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Abstract

In a graph G = (V, E), a subset F (G) of V (G) is a feedback vertex set

if the subgraph induced by V (G) \ F (G) is acyclic. In this paper, we find a

lower bound and an upper bound to the size of the feedback vertex set for

star graphs.

Keyword: Feedback vertex set, Interconnection network, Star graphs.

∗All correspondence should be addressed to Professor Yue–Li Wang, Department of Information
Management, National Taiwan University of Science and Technology, 43, Section 4, Kee–Lung Road,
Taipei, Taiwan, Republic of China. (Phone: 886–02–27376768, Fax: 886–02–27376777, Email: yl-
wang@cs.ntust.edu.tw).



1 Introduction

Let G = (V, E) be a simple graph, i.e., loopless and without multiple edges, with vertex

set V (G) and edge set E(G). A set of vertices F (G) ⊆ V (G) is called a feedback vertex

set if the subgraph induced by V (G)\F (G) is acyclic, where V (G)\F (G) = {x|x ∈ V (G)

and x 6∈ F (G)}. If the cardinality of F (G), denoted by |F (G)|, is minimum among all

possible feedback vertex sets, then we call it a minimum feedback vertex set.

The problem of finding a minimum feedback vertex set is NP-hard for general graphs

[9]. The approximation ratio of the best known approximation algorithm for this problem

is 2 [4]. Besides, most of the work have been devoted to solving the problem for certain

classes of graphs. Polynomial time algorithms have been found for some special graphs,

e.g., reducible graphs[15], cocomparaibility[10], convex bipartite graphs[10], cyclically re-

ducible graphs[16], and interval graphs[12]. On meshes, toris, butterflies, cube connected

cycles and hypercubes, the lower and upper bounds to the size of the feedback vertex set

are established and improved recently [5, 7, 13].

The problem has important applications to several fields. For example, we consider

the deadlock prevention in operating systems. Once a deadlock has been detected, some

strategy is needed to recovery. Usually, a deadlock in a system can be described by

using a wait-for graph [14]. In a wait-for graph, each vertex represents a process, and

the existence of an edge (i, j) indicates that process i is waiting for process j to release

a resource requested by process i. A deadlock exists in a system if and only if the

corresponding wait-for graph contains a cycle. One of the best-known approach for

solving the deadlock problem can be carried out to abort some deadlocked processes

in the wait-for graph. Using graph-theoretic terminology, the strategy is equivalent to

finding a (minimum) feedback vertex set for such a system.

We consider the problem for a particular interconnection network, namely, star graphs.
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Star graphs were proposed as an attractive alternative to hypercubes with many nice

topological properties [1, 2]. Both star graphs and hypercubes provide attractive in-

terconnection scheme for massively parallel systems. Hence characterizations of these

architectures have been widely investigated. The star graphs are vertex and edge sym-

metric, highly regular, strongly hierarchical, and maximally fault-tolerant. Due to the

strongly hierarchical structure, a star graph can be defined recursively. Moreover, star

graphs have many superior advantages over hypercubes such as smaller degree and di-

ameter. In this paper, we give a lower bound and an upper bound to the size of the

minimum feedback vertex for star graphs.

The remaining part of this paper is organized as follows. In next section, we present a

simple algorithm for finding an upper bound to the size of the minimum feedback vertex

on star graphs. In contrast, we also give a lower bound to the problem on regular graphs.

Finally, some concluding remarks are given in the last section.

2 Main Results

The n-dimensional star graph (n-star for short), denoted by Sn, is an undirected graph

consisting of n! vertices labeled with distinct permutations [p1, p2, . . . , pn] from the set

of symbols N = {1, 2, . . . , n}. Two vertices are connected by an edge if and only if the

label of one can be obtained from the label of the other by swapping the first symbol

(conventionally, the leftmost) and the ith symbol, where 2 ≤ i ≤ n [1, 2]. Figure 1

depicts S4 which contains 24 vertices, where symbols a, b, c and d indicate the connection

through the same symbol. Vertices [1, 2, 3, 4] and [4, 2, 3, 1] are neighbors since their

labels differ only in the first and the last positions and swapping these two symbols of

one vertex becomes the label of another vertex. Note that an n-star is an edge- and

vertex-symmetric regular graph of degree n− 1.
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Figure 1: 4-dimensional star graph S4.
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Let [1, 2, . . . , n] denote the identity permutation in Sn. A permutation is odd (resp.

