
Submit to: C. Workshop on Algorithms and Computational Molecular

Biology

The Design of Sorters Based on DNA for

Bio-Computers

Hung-Yuan Wang ∗

Chang-Biau Yang ∗

Kuo-Si Huang ∗

Yow-Ling Shiue †

Correspondence address:

Prof. Chang-Biau Yang

Department of Computer Science and Engineering

National Sun Yat-sen University

Kaohsiung, Taiwan 80424

TEL: 886-7-5252000 ext. 4333
FAX: 886-7-5254301
E-MAIL: cbyang@cse.nsysu.edu.tw

Key words: molecular computing, DNA computing, enzyme, sorter, comparator

∗Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung,

Taiwan
†Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan

Abstract

In the past few years, several articles have been devoted to the study of molec-

ular computing based on DNA in order to implement algorithms for solving some

NP-complete problems and simulate logic gates in silicon-based computers. A great

deal of effort has been made on using DNA to implement simple logic gates, such

as simple 1-bit comparators and simple adders, or to solve NP-complete problems,

such as the Hamiltonian path problem, the travelling salesperson problem and the

satisfiability problem. All of the methods rely on the capability of DNA computing

which could perform computation in huge parallelism to produce all possible solu-

tions where the answer may be derived from. In this paper, we will first design a full

bit-serial comparator that can perform the feedback operation. Then, we will de-

sign a word-parallel bit-serial sorter which uses our comparators as the elementary

building components. Our design of sorters can be applied to any sorting network,

such as bitonic sorter and odd-even merge sorter.

1 Introduction

In the past few years, several articles have been devoted to the study of molecular comput-

ing based on DNA in order to implement algorithms for solving some NP-complete prob-

lems and simulate logic gates in silicon-based computers. [1,7,16] In molecular computing,

the input data and output data encoded by deoxyribonucleic acid (DNA) sequences, and

biochemical procedures in tubes are used as arithmetic or control operations. Such scheme

is also called bio-computing or DNA computing.

There are four different kinds of nucleotides in DNA, which can be labelled as A

(adenine), G (Guanine), C (Cytosine) and T (Thymine), often called bases. Each data

element encoded with DNA is described as a linear finite sequence composed of A, G, C

and T . Consequently, it is true that we could use DNA to encode the string or pattern

meaningful for us.

In addition to that DNA can be employed to encode the data, one of the capabilities

of DNA is huge parallelism. We could think distinct DNA strands of different data in

the presence of the biological processes of computational operations in a silicon-based

computer. Distinct DNA strands in the same tube are affected simultaneously when

we add some specially designated substances in the tube to carry out some biological

1

processes. Consequently, one biological process could be carried out to affect all DNA

strands at the same time. It corresponds to that a single instruction stream is executed by

all processors to manipulate their local data synchronously. According to the architecture

classification of Flynn, DNA computing can be classified into the class of Single Instruction

Multiple Data (SIMD) [2]. Therefore, we could say DNA computing has the capability of

parallel processing.

There are two main strategies in DNA computation. One is to implement the brute

force algorithm for solving NP-complete problems which are still difficult to be solved

in silicon-based computers [8, 9, 11, 12, 14, 18], and another is to simulate the function of

logical gates or circuits prepared for bio-computers [3, 15,17].

Adleman [1] used DNA computing to solve the Hamiltonian path problem with

seven cities, and Lipton [12] used a similar method to solve the satisfiability problem.

These methods consist of two main steps. The first step is to produce all possible solutions,

and then, the second step is to extract the real solutions out. To finish the first step,

something has to be done in the beginning. We have to define the DNA data form of a

given question for representing the relationship between the input data. Since the DNA

data form is defined and designed, we need only pour the prepared DNA data in a test

tube, and all possible solutions will be produced. Afterwards, take them to pass through

the several different extracting steps. If any DNA remains, we can say that the answer

exists.

For implementing a bio-computer, there are several articles have been devoted to

simulate simple logic gates or circuits of a silicon-based computers, such as NAND gates,

1-bit comparators [3] and adders [6]. The methods of simulating hardware rely on the

capability of parallel computation [14,15,17]. These logical gates or circuits on the same

level will be put in the same test tube, so that all bio-operations can make all components

process their local data in the same test tube.

