
A Practical Implementation of Single Sign-On using LDAP

for Web-Based Applications

Meng-Hsien Lin, Shih-Chang Wang, Der-Jeng Juang and San-Wei Sun

Internet & Multimedia Application Tech. Lab
Telecommunication Laboratories

ChungHwa Telecom Co., Ltd.
Taoyuan, Taiwan

Address of Correspondent:

Shih-Chang Wang

Internet & Multimedia Application Tech. Lab
Telecommunication Laboratories

ChungHwa Telecom Co., Ltd.
Taoyuan, Taiwan

TEL: (886-3) 424-5340
FAX: (886-3) 424-4470

E-mail: purewang@cht.com.tw

Abstract
Traditionally, users have to sign-on to multiple systems, each of which may involve different
usernames and authentication techniques. Consequently, such web applications force users
to mange multiple user names and passwords daily and cause great inconvenience. In
contrast, with single sign-on, users authenticate themselves just once to access information on
any of several systems. Single sign-on has the following advantages: convenience to the
user, improved security, administrative convenience, and reduced expenditure.
LDAP(Lightweight Directory Access Protocol), the clear directory standard, leverage a single,
master directory that owns all user, group and access control information. In this paper, we
propose a practical web single sign-on implementation in CHT’s EIP(Enterprise Information
portal) system for integrating web-based information systems together. This approach is
based on HTTP cookie and the unified LDAP server. Compared with the existing methods,
our approach has the benefits:1)simple to be implemented, 2) it is not necessary to modify the
LDAP server’s configuration substantially, 3) integration of the existing web-based systems
and LDAP server, 4) no extra relational database is needed.

Keywords: HTTP, Cookie, Single Sign-On, LDAP, Web-Based Applications, EIP, Portal

Workshop: Workshop on Computer Networks

I. Introduction

Today, directories exist in a multitude of applications ranging from operating systems,

asset management systems, PBX's, badge security systems, and HR systems to email and

database applications. The cost of implementing and administrating these disparate,

proprietary directories is great because each one must be managed independently. This adds

enormous administrative burden and cost to already strained IT budgets. Rather than pouring

more money and resources into managing these systems, IT departments are requiring that

applications support LDAP(Lightweight Directory Access Protocol), the clear directory

standard[1-2, 14-15]. LDAP-compliant systems leverage a single, master directory that owns

all user, group and access control information. This directory server becomes the central

repository providing user, group and access control information to all applications on the

network(see Fig. 1). Unified directories eliminate redundancy which lowers management

costs. In addition, unified directories ensure that applications can run within and without of

an organization so that partners, customers and vendors may participate in network

applications where appropriate[7].

Network

Information Systems

Users
LDAP Server

Fig. 1: An illustration for the unified LDAP server cooperating with information systems.

 2

A directory is a hierarchical collection of objects and the attributes of the objects much

like the subdirectories of a file system and the files contained in the subdirectories. Objects

can have various attributes and numbers of the same attributes, unlike the columnar structure

of a SQL database's "table". Generally, directory servers are typically optimized for a very

high ratio of searches to updates. Generally, LDAP has the following characteristics:

standard, unique naming, easy and fast searching, distributed architecture, and referral

mechanism.

In CHT(ChungHwa Telecom Co., Ltd, Taiwan), we have built more than 35,000 entries of

the employee and organizational-unit information into a Netscape LDAP server[16]

successfully and provide directory services(for example, authentication, search and so on.) to

more than 30 CHT’s various information systems. In order to facilitate the system

integration onto the LDAP server, we also have developed the generic high-level

C/C++/Java/COM APIs(Application Programming Interface)[9-10] for existing systems to

connect the LDAP server easily.

More and more enterprise information systems are designed as the web-based models due

to the convenience of WWW(World Wide Web). With the integration of web-based desktop

and applications, the number of services a typical user can access has grown multi-fold. It is

no longer acceptable to enter one’s username and password so many times daily.

WSSO(Web Single Sign-On) is necessary to provide users a single identification and

authentication mechanism among web-based systems. In CHT, the EIP(Enterprise

Information Portal) system is designed to ingrate all web-based systems in an office into a

single web site. Obviously, WSSO is one of the most important functionality in the EIP

system. As the name says, WSSO users log on once and the system takes care of the rest for

them.