even) if it can be turned to the identity permutation through odd (resp. even) number of

transitions. Since the star graph is a bipartite graph with equal partite size, half of the

vertices are in one partite set [?]. An independent set S of a graph G is a set of vertices

such that no two vertices of S are adjacent in G. If the cardinality of S is the maximum

among all possible independent sets, the set is called a maximum independent set. Let

I be the set of vertices with even permutations, then I is a maximum independent set

of Sn, where |I| = n!
2
. Furthermore, the subgraph induced by I, denoted < I >, has no

cycles in Sn. So V (Sn) \ I is a trivial feedback vertex set.

For i, j ∈ N , let Ni = N \ {i} and Ni,j = N \ {i, i+1, . . . , j}, where i < j. Define two

classes of sets as follows.

Φ1 ={[1, p2, p3, . . . , pn] | p2, p3, . . . , pn ∈ N1 and pj 6= pk if j 6= k}, and

Φi ={[i, p2, p3, . . . , pn−i+1, i− 1, i− 2, . . . , 2, 1] |

p2, p3, . . . , pn−i+1 ∈ N1,i and pj 6= pk if j 6= k}, for 2 ≤ i ≤ n.

It is obvious that Φi, 1 ≤ i ≤ n−1, are all independents for Sn. Let Gi, 1 ≤ i ≤ n−1,

be the subgraph induced by I
⋃

Φ1
⋃

Φ2
⋃

. . .
⋃

Φi. We shall show that V (G)\V (Gi), 1 ≤

i ≤ n− 1, is a feedback vertex set and it is smaller than V (Sn) \ I.

The neighborhood N(v) of a vertex v is the set of vertices which are adjacent with

v. A vertex v ∈ Gi, 1 ≤ i ≤ n − 1, is called a port vertex of Gi if there exists a vertex

u ∈ Φj and j > i such that u ∈ N(v). We use Figure 2 as an example to illustrate the

above notation. Figure 2(a) depicts the induced subgraph < I > of S4. And independent

sets Φ1 = {[1, 3, 2, 4], [1, 2, 4, 3], [1, 4, 3, 2]}, Φ2 = {[2, 3, 4, 1]} and Φ3 = {[3, 4, 2, 1]} are

sketched in Figure 2(b),(c), and (d), respectively. Consider the induced subgraph G1

of S4 in Figure 2(b). Vertices [4, 3, 2, 1], [3, 2, 4, 1], [2, 4, 3, 1], [1, 3, 4, 2] and [1, 4, 2, 3] are

port vertices of G1, since vertices [4, 3, 2, 1], [1, 3, 4, 2] and [3, 2, 4, 1] are neighbors of the
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Figure 2: Acyclic subgraph < I >, G1, G2, G3 of S4, respectively in figures (a), (b), (c),
and (d).

vertex [2, 3, 4, 1] ∈ Φ2, and vertices [2, 4, 3, 1] and [1, 4, 2, 3] are neighbors of the vertex

[3, 4, 2, 1] ∈ Φ3. Figure 2(c) illustrates G2 of S4 where vertices [4, 3, 2, 1], [2, 4, 3, 1] and

[1, 4, 2, 3] are port vertices of G2. But the vertices [1, 3, 4, 2] and [3, 2, 4, 1] are not port

vertices of G2, since they are not adjacent with any vertex in Φ3. Furthermore, Figure

2(d) is a maximum acyclic induced subgraph of S4. Thus, V (S4) \ V (G3) is a minimum

feedback vertex set.

A set D ⊆ V (G) is a dominating set of G if for every vertex u ∈ V (G)\D there exists

a vertex v ∈ D such that u is adjacent to v. In particular, we call D a perfect dominating

set if every vertex in V (G) \ D is adjacent to exactly one vertex in D. We call D an

independent dominating set if D is also an independent set of G. A dominating set D is
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independent perfect if it is both independent and perfect. In star graphs, Arumugam and

Kala [3] showed that Φ1 is not only a minimum independent dominating set, but also a

minimum perfect dominating set. That is to say, Φ1 is in fact a minimum independent

perfect dominating set.

Lemma 1 G1 is acyclic and each component of G1 has at most one port vertex.