For decreasing the inaccuracy rate of DNA strand reaction, solid phase experiments

2

were adopted extensively in the later studies. In a solid phase experiment, the DNA

strands are attached to the surface of a test tube to avoid the distinct data to influence

each other, while previous studies adopted liquid phase experiments that all DNA data

float around the liquid. Morimoto et al. [13] successfully used the liquid phase experiment

to propose a method for solving the Hamiltonian path problem. Amos [3] also finished

NAND gates in DNA form with the solid phase experiment. This paper also adopts solid

phase of experiments to design our comparators, which are basic components for building

a sorter. Here, a sorter is a circuit network which can arrange a set of input data into

increasing, or decreasing, order.

This paper is organized as follows. In Section 2, we will introduce basic biological

experiments for DNA computing. In Sections 3 and 4, we will illustrate how to design a

bit-serial comparator and how to encode the data form with DNA. In Sections 5 and 6,

we will execute the comparator and integrate the comparators into a sorter based on the

sorting network of bitonic sort. Section 7 gives the conclusion of the paper.

2 Basic Operations of DNA Computing

To design a sorter with DNA, we may need some biological operations as follows.

1. Hybridization and annealing – Make two DNA strands form a double strand if

they are complementary.

2. Synthesis and PCR – Synthesis can synthesize the desired DNA strand with any

base sequences and easily amplify them in a great quantity by polymerase chain

reaction (PCR) technology.

3. Restriction enzymes digestion – One double-stranded DNA can be cut into two

parts by restriction enzymes if the double-stranded DNA contains a restriction site,

which is a special DNA sequence. Restriction enzymes are special proteins which

can attach restriction sites and cut them at some specific positions.

3

5'-AGGGCCTTG-3'
3'AACTAACTAC-5'

5'-AGGGCCTTGATTGATG-3'
3'-TCCCGGAACTAACTAC-5'

Primer
extension

: The direction of extention

Figure 1: Primer extension.

4. Ligation – Ligase is an enzyme that can repair or seal nicks in a DNA sequence

with duplex structure [10]. Notice that in a double-stranded DNA sequence, the

nicks do not result from the lack of any nucleotides in a continuous DNA sequence,

but rather result from two neighboring nucleotides that do not join together.

5. Primer extension – Make two imperfect double strands to be a complete double

strand, as shown in Figure 1.

6. Gel electrophoresis – Distribute all DNA strands into different groups according

to their lengths or weights.

7. Methyled DNA – It is a normal DNA (strand) attached by methyl-group [5] via the

process of DNA methylation. Hybridization and annealing of methyled DNA are

still normal. However, most methyled DNA could not be recognized by restriction

enzymes any more with only some exceptions. Here, we use M(s) to denote that

DNA strand s is attached by methyl-group.

8. Affinity purification – The process can help us to pick up the desired single strands

4

110

101

101(smaller)

110(larger)

I21

I22

I11

I11'

L11(Lij)

Figure 2: A comparator with bit pipeline.

with a specific sequence tag from a test tube [9].

9. Graduated PCR (GPCR) – This is one of the methods which can read out the

single DNA strands [6, 13].

3 A Bit-Serial Comparator

A sorter is a circuit network used to solve the sorting problem. The kernel component

of a sorter is a comparator, which can compare two integers. Here, we design a bit-serial

comparator, which has two input lines and two output lines. As shown in Figure 2, the

smaller number gets to the top output line, and the larger one gets to the bottom output

line when the arrow in the box is in the down direction, which means increasing order.

We can use a sorting network consisting of many comparators to sort all given numbers.

In other words, the comparators arranged in a particular network can achieve the purpose

of sorting.

Our bit-serial comparator receives two input bits serially from higher bits to lower

bits and the two output bits give the answer serially, too. The comparison task can be

done according to the following two rules when a pair of bits reach:

<1> If the pair of bits is equal, the output lines remain unchanged. Be-

cause the bits are equal, the bits are directly sent out to output lines. The

5

most important is that the next pair of bits received will be compared with

these two rules again, except that the winner and loser have been decided by

the previous (more significant) bits.

<2> If they are not equal, bit containing 0 (loser) is sent out to the top

output line. And for the comparison in each of the following cycles, each

subsequent bit of the loser will be sent to the top output line. Naturally, the

bit containing 1 (winner) is sent out to the bottom output line. Once rule 2

is applied, rule 1 would not be used any more.