Many solutions about WSSO were proposed in the literature[3-5,8] and commercial

products[11-13]. However, additional overheads are generally needed to complete the

WSSO, for example, the PKI(Public Key Infrastructure), the password storing, the domain

cookies[3,6] and so on. In this paper, a WSSO approach based on LDAP is given. The

proposed novel WSSO scheme needs little overhead, and now is implemented in CHT’s EIP

system. Furthermore, an implementation scenery is also described in this paper.

 3

The organization of this paper is as follows. In Section II, the basic concept about WSSO

and EIP is given. The proposed WSSO procedure is shown in Section III. In Section IV,

the WSSO implementation in CHT is provided. Finally, conclusions are given in Section V.

II. Preliminaries for WSSO and EIP

The use of LDAP is gaining popularly in the world. LDAP provides the benefit of unified

information and quick response. Recently, the famous newspapers and magazines publish that

many enterprises or businesses have adopted LDAP server to manage the employee’s

information and to achieve the single account while accessing all information systems.

Although the enterprises adopt LDAP to manage single employee’s account, multi-signons

are still needed when users access different web-based systems. Consequently, the user will

feel inconvenience and tiredness, especially for numerous web-based systems in an office.

The WSSO is not only for achieving single account, actually that is an approach whereby

the single behavior of user authentication and authorization can grant a legal user to access all

information systems where he can access, without the need to enter the username and

password repeatedly. Hence the advantages of WSSO are convenience to the user, improved

security, administrative convenience, and reduced expenditure. For the user, with only a

single username and password to remember for access to different applications, it would

eliminate the sticky notes ubiquitous on the user’s desks, which in turn, prevents passwords

being stolen. For the IT administration, lesser overhead is taken in maintaining the

applications. However, the WSSO scheme is not easy to be implemented. There are

numerous WSSO products announced in the marketplace such as Oracle 9iAS[11] , iPlanet

portal server[13], IBM WebSphere application server[12] and so on. The WSSO solutions

provided among commercial products are quite different to each other. The features for the

above approaches almost must change the existing LDAP server’s configurations or attach to

the extra relational databases. Clearly, such methods seem to have some limitation in

implementation. In addition, some WSSO solutions depending on PKI or password-store[11]

also have been proposed. Such kind of approaches may have the requirements of the

client-side applications to be involved. A WSSO approach based on HTTP domain

 4

cookies[6] was also proposed in the literature[3], however, it seems hard to be implemented

because the domain cookies is not functioned completely within browser for the security

consideration.

During 1998, Internet Portals became very popular. These provide consumers with

personalized points of entry (or gateways) to a wide variety of information on the Internet.

Examples include MyYahoo (Yahoo), NetCenter (Netscape), MSN (Microsoft) and AOL. A

Merrill Lynch report (published on November 16, 1998) was the first time that "portal" was

also used for enterprises[17]. EIPs are applications that enable companies to unlock

internally and externally stored information, and provide users a single gateway to

personalized information needed to make informed business decisions. Generally, the EIP

system is integrated with existing systems by listing the HTTP hyperlinks of those existing

web-based systems on the web pages.

For the environment of a non-WSSO EIP system, the scenery for a user to operate should

be as follows:

• The user opens a WWW browser and enters a suitable URL(Uniform Resource

Locators) on his desktop PC to access the EIP system.

• The EIP system prompts a login shell that includes username and password

form.

• After the username and password are entered, the user can acquire information

from the EIP system.

• When the user wants to access other information systems through HTTP

hyperlinks, a login page of the clicked system will be prompted to the user.

The same username and password need to be entered by the user again in order

to login.

From the above descriptions, sign-on actions are always needed when the user wants to logon

other systems. Obviously, to achieve WSSO is one of the most important functionality of an

EIP system. Therefore, to overcome such inconvenient procedure, we propose a WSSO

solution. Our architecture is based on the HTTP cookies and the existing LDAP server.

