duration: 8.00 hour
Phases: top1 & top2

  

6.2.2 Version 2 of our proxy server 

Version 2, we call expv2, is the version of expv1 with Kqueue. In expv2, we use 

Kqueue( ) system call, rather than select( ), to detect disk, network, and timeout events. 

The result is as Table 6.4. 

Table 6.4: Test result of expv2 

Throughput: 449.8 rep/sec
Response time: 2630.19 msec

- misses: 4720.21 mese
- hits: 988.02 msec

Hit Ratio: 52.11 %
Errors: 0.00 %

Duration: 8.00 hour
Phases: top1 & top2

 

6.2.3 Comparison of test results 

Finally, we arrange our test results into Table 6.5 to see what we have improved. 

In table 6.5, symbols (1), (2), (3), and (4) are Squid 2.3 stable 4, Squid 2.4 stable 6, 

expv1 and expv2, respectively. 
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Table 6.5: Summary of test results 

 (1) (2) (3) (4) 
Peak request rate (req/sec) 60 140 400 450 
Compare to (1)  (req/sec) - +80 +340 +390 
Compare to (2)  (req/sec) - - +260 +310 

6.2.4 Result discussion 

Now, we want to discuss some characteristics of proxy server behavior from our 

test results. Table 6.6 is the test results of our proxy server, and it is under the best 

configuration. 

Table 6.6: Test result of our proxy server 

peak request rate
(req/sec) 

response time
(msec) 

miss time 
(msec) 

hit time 
(msec) 

hit ratio 
(%) 

200 1398.02 2941.2 58.08 56.36 
220 1410.83 2950.64 70.12 56.28 
240 1423.91 2960.64 79.14 56.18 
260 1446.20 2981.7 90.22 55.90 
280 1467.12 3001.92 103.91 55.77 
300 1494.39 3025.85 121.88 55.52 
320 1525.41 3052.63 141.93 55.20 
340 1569.85 3092.8 172.65 54.89 
360 1619.5 3140.61 206.12 54.53 
380 1746.96 3232.94 277.7 53.75 
400 1818.80 3338.05 365.06 52.91 
420 2230.57 3659.79 645.54 52.52 
450 2630.19 4720.21 1039.02 52.11 

 
 
 
 
 
 
 

 16



 
 
 
 
 
 
 
 
 
 
 

 

0.00
1000.00
2000.00
3000.00
4000.00
5000.00

200 240 280 320 360 400 450

response time miss time hit time (msec)

Figure 6.1: Peak request rate versus response time, miss time, and hit time 

 

We find the response time, miss time, and hit time are all positively proportional 

to peak request rate. When the peak request rate is higher, the load of proxy server is 

heavier. So, the response time, miss time, and hit time get higher when the peak 

request rate gets higher. 
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Figure 6.2: Peak request rate versus hit ratio  
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From Figure 6.2, we find that the hit ratio is negatively proportional to peak 

request rate. When the peak request rate is getting higher, the working set size is 

getting larger. But the cache disk is still the same. Finally, the hit ratio will become 

lower. If we want to get a good hit ratio, we must have enough cache space to store 

objects. So, when the capability of proxy server gets higher, the space of cache disk 

must get larger for maintaining a good level of hit ratio. 

7. Conclusion 

We used three approaches to improve the Squid’s single node performance. 

From our test results, we find the disk I/O is an important factor of overall proxy 

server performance. The version 1 of our proxy server increases about 340 req/sec 

compared with the Squid 2.3 stable 4. It even increases about 260 req/sec compared 

with Squid 2.4 stable 6. It enhances overall proxy server performance by improving 

disk I/O. The test results of expv2, implemented with Kqueue( ), shows that Kqueue( ) 

contributes the improvements of up to 8% request rates under heavy load.   

8. Reference 

1. G. Banga, and J. C. Mogul. Scalable Kernel Performance for Internet Servers under 

Realistic loads. In Proceeding of the USENIX Annual Technical Conference, New 

Orleans, Louisiana, June 1998. 

2. Anawat Chankunthod, Peter B. Danzig, Chuck Neerdaels, Michael F. Schwartz, 

 18



and Kurt J. Worrell. A hierarchical Internet Object Cache. In 1996 USENIX 

Technique Conference, San Diego, CA, January 1996. 

3. Richard Clark, “Building Better Applications via Asynchronous I/O,”     

http://www.mactech.com/articles/mactech/Vol.12/12.12/AsynchronousIO/ 

4. Kqueue. http://people.freebsd.org/~jlemon/. 

5. Ari Luotonen, Henrik Frystyk Nielsen, and Tim Berners-Lee. CERN http3.0A. 

http://www.w3.org/pub/WWW/Daemon/, July 1996. 

6. C. Maltzahn, K. J. Richardson, and D. Grunwald. Performance Issues of Enterprise 

Level Web Proxies. In Proceeding of the ACM SIGMETRICS ’97 Conference, 

Seattle, WA, June 1997. 

7. Evangelos P. Markatos, Manolis G. H. Katevenis, Dionisis Pnevmatikatos, and 

Michail Flouris. Secondary Storage Management for Web Proxies. In Second 

USENIX Symposium on Internet Technologies and Systems, 1999. 

8. Jeffrey C. Mogul. Speedier Squid: A Case Study of an Internet Server Performance 

Problem. ;login: The USENIX Association Magazine, 24(1):50-58, 1999. 

9. Matthew Gray, “Internet Statistics Growth and Usage of the Web and Internet,” 

<http://www.mit.edu/people/mkgray/net/>. 

10. Measurement Factory INC., http://www.measurement-factory.com 

11. Netcraft Web Site Finder, <http://www.netcraft.com>. 

 19

http://www.mactech.com/articles/mactech/Vol.12/12.12/AsynchronousIO/
http://people.freebsd.org/~jlemon/
http://www.w3.org/pub/WWW/Daemon/
http://www.measurement-factory.com/


12. Squid. http://squid.nlanr.net/Squid/ 

13. A. Rousskov and V. Soloviev. On Performance of Caching Proxies. In Proc. Of  

the 1998 ACM SIGMETRICS Conference, 1998. 

 20

http://squid.nlanr.net/Squid/