4 The Encoding of the Comparator

We define the DNA data form of 1-bit input as C(−I ′

ij ∗ ∗V ∗) or C(−Iij ∗ ∗V ∗), which

means the input given to the jth comparator on the ith level, and V represents the value

of either 0 or 1, which is the input to the comparator, as shown in Figure 3. The mark ′

indicates one of the inputs in the gate, and another input is without ′. The symbol ** is a

special DNA sequence that is one kind of restriction sites. Here, the symbol ** represents

the restriction site consisting of CCGG. The left * is CC while the right * is GG, and

the symbol -- represents another restriction site in Figure 3.

We now define the DNA strands prepared in tube A. Since we adopt the solid

phase experiment to design our sorter, the DNA strands is stuck on the surface of tube

A. As shown in Figure 3, the DNA strands are divided into three blocks. Block a

represents the complementary strands of input for matching the two input bits and receives

them to anneal. That is, the two input bits will choose one of the four DNA strands

which can perfectly match the two input bits for hybridization. This is because that

only one DNA strand in tube A satisfies the Waston-Crick rule. Here, block a of the

comparator represents the receiver for the DNA data form and it conforms to Waston-

Crick complementation to be able to form double strands. Figure 4 is an example to

illustrate the reaction in tube A where the first input bit is 1 and the second input bit is

6

 Data Form:
 C(*1**I11-) : the first input data that L11 receives and its value is 1.
 C(-I11'**1*) : the second input data that L11 receives and its value is 1.
 C(*0**I11-) : the first input data that L11 receives and its value is 0.

 C(-I11'**0*) : the second input data that L11 receives and its value is 0.

Comparator Form:
 L11 of tube A :
 *1**I11--I11'**0*--*0**I21--I22**1*--C(P1)
 *0**I11--I11'**0*--*0**I21--I22**0*
 *0**I11--I11'**1*--*0**I21--I22**1*--C(P2)
 *1**I11--I11'**1*--*0**I21--I22**0*

 block a : the two input bits received by the comparator and one of the four sequences
 should be selected according to the two input bits.
 block b : the two ouput bits that the comparator will send out according to block a.
 block c : the messenger indicates that each previous pair of input bits is equal and
 the pair of input bits in this cycle is not equal.

 L11 of tube B :
 P1--I22**1**I11--I22**0**I11--I11'**0**I21--I11'**1**I21--M(C(I11))
 P2--I21**1**I11--I21**0**I11--I11'**0**I22--I11'**1**I22--M(C(I11))

a b c

d e f g hc'

Figure 3: The design of a comparator.

7

0.

In block b, there are also two data forms which link each other by some restriction

site. While block a represents the two input bits of the comparator, block b represents

the two output bits. It is natural that at most two output bits will be produced since

at most one DNA sequence in tube A will be selected, as shown in Figure 4. Therefore,

we can get the output bits from block b. Note that the feedback operation does not have

effect yet here.

The messenger, encoded by block c, is very important for us to perform the feedback

to affect the input of next cycle in the comparator. Block c is corresponding to the block

c′ of tube B and they are complementary. The designs of blocks c and c′ satisfy two

conditions. One is that the pair is the only one in both tubes A and B simultaneously.

And the other is that the pair should have a restriction site so that they can be cut off

by some restriction enzyme, as shown in Figure 5. Here, we use the third restriction site.

The way is feasible that block c is composed of the third kind of restriction site and Iij

or I ′

ij could imply who is the winner in the two inputs. For example, C(P1) contains I11

and C(P2) contains I ′

11
. In Figure 3, block c will be produced only in the situation that

each previous (more significant) pair of input bits is equal and the pair of input bits is

not equal in this cycle.

Tube B performs the task for the important role of implementing the function of

feedback. Blocks d, e, f and g in tube B, playing the same role, are the switchmen to

switch the value to the desired output line. In other words, the comparator on the next

level that the output should go is also decided. Thus, a switchman provides a guide of

data flow paths. Of course, the four blocks should be separated first by the restriction

enzyme.

In fact, block h is a very important assistant to implement the work of ’switch’,

when the comparator starts the steps to switch the value of the input bits to the next

comparator. It is essential to raise some behavior that the input could not act on the

8

The first bit of the first input = 1 and the first bit of the second input = 0 in tube A:

C(*1**I11-) C(-I11'**0*)

Join

 L11 in tube A :
-*1**I11--I11'**0*--*0**I21--I22**1*--C(P1)
-*0**I11--I11'**0*--*0**I21--I22**0*
-*0**I11--I11'**1*--*0**I21--I22**1*--C(P2)
-*1**I11--I11'**1*--*0**I21--I22**0*

Perform hybridization and ligation. At most one of
the four strands could have the restriction site in
duplex structure of block a.

