
A Secure Authentication System for Distributed Computing Environment
Based on PKI Biometric Verification and Kerberos

Chih-Chen Yen
Department of Electronic Engineering

National Tsing Hua University
HsinChu,Taiwan 300, R.O.C.
yan@alumni.ee.nthu.edu.tw

Wen-Hsing Hsu
Department of Electronic Engineering

National Tsing Hua University
HsingChu, Taiwan 300, R.O.C.
Institute of Information Science

Academia Sinica, Taipei, Taiwan 115, R.O.C.
whhsu@pc05.ee.nthu.edu.tw

Abstract

Today, the most widely-used authentication
protocol is Kerberos. But Kerberos has potential
weaknesses which result from its password based
architecture, purely symmetric cryptography, and
the assumption that client can securely protect
users’ verification documents. In this paper, we
propose a secure authentication system based on
Kerberos, biometric verification, and public-key
technology. Our system is expected to achieve five
goals: user convenience, storage security, robust
authentication, administrator management, and
attack resistance.

Keyword— Kerberos, Biometric Verification,
Smart Card, Public Key Infrastructure (PKI), Dis-
tribution System

1. Introduction

Authentication is a mechanism for one of the
communicating parties to verify the identities of
the other(s). Currently, most authentication sys-
tems are based on password verification, such as
Kerberos [1], SESAME [2]. These systems suffer
from password-guessing attack. Most users prefer
short and meaningful word sequences rather than
long and random passwords. This leaves hackers
an opportunity to crack users’ passwords.

Another kind of authentication system is based
on biometric verification. Biometric verification
benefits from the uniqueness and the mobility of
biometric features. Besides, biometric features are
usually longer and more random than password.

Isobe et al. [4] proposed an authentication protocol
based on biometric verification. Their system re-
lies on the verification on smart card. However,
smart card is a terminal device. Administrators
may have a suspicion about the impartialness of
verification on smart card.

Except for security issue, efficiency is also im-
portant. Symmetric cryptosystems can achieve
good performance. But it has weaknesses that re-
sult form inevitable shared keys. On the other
hand, asymmetric cryptosystems are securer but
are more computing complex.

In our system, a server is responsible for bio-
metric verification and later log-in procedures. The
result of central verification is more impartial than
that proposed by Isobe et al. Besides, we adopt
both symmetric and asymmetric cryptography [5]
to achieve a balance between security and effi-
ciency.

This paper is organized as follows. In Section
1, we give an overview of authentication systems.
In Section 2, we review two widely-used authenti-
cation systems and list their features and disadvan-
tages. While in Section 3, we introduce the bio-
metric verification technology used in our system.
Then, we propose our authentication system in
Section 4. In the following Section 5, we analyze
the security of our system. Finally, we give the
conclusions in Section 6.

2. Authentication System

2.1. Kerberos [1]

2.1.1. Authentication Flowchart of Kerberos

Figure 1. Kerberos authentication flowchart

Kerberos is developed by Massachusetts Insti-

tute of Technology (MIT) in middle 1980 and it is
based on the early architecture proposed by
Needham and Schroeder [6].

In Kerberos, a trusted third-party named Au-
thentication Server (AS) is responsible for the
verification of one’s identity. In order to detect
replay attack [7], Kerberos adopts timestamp
mechanism. Before providing services, one must
store his/her password in both client machine(s)
and AS (apply symmetric cryptography).

In Figure 1, we illustrate the authentication flow
of Kerberos. First, one has to request AS for an
identity credential. Once he/she receives the re-
spondent document, he/she can request Ticket-
Granting Server (TGS) for a ticket to application
server.

2.1.2. Kerberos Analysis
In Kerberos, user can obtain an identity creden-

tial after his/her verification in AS. This credential
can be used to request TGS for tickets to multi-
application servers. Therefore, Kerberos supports
the functionality of “single sign-on”. However,
Kerberos exists some problems [8, 9, 10]:

1. System assumption: Kerberos is one part of

MIT’s Athena project. The designers of Ker-
beros assumed that all terminal machines are
secure. In a word, Kerberos was designed to
provide secure context over insecure network.
The secure storage of authentication data is
left to users. However, this assumption is not
suited to current network environment due to
the rampancy of attackers. Therefore, in the
proposed system, we consider the security in
both terminal-ends and transaction messages.