Proof. Let u, v be two vertices of G1. Since Φ1 is a minimum independent perfect

dominating set, there is no common vertex between the neighbors of u and v. Since u

and v are not adjacent and the neighbors of u and v belong to the independent set I,

u and v are in different components of G1. Since each vertex of I is adjacent with at

most one vertex of Φ1, the component of G1 is either an isolated vertex or a nontrivial

tree. Thus, G1 is acyclic. To complete the proof, let T be a component of G1. We now

consider two cases, depending on T is an isolated vertex or a nontrivial tree. Let T be

an isolated vertex. It is clear that T is the only possible vertex which is adjacent with

some vertex in Φi, i > 1. Thus, the component T has one port vertex if and only if T is

a port vertex. Otherwise, T is a nontrivial tree. Let r ∈ Φ1 be the root of T . Since r

is a odd permutation vertex, the n − 1 neighbors of r are even permutation vertices of

I. Since the first (leftmost) symbol of r is one. Thus, T has exactly one leaf whose last

(rightmost) symbol is one. For the other leaves, since both the first and the last symbols

are not one, they are adjacent with none of the vertex in Φi, i ≥ 2. So, the vertex in each

tree with the last symbol as one is the only possible port vertex.

Q. E. D.

For each vertex v = [p1, p2, . . . , pn] of Sn, let NBi(v), 2 ≤ i ≤ n, be the i-th neighbor

of v. That is NBi(v) = [pi, p2, . . . , pi−1, p1, pi+1, . . . , pn].

Lemma 2 Each component of Gk, 1 ≤ k ≤ n− 1, has at most one port vertex.
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Proof. We proceed by induction on k. For k = 1, the lemma holds by Lemma 1.

As the inductive hypothesis we assume that each component of Gk, 2 ≤ k ≤ i − 1, has

at most one port vertex. We now want to show that the lemma is also true for k = i.

Let u, v be two distinct vertices in Φi. Since Φi is an independent set, u and v are not

adjacent. Let T be a component of Gi−1. By hypothesis, T has at most one port vertex.

Suppose that T has no port vertex, it is easy to see that T still has no port vertex in

Gi. Consequently, we assume that T has exactly one port vertex. Let T (p) be the port

vertex of T . If T (p) is not adjacent to any vertex of Φi, then T (p) is still the unique port

vertex of T in Gi. Thus, we assume that T (p) is a neighbor of a vertex w ∈ Φi. Let

w = [i, p2, . . . , pn−i+1, i − 1, i − 2, . . . , 1],w ∈ Φi. To complete the proof, we shall show

that there are at most one of the neighbors of w which is a port vertex in Gi . Consider

the neighbors NBj(w), 2 ≤ j ≤ n, of vertex w. Suppose that NBj(w) is a port vertex in

Gi. Then there exists a vertex φ = [i′, p2, . . . , pn−i, i, i− 1, . . . , 1] in Gi′ , i
′ > i, such that

NBj(w) ∈ N(φ). There are now four cases to consider, depending on the number j.

Case 1. 2 ≤ j ≤ n−i. Let NBj(w) = [pj, p2, . . . , pj−1, i, pj+1, . . . , pn−i+1, i−1, i−2, . . . , 1].

Compare the positions of symbol i in v ∈ N(φ) and NBj(w). Since the symbol i of v

occurs either in the first or the (n-i+1)-th position, which is different from the position

of NBj(w). Thus, NBj(w) and φ are not adjacent. It contradicts that NBj(w) ∈ N(φ).

Case 2. n−i+2 ≤ j ≤ n−1. Let NBj(w) = [pj, p2, . . . , pn−i+1, i−1, i−2, . . . , pj−1, i, pj+1, . . . , 1].

The proof is similar to Case (1).

Case 3. j = n. Let NBn(w) = [1, p2, . . . , pn−i+1, i − 1, i − 2, . . . , 2, i]. Since the symbols

in the first and the n-th positions of φ are i′ and 1, respectively. If NBn(w) ∈ N(φ) then

NBn(w) = NBn(φ), which implies that i = i′. It is a contradiction.

Case 4. j = n − i + 1. If pn−i+1 = i + 1 then there exists a vertex x ∈ Φi+1 such that

NBn−i+1(w) and x are adjacent. Thus, NBn−i+1(w) is a port vertex of T in Gi.

In accordance with the above discussion, NBj(w) is a port vertex only if j = n− i +
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1(Case 4).