C(*1**I11--I11'**0*)
*1**I11--I11'**0*--*0**I21--I22**1*--C(P1)

Use restriction enzyme to digest them and we can
get the fragment of blocks b and c. Then, extract the
fragment and add C(--) to hybridize the site of --.

C(-I11'**0*--) C(--) C(--)
-I11'**0*--*0**I21--I22**1*--C(P1)

Add restriction enzyme to digest them, and the two
output lines and messenger P1 will be generated .

-*0**I21- -I22**1*- -C(P1)

Two output streams appear successfully and
the messenger P1 occurs.

a b c

a b c

a b c

Figure 4: The reaction without feedback in tube A for comparing the two input bits which
are not equal.

9

 L11 of tube B:

 C(P1)
 P1--I22**1**I11--I22**0**I11--I11'**0**I21--I11'**1**I21--M(C(I11))

 P2--I21**1**I11--I21**0**I11--I11'**0**I22--I11'**1**I22--M(C(I11))

c' d e f g h

 C(--) C(--) C(--) C(--)
 -I22**1**I11--I22**0**I11--I11'**0**I21--I11'**1**I21--M(C(I11))

 Tube feedback of L11:

 -I22**1**I11- -I22**0**I11- -I11'**0**I21- -I11'**1**I21- -M(C(I11))

d e f g h

C(P1) derived from block c of tube A and added in tube B

Extract the discarded sequence. Then add
C (--).

Perform restriction enzyme
digesttion.

d e f g h

C(P1) is the messenger which tube B should receive.
Then, excute enzyme digestion.

Figure 5: The process of feedback.

10

prepared strands to be processed in tube A, as shown in Figure 4. And they should help

them to act on the four blocks as well as switchmen added from tube B as shown in Figure

6. It means when the gain or loss has been determined, the input bits do not need to pass

through comparator again and the comparator should be switched directly according to

where the inputs come from. In respect of the behavior, block h could be considered as

the role of the ’blocker’ induced by the messenger, such as block c of tube A in Figure 5.

Block h blocks the action of the comparison of subsequent inputs, as shown in Figure 6,

and inputs will anneal to the ’switchman’ instead of annealing to block a. The tasks of

switchmen are shown in Figure 7.

How do the switchmen perform their tasks? It is easy to know that the four blocks

have the potential to do the task of ’switch’, when we take their design into account. The

design consists of three parts, where the data come from, where the data should go and

what value the data element contains. As shown in Figure 7, we could use the skill to

assign the value to another comparator by generating new data for the output.

5 A Biological Sorter

Our methods of comparator design, as shown before, are enough to be adopted to build our

sorters, which is a word-parallel bit-serial sorting network. Now, in order to summarize

how the sorter works, we assume that m integers of n bits are given as the input. We

would arrange them in increasing order. The comparators of the same level are prepared

in the same tube:

Input data preparation: Prepare all bits of the integers according to our data form,

and put them in different tubes by the bit-position. The highest bits are put in the

test tube labeled 0, the next highest bits are put in the tube labeled 1, and so on,

then the lowest bits are put in the test tube labeled (n− 1). We therefore will pour

the input data from tube 0 to tube (n − 1) serially. Every tube contains m data

elements.

11

The second bit of the first input =1
The second bit of the second input =1
add:
 C(*1**I11-) C(-I11'**1*)

L11 in tube A :

 -M(C(I11))
 *1**I11--I11'**0*--*0**I21--I22**1*--P1
 *0**I11--I11'**0*--*0**I21--I22**0*
 *0**I11--I11'**1*--*0**I21--I22**1*--P2
 *1**I11--I11'**1*--*0**I21--I22**0*

a b c

 Comparator feedback of L11:

 -I22**1**I11- -I22**0**I11- -I11'**0**I21- -I11'**1**I21- -M(C(I11))

d e f g h

h

C(*1**I11-) C(-I11'**1*)
 -I22**1**I11- -I22**0**I11- -I11'**0**I21- -I11'**1**I21-

d e f g

Disable block a due to hybridization in tube A
when 'feedback' is added.