Compare with the existing WSSO methods, the proposed approach has the following

advantages:1) simple to be implemented, 2)The LDAP server configuration does not be

modified substantially, except one extra attribute named signOnKey is added, 3) No extra

 5

relational database is needed. The proposed WSSO procedure will be discussed in next

section.

III. The Proposed WSSO procedure

Fig. 2: The proposed WSSO procedure.

In the proposed WSSO approach, user information(for example, user name, password, and

so on) is stored in the LDAP server. Sign-on action is processed mainly by the Master Login

page. The main idea of the proposed WSSO scheme is described briefly as follows. The

unauthenticated access to some web-based system(called App1) is redirected to Master Login

page with App1’s own URL. Note that Master Login page is a simple web page. If the

entered username and password is authenticated by the LDAP server successfully, a random

encryption key(called signOnKey) is inserted into LDAP server and user’s browser cookie.

 6

Then, Master Login page redirects this HTTP request to the App1’s URL with the signOnKey.

App1 uses this signOnKey as key to retrieve user information from the LDAP server. If the

read from the LDAP server is successful, App1 permits the user to access the system

information, that is, this user is a legal user. When the user accesses another web-based

system(called App2) by clicking App2’s URL, App2 redirects the HTTP request to Master

Login page. Master Logon page retrieves the signOnKey from the browser’s cookie, and

redirects the HTTP request to App2 with the signOnKey. Thus, App2 also uses this

signOnKey to retrieve user’s information from the LDAP server. From the above

description, it is easy to see that WSSO can be achieved by the proposed architecture.

The details of the proposed WSSO algorithm are shown in Fig. 2. Sixteen steps are given

to demonstrate the proposed WSSO mechanism. All steps are described as follows:

Step 1: First, we suppose that an user opens his browser and connects to some web-based

system App1.

Step 2: Since it is the first login for this user, App1 does not contain any information about

this user in this session. Then, user’s HTTP request is redirected to MLWP(Master

Login Web Page) with the parameter of the second page URL of system App1.

Step 3: MLWP prompts a login screen including the input form of username and password.

Step 4: User enters his appropriate username and password, then MLWP authenticates the

user via the authentication function of the LDAP server. Note that all user

informations are unified into the LDAP server.

Step 5: If the authentication is successful, a “success” message is returned from the LDAP

server; otherwise; an “error” message is returned from the LDAP server.

Step 6: If an “error” message is received by MLWP, an illegal message is sent to the user via

the HTTP response. If a “success” message is received by MLWP, a unique random

encryption key X is inserted into the signOnKey attribute of this user’s entry in the

LDAP server. Note that the signOnKey attribute is defined in advance for each

user’s entry in the LDAP server.

Step 7: After inserting X into the LDAP server, MLWP also sets a cookie named signOnKey

with the value X into the user’s browser.

Step 8: MLWP redirects the user’s HTTP request to the second page URL of App1 with the

parameter X.

 7

Step 9: The second page of App1 receives the redirected HTTP request and the attached

parameter X. Then, App1 calls a non-transparent API with value X to query the user

information. Note that the non-transparent API is developed by the LDAP’s

administrator for the security consideration.

Step 10: Next, the LDAP server verifies the parameter X with all existed values of attribute

SignOnKey in the server. Note that the LDAP server can offer fast search for

indexed data. If X is found, some user informations are returned to App1, for

example, cn(common name), employee number and distinguished name and so on.

In addition, App1 also allows the user to browse and access the system. While an

illegal X is given, the LDAP server will return an “error” message to App1. So that

the user access can not be granted by App1.

Step 11: Suppose that the user accesses another web-based system App2 by clicking the

hyperlink or opening a new URL.

Step 12: Since it is the first login for this user in App2, App2 does not contain any

information about this user in this session. So, the user’s HTTP request is redirected to

MLWP with the parameter of the second page URL of App2.

Step 13: MLWP tries to obtain the value of cookie named signOnKey from the user. Note

that this cookie is inserted to the user’s browser by MLWP in Step 7. So MLWP can

retrieve the value X of the cookie signOnKey. If this cookie can not be found,

MLWP should go to Step 3 due to the access of unauthenticated user. Note that the

cookie signOnKey here is not the domain cookie and is viewed only by MLWP.