2. Adopt symmetric cryptography: In Kerberos,
AS must maintain a password table for the au-
thentications of users. Cracking AS will not
only impact administrator(s) but all users. An-

other choice is asymmetric cryptosystem, such
as SESAME in the next subsection. But this
kind of authentication systems suffers from
their poor performance. Therefore, we adopt a
mixed cryptography [5] in our system (the de-
tail is available in Section 4).

3. Password based authentication: As what we
have mentioned above, password based au-
thentication is vulnerable against to dictionary
attack. Although some password selection
strategies [11] can be used in users’ registers,
password based authentication always has con-
tradictory between security and convenience.
In our system, users’ biometric features rather
than password are used to provide an evidence
of one’s identity. We will discuss the benefits
of biometric verification in the later sections.

2.2. SESAME [2, 3]

2.2.1. Authentication Flowchart of SESAME

Figure 2. SESAME authentication flowchart

SESAME is an authentication scheme extends

Kerberos. Its development is mainly driven by
European computer manufacturers (BULL, ICL,
and Siemens). SESAME was expected to imple-
ment not only a secure authentication protocol but
also access control architecture. The default
cryptosystem of SESAME is asymmetric crypto-
system.

In SESAME, there exist three kinds of servers
for authentication. The Authentication server (AS)
is responsible for the verification of user’s identity.

client

app. server

Kerberos

AS

TGS

(1)

(2)

(3)

(4)

(5)

AS

PAS

KDS

domain
security servers

client
machine sponsor

SACM

APA client
client
app.

target
app.

SACM

PVF application Server

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
(10)

(11)

(10a)

The Privilege Attribute Server (PAS) is in charge
of the issuance of Privilege Attribute Certificate
(PAC), which is used in later access control. The
Key Distribution Server (KDS) takes care of the
management of tickets to application servers.
Moreover, the PAC Validation Factory (PVF)
exists for the validation of received PAC(s) and
the establishment of basic keys, which is used to
construct secure context between the communicat-
ing Secure Association Context Managements
(SACMs).

Now, we illustrate the authentication flow of
SESAME in Figure 2 and the following walk-
through:

(1) User logins the client machine. A Sponsor

will be the agent of current user after his/her
log-in.

(2) User requests the remote service by invoking
a specific client application.

(3) Authentication and Privilege Attribute Client
(APA Client) is responsible for the request of
credential. It is implemented as a library rou-
tine for hiding from Sponsor the details of ac-
cesses to AS and PAS.

(4) APA Client requests AS for authentication by
using either Kerberos-formed or asymmetric
cryptographic authentication message. After
examining, AS returns a credential and a PAS
ticket with the corresponding format.

(5) APA Client caches PAS ticket and requests
PAS for a PAC by invoking SACM. A PAC
with KDS ticket will be returned after PAS’s
check.

(6) Now, the module of SACM requests KDS for
the key information, which is used to generate
a basic key.

(7) The encrypted documents and the key
information are sealed in GSS token. Then the
GSS token is sent to client application.

(8) The client application sends GSS token to the
target application.

(9) The target application bypasses the GSS to-
ken to the SACM of the application server.

(10) The SACM of target application server ex-
tracts and passes security information to the
PVF. If the examination in the PVF1 is posi-
tive, the validation result, PAC, and the basic
key will be returned to the SACM of target
application server the SACM caches the basic

1 The step of (10a) is necessary if a cross-domain access is met. In the

condition, the received documents must be decrypted by an inter-
domain key in the local KDS.

key for later communication with the SACM
in the client-end.

(11) An optional GSS token is sent to the SACM
of the client machine if mutual authentication
is requested.