Since block a is disabled, the next input
bits bind to two of the four switchmen
produced in tube B.

Figure 7

Now, the swichmen d and g can process
the transfer task.

Figure 6: The combination of next input bits with switchmen.

12

C(*1*) C(*1*)
-I22**1* *1**I21-

C(-I22**1*) C(*1**I21-)
 -I22**1* *1**I21-

Data form:

C(-I22**1*) -I22**1* C(*1**I21-) *1**I21-

Figure 6

C(*1**I11-) C(-I11'**1*)
-I22**1**I11- -I11'**1**I21-

Hybrdization

Enzyme Cutting

Primer extension

Denaturation

The output has been produced containing the value
which is indicating where to go.

Figure 7: The work of switchmen.

13

The sorter preparation: The comparators on the first level of the sorting network are

prepared corresponding to the input, the comparators on the second level are pre-

pared corresponding to the output of comparators on the previous level.

The following gives the operations in one cycle for all comparators to perform the

comparisons of data bits on their level.

Step 1: Put the results of tube C in tube A if the comparison in this cycle is not for the

most significant bits.

Step 2: Put the input, which are the data bits that should be compared on the level, in

tube A, as shown in Figure 4.

Step 3: Process the task of feedback, as shown in Figure 6 and Figure 7.

Step 4: Extract the output from the results of Step 2 and Step 3. The output will

become the input of comparators on the next level.

Step 5: Extract the messengers from the results of Step 2 and Step 3, and put them in

tube B for feedback, as shown in Figure 5.

Step 6: Reserve the results of Step 5 in tube C.

Repeat the cycle n times and then all comparators on their level will finish their

work. Note that the comparators on different levels in the sorter are pipelined. As soon

as the comparators on the last level have finished, the sorter has finished. That is, the

sorting is complete. At the moment, the output has been attached, in increasing order,

to the surface of the result tube. The final work is to take the output and read it out.

6 Implementation of the Bitonic Sorters

It is known that a sorter is composed of comparators. Since we finish the design of

a biological comparator and the definition of the DNA data form, we can arrange the

14

x

y

max(x,y)

min(x,y) max(x,y)

min(x,y)
x

y

Figure 8: The network of a bitonic sorter, which can sort four elements.

comparators to form a bitonic sorter [4]. Figure 8 shows an example of the network of

a bitonic sorter which can sort four elements. It is noticed that the layout of the lines

between the comparators are fixed for the sorter. Thus, the links among our biological

comparators have to be arranged first. In the design of a sorter, as shown in Figure 9,

block b in tube A and the switchmen of tube B indicate that where the output shall

go. Block a in tube A indicates which data the comparator should receive. Therefore,

our comparators can be arranged in various sorting networks, such as bitonic sort and

odd-even merge sort .

In Figure 9, the function of tube A is to receive the feedback from tube C, to receive

the input data and to reserve the result of the reaction in tube A, and then to pass the

result to tube B. The feedback would affect the reaction in tube A when the content of

tube C is not empty. The result contains the output and the message which indicates

if the comparator starts the feedback in next cycle. The function of tube B is to send

the output of the comparator, and to produce the switchman for performing the feedback

which influences the next input if tube B receives the message for starting feedback.

Tube C is the tube containing the contents of feedback which keeps the switchman and

15

A B C

A B C

L11

L12 L11

L12

L11

L12

tube A

tube B

tube C

1

2

3

intput

output

D E F

D E F

Figure 9: The design of the bitonic sorter based on bit-serial comparators. Note that the
comparators on the same level are prepared in the same tubes (including three tubes).

16

the blocker which will be put in tube A.

Repeat the cycle as mentioned in Section 5 until all bits have been compared in all

comparators on all levels. In the sorting, we would know the output is derived from those

comparators on the last level. Consequently, the result of the sorting can be obtained.

7 Conclusion

Implementation of hardware components, such as adders or comparators, and computa-

tional functions, such as the solutions for the Hamiltonian path problem, the satisfiability

problem or the traveling salesperson problem, based on DNA sequences or molecular se-

quences becomes a new research direction recently. In this paper, our goal is to design

an efficient sorter. We first design a full bit-serial comparator which can perform the

feedback operation. Then, with the comparators, we can build a sorter, which can be

applied to any sorting network, such as bitonic sort or odd-even merge sort.

Using molecular computing or DNA computing, two issues need to be considered.