Step 14: The MLWP redirects the user’s HTTP request to the second page URL of App2 with

the parameter X.

Step 15: The second page of App2 receives the redirected HTTP request and the attached

parameter X. Next, App2 calls a non-transparent API with value X to acquire user

information. This step is similar to the Step 9.

Step 16: Then, the LDAP server verifies the parameter X with all existed values of attribute

SignOnKey in the server. If X is found, user information is returned to App2, for

example, cn, employee number and distinguished name and so on. App2 can grant the

user to browse and access the system. While an illegal X is given, the LDAP server

will return an “error” message to App2. Consequently, the access to App2 should be

 8

denied. This step is also similar to the Step 10.

In the above WSSO procedure, Steps 11~16 illustrate that how the user switches to another

web-based system through the WSSO mechanism. MLWP tries to retrieve the value of

cookie named SignOnKey for this user, then MLWP redirects the HTTP request with

signOnKey’s value to the second page of App2 for achieving WSSO. Note that when the

user clicks logout icon or the browser is closed, the cookie signOnKey stored in browser and

the value of signOnKey stored in the LDAP entry should be removed. This is for the

security consideration. From the above discussion, it is clear that the proposed approach can

work based on little overhead:

• One signOnKey attribute is added in each user entry.

• One cookie is stored in the user’s browser.

• All web-based systems operate in coordination, that is, the first and second pages need to

be re-coded a little.

• MLWP can be modularized easily to serve different WSSO groups.

IV. Implementation

 9

Fig 3: The EIP system developed in CHT.

At present, we have implemented the proposed WSSO in CHT’s EIP system. Some

important CHT’s web-based systems(for example, Employee Management System, Web Mail

System, e-Procurement Integrated system, e-Form System and e-Meeting System) have been

integrated into EIP system to provide the WSSO function. An illustration for our

implementation is shown in Fig. 3. According to the mechanism proposed in section III,

five CHT’s information systems are integrated successfully to support WSSO function. In

this section, we describe the details about our implementation. First, an attribute named

signOnKey must be added in the user’s objectclass of the LDAP server. In addition, an entry

named “cn=wsso” is created to manipulate the attribute signOnKey. The access right for

attribute signOnKey is given in Table 1. Under the security consideration, only this special

account “cn=wsso” has the search right of attribute signOnKey.

entries

access right

self cn=wsso others

compare × ×

read × ×

search × ×

write ×

Table 1: The assignment of access rights for attribute signOnKey in the LDAP server.

Second, the non-transparent search API used for the second page of each web-based

system needs to be developed. In CHT’s implementation, we developed a method called

“getUserInfoBySignOnKey(signOnKey)” to carry out the search. In this method, we use the

DN(Distinguish Name) “cn=wsso” as the binding identification, and some user information

are retrieved if the specified signOnKey can be found. The page MLWP is also needed to be

coded according to the procedure described in Sec. III. Recall that the information about the

inserted cookie and attribute signOnKey should be removed while the user makes a logout or

the browser is closed.

 10

Finally, a sample code is also needed to guide the co-operated systems to code the second

page. Such a sample code is used to facilitate the WSSO integration. A JSP(Java Server

Pages) example in CHT’s implementation is shown in Fig.4. It is easy to see that the

co-operation code to support WSSO is very simple. The Java class OpenLDAPAPI is

developed by the CHT’s LDAP group. Class OpenLDAPAPI contains many high-level generic

APIs to facilitate the LDAP access for the client’s application. Furthermore, the API

components and sample code for ASP(Active Server Pages) applications are also provided in

CHT’s implementation to facilitate the integration of Windows platforms.

<%@page import="chttl.OpenLDAPAPI%>

String signOnKey =request.getParameter("signOnKey"); //get parameter

//.….

OpenLDAPAPI api = null;

api = new OpenLDAPAPI();

api.connect("10.144.21.5",389);

String[] cnUidDN = api.getUserInfoBySignOnKey(signOnKey);

If(cnUidDN==null){ out.print(“illegal access”);return;}

// process user’s information

//…..

Fig. 4: An example for each co-operated system to code the second page.