Q. E. D.

Lemma 3 Gi is acyclic, for 1 ≤ i ≤ n.

Proof. The proof is also by induction on i. For i = 1, the lemma holds by Lemma 1.

Assume the theorem to be true for all Gi, i < n − 1. In Gn−1, by Lemma 2, since each

component of Gi−1 is acyclic and has at most one port vertex, each acyclic component

is incident with at most one vertex in Φn−1. Because Φn−1 is an independent set, the

component in Gn−1 is also acyclic, completing the proof.

Q. E. D.

Theorem 4 |F (Sn)| ≤ 1
2
[n!− (n− 1)!− (n− 2)!− . . .− 2!]− 1.

Proof. By Lemma 3, Gn−1 is acyclic. Thus, V (G) \ V (Gn − 1) is a feedback vertex set.

Therefore,

|F (Sn)| ≤ |V (G) \ V (Gn−1)|

= n!− [|I|+ |Φ1|+ |Φ2|+ . . . + |Φn−1|]

= n!− [n!
2

+ (n−1)!
2

+ . . . + 2!
2

+ 1]

= 1
2
[n!− (n− 1)!− (n− 2)!− . . .− 2!]− 1.

Q. E. D.

To find the lower bound to the size of the feedback vertex set for star graphs, an

analysis based on [7] is given. In [7], Focardi and Luccio state a lower bound related

to the number of components of the resulting acyclic subgraph for hypercubes. We now

establish an equation, a modification of [7], for calculating the lower bound to the size of

the feedback vertex set in r−regular graphs.
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Theorem 5 Given an r−regular graph G = (V, E), |F (G)| ≥ |V (G)| − |E(G)|−rc
r−2

− c

Proof. Let G′ = (V − F (G), E ′) be the acyclic induced subgraph of G. Let c be

the number of components in G′ and Ti be the i-th component. The degree of v in Ti is

denoted by din(v). For simplicity, let Vi, Ei, E
in
i , Eout

i denote the number of vertices, edges,

internal edges, and external edges of Ti, respectively. Since Ti is a tree, |Vi| = |Ein
i | + 1.

To count the external edges of Ti, we have

|Eout
i | = Σv∈Vi

(r − din(v))

= r(|Vi|)− Σv∈Vi
(din(v))

= r(|Vi|)− 2(|Vi| − 1)

= (r − 2)(|Vi|) + 2

= (r − 2)(|Ei|+ 1) + 2

= (r − 2)|Ei|+ r.

Then, the cardinality of the external edges in G is

|E(G)− E ′(G′)|= Σc
i=1|Eout

i |

= (r − 2)|E ′(G′)|+ rc.

Since

|E(G)| ≥ |E ′(G′)|+ |Eout|

= |E ′(G′)|+ (r − 2)|E ′(G′)|+ rc

= (r − 1)|E ′(G′)|+ rc,

we have |E ′(G′)| ≤ |E(G)|−rc
r−1

.

The size of the feedback vertex set is

|F (G)| = |V (G)| − Σc
i=1|Vi|

= |V (G)| − Σc
i=1|Ei + 1|
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= |V (G)| − |E ′(G′)| − c.

So,

|F (G)| ≥ |V (G)| − |E(G)|−rc
r−1

− c.

Q. E. D.

Note that the n-star has n! vertices, n!(n−1)
2

edges and degree n− 1. The next result

follows.

Corollary 6 |F (Sn)| ≥ (n−3)n!+2
2(n−2)

, n ≥ 3

By Theorem 4 and Corollary 6, we get 13
2
≤ |F (Sn)| ≤ 7 implying that both the lower

bound and upper bound are tight.

3 Concluding Remarks

The feedback vertex set problem is oriented from the circuit design. Recently, the related

research focused on interconnection networks including meshes, toris, butterflies, and

hypercubes are widely studied. Then, new bounds are established one after the other.

The star graph is an attractive topologies having many nice properties than the mentioned

graphs. In this paper, we set up the upper bound to the size of the feedback vertex set in

star graphs by a constructive proof. We also give a formula, a modification of Focardi et

al.[7], to show the lower bound of the feedback vertex set in k-regular graphs. Certainly,

this bound suits star graphs and is shown to be sharp. However, the feedback vertex set

we have found is not the minimum. An interested problem is to explore more precise

bounds.
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