The first one is how to reduce the inaccuracy of the reaction in DNA strands, which

may occur on similar DNA sequences. It may be improved by properly designing DNA

encoding schemes to amplify the difference among DNA strands. Another is how to reduce

the required time on real biological experiments. The degree for overcoming these two

difficulties actually depends on the improvement of the biochemical technology.

We believe that there is still some room for DNA computing to solve more difficult

problems with some other methods, for example, the Ant System. In the future, the idea

of designing solutions or algorithms based on DNA computing should be applied to more

complex systems, such as a complete bio-computer.

References

[1] L. M. Adleman, “Molecular computation of solutions to combinatorial problems,”

Science, Vol. 266, pp. 1021–1024, Nov. 1994.

17

[2] S. G. Akl, The Design and Analysis of Parallel Algorithms. Prentice-Hall, Englewood

Cliffs, New Jersey, USA, first ed., 1989.

[3] M. Amos, P. E. Dunne, and A. Gibbons, “DNA simulation of boolean circuits,”

Genetic Programming 1998: Proceedings of the Third Annual Conference, University

of Wisconsin, Madison, Wisconsin, pp. 679–683, 1998.

[4] K. E. Batcher, “Sorting networks and their applications,” In Proceedings of the

AFIPS Spring Joint Computer Conference, Atlantic City, NJ, USA, Vol. 32, pp. 307–

314, 1968.

[5] R. H. Garrett and C. M. Grisham, Biochemistry. Emily Barrosse, John J. Vondeling,

second ed., 1998.

[6] F. Guarnieri and M. Fliss, “Making DNA add,” Science, Vol. 273, pp. 220–223, July

1996.

[7] M. Hagiya, “From molecular computing to molecular programming,” Proceedings

6th DIMACS Workshop on DNA Based Computers, held at the University of Leiden,

p. 87, June 2000.

[8] T. Hinze and M. Sturm, “A universal functional approach to DNA computing and

its experimental practicability,” Proceedings 6th DIMACS Workshop on DNA Based

Computers, held at the University of Leiden, Leiden, The Netherlands, 13 - 17 June

2000, p. 257, 2000.

[9] J.-S. Hwu and R.-J. Chen, “DNA solution to the traveling salesman optimiza-

tion problem,” 1998 International Computer Symposium Workshop on Algorithms,

Tainan, Taiwan, pp. 17–19, dec. 1998.

18

[10] Jonoska and Karl, “Ligation experiments in computing with DNA,” Proceedings of

1997 IEEE International Conference on Evolutionary Computation, University Place

Hotel Indianapolis, pp. 261–266, 1997.

[11] S. Y. Lila Kari, Greg Gloor, “Using DNA to solve the bounded post correspondence

problem,” Theoretical Computer Science, Vol. 231, pp. 193–203, 2000.

[12] R. J. Lipton, “Using DNA to solve NP-complete problems,” Science, Vol. 268,

pp. 542–545, Apr. 1995.

[13] N. Morimoto, M. Arita, and A. Suyama, “Solid phase DNA solution to the Hamil-

tonian path problem,” Proceedings of the 3rd DIMACS Workshop on DNA Based

Computers, University of Pennsylvania, U.S.A, pp. 83–92, 1997.

[14] E. Ogihara and A. Ray, “Executing parallel logical operations with DNA,” Pro-

ceedings of the Congress on Evolutionary Computation, Washington, DC, Vol. 2,

pp. 972–979, June 1999.

[15] M. Ogihara and A. Ray, “DNA-based self-propagating algorithm for solving bounded-

fan-in boolean circuits,” Genetic Programming 1998: Proceedings of the Third Annual

Conference, University of Wisconsin, Madison, Wisconsin, pp. 725–730, April 1998.

[16] S.-Y. Shin, B.-T. Zhang, and S.-S. Jun, “Solving traveling salesman problems using

molecular programming,” Proceedings of the Congress on Evolutionary Computation,

Washington, DC, Vol. 2, pp. 994–1000, 1999.

[17] S. P. V. Gupta and M. J. Zaki, “Arithmetic and logic operations with DNA,” Proceed-

ings of the 3rd DIMACS Workshop on DNA Based Computers, held at the University

of Pennsylvania, pp. 212–220, June 1997.

[18] H. Wu, “An improved surface-based method for DNA computation,” BioSystems,

Vol. 59, pp. 1–5, 2001.

19