V. Conclusions

EIP system is the application that enable company to unlock internally and externally

stored information, and provide users a single gateway to personalized information needed to

make informed business decisions. Recently, the WSSO issue is getting more critical in

developing the EIP system. Some WSSO solutions were proposed in the literature or

commercial products. The previous approaches mostly depend upon Kerberos, PKI, domain

cookie or password-store, but they require client side infrastructure and new administrative

steps. In this paper, we propose the WSSO solution used in the CHT’s EIP system. The

 11

proposed approach is only based on the unified LDAP server and the HTTP cookie. In our

approach, user authentication is proceeded mainly by web page MLWP, and signOnKey is the

bridge to communicate MLWP, information systems and user’s browser to complete WSSO.

Compared with the existing schemes, the proposed scheme is simple and consumes with little

overhead. The practical implementation is also given to demonstrate that the proposed

scheme can be easily applied to the integration of enterprise web-based systems. Because

MLWP is a simple web page, multiple MLWPs can be established to implement individual

WSSO among different application groups.

References
[1] C. Severance, “Could LDAP Be the Next Killer DAP?”, IEEE Computer, pp. 88-89,

Volume 30, Number 1, January 1997.

[2] W. Yeong, T. Howes, and S. Kille, “X.500 Lightweight Directory Access Protocol”, RFC

1487, IETF, July 1993.

[3] V. Samar and S. Velloor, “Single Sign On Using Cookies For Web Application”,

http://www.coe.uncc.edu/~gahn/courses/ITSC8077/students/Sree.pdf

[4] M. Upadhyay and R. Marti, “Single Sign-on Using Kerberos in Java”,

http://java.sun.com/j2se/1.4/docs/guide/security/jass/single-signon.html

[5] K. Botzum, “Single Sign On – A Contrarian View”,

http://www7b.software.ibm.com/wsdd/library/techarticles/0108_botzum/botzum.html

[6] “The HTTP Cookie specification”, RFC #2965, http://www.ietf.org/

[7] “Iplanet LDAP Directory”, http://www.iplanet.com/products/iplanet_directory

[8] “IBM Policy Director”,

http://www.tivoli.com/products/index/secureway_policy_dir/index.html

[9] S. W. Sun, et al.,”LDAP APIs for C/C++/COM”, Coptyright #527, Telecommunication

Laboratories Chunghwa Telecom Co., Ltd, 2001

[10] S. W. Sun, et al.,”LDAP APIs for Java”, Coptyright #543, Telecommunication

Laboratories Chunghwa Telecom Co., Ltd, 2001

[11] “Oracle HTTP Server: Single Sign On

Integration” ,http://technet.oracle.com/products/ias/daily/jan22.html

 12

http://www.coe.uncc.edu/~gahn/courses/ITSC8077/students/Sree.pdf
http://java.sun.com/j2se/1.4/docs/guide/security/jass/single-signon.html
http://www7b.software.ibm.com/wsdd/library/techarticles/0108_botzum/botzum.html
http://www.ietf.org/
http://www.iplanet.com/products/iplanet_directory
http://www.tivoli.com/products/index/secureway_policy_dir/index.html
http://technet.oracle.com/products/ias/daily/jan22.html

[12] “Domino and WebSphere Together”, Second Edition,
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245955.html?Open

[13] “Single Signon Overview” ,

http://docs.iplanet.com/docs/manuals/portal/30/progref/signon.htm

[14] RFC 1777: “Lightweight Directory Access Protocol”.

[15] RFC 2251: “Lightweight Directory Access Protocol(v3)”.

[16] “Netscape Directory Server”, http://developer.netscape.com/tech/directory/.

[17] C. Finkelstein, “The Emergence and Potential of Enterprise Information Portals (EIPs)”,

http://www.tdan.com/i010fe02.htm.

 13

http://publib-b.boulder.ibm.com/Redbooks.nsf/
http://docs.iplanet.com/docs/manuals/portal/30/progref/signon.htm
http://developer.netscape.com/tech/directory/
http://www.tdan.com/i010fe02.htm

	Abstract
	Introduction
	Preliminaries for WSSO and EIP
	The Proposed WSSO procedure
	Implementation
	Conclusions
	References