2.2.2. SESAME Analysis
The advantages of SESAME include: (1) sup-

port single sign-on, authentication, mutual authen-
tication, Role Base Access Control (RBAC), and
delegation of user’s privilege, (2) administrators
can develop their authentication system easily due
to the modulo-components of SESAME [13], and
(3) the designers of SESAME well consider the
situation of cross-domain operations [13] and try
to minimize the steps of inter-domain transaction
[14]. However, the default cryptosystem of SES-
AME is asymmetric algorithms, so SESAME has
poorer performance than Kerberos.

As Kerberos, SESAME relies on password veri-
fication. As a result, it is also weak against pass-
word-guessing attack. And client-storage is vul-
nerable to Trojan horse. Besides, the accesses of a
user are limited to some specific machines.

3. Biometric Verification

Biometric authentication is based on two char-
acteristics of biometric features: uniqueness and
mobility. Nobody is completely equal to the oth-
ers. Therefore, biometric features provide better
proof of our participation than password verifica-
tion.

Among all methods, we believe that fingerprint
verification is currently the optimal method be-
cause the following discussion. When comparing
with the other approaches, we find that fingerprint
verification, hand geometry verification, and retina
verification have relative lower False Acceptation
Rate (FAR) and False Rejection Rate (FRR) [16].
However, fingerprint capturer is cheaper and re-
quires lesser memory to store one’s fingerprint
features. Besides, retina scanner may hurt eye
balls. Therefore, we choose fingerprint verification
to construct our authentication system.

In the research of Isobe et al. [15], there are
three storage tactics of one’s verification template.
When examining the three categories, we find that
a portable device is more suitable to store one’s
verification data. Besides, user will not suffer from
the Trojan horse seeded in the client machine. In
our system, we adopt the smart card to securely
store one’s fingerprint template.

4. The Proposed System

We make the following three assumptions about
our system: (1) we assume that the client machine
is a public device (i.e. anyone can access the pro-
tected resources via any available machine)., (2)
the clocks of all on-lined nodes (a node may be a
client or a server) are synchronous because time-
stamp check is adopted in our system to detect
replay, (3) the administrators must take care of
Deny of Service (DoS), which means that a par-
ticular server overloads because of the explosive
flow from a lot of embedded Trojan horses.

In our system, user identification is based on the
fingerprint verification. And a Java card exists for
the storage of the user’s fingerprint features. With
the Java card, the accesses will not be limited to
some specific machines. Moreover, the crack of
the client machine will not result in the steal of
user’s fingerprint features.

Table 1. The symbols used in our system

Symbol Description
c client or Java card
v target application server
TS timestamp
RD Random number
FP fingerprint features

AID the identity of user A
AAD the network address of user A

2doc1doc || 1doc is merged with 2doc
AK a secret key of user A

BAK _ a secret key between user A and B
ApubK , the public key of user A
AprivK , the private key of user A

{ }docEK encrypt doc with the secret key K
{ }docHash the hashed value of doc

4.1. The Servers of the Proposed System

In our system, there are the following servers
for user authentication (Figure 3):

1. Application Server: an application server con-

tains some valuable resources and these re-
sources are accessible via some authentication
processes.

2. Certificate Authority (CA): the CA is responsi-
ble for the management of the public key cer-
tificates (X.509 [18]) and the publication of a
Certificate Revocation List (CRL) [17].

3. Register Authority (RA): the RA of each do-
main is the agent of a specific CA.

4. Authentication Server (AS): the AS is in
charge of the issuance and the update of iden-
tity credential—Ticket-Granting Ticket (TGT),
which can be used to request the tickets to sev-
eral application servers.

5. Ticket-Granting Server (TGS): by presenting
the TGT, the user will obtain a ticket to his/her
target application server from the TGS.

6. Biometric Secure Policy Server (BSPS): the
BSPS is the “doorkeeper” of our authentication
system. A user must be verified with his/her
fingerprint features before presenting a ticket to
the target application server. In other words, the
BSPS is trusted by the application server(s),
and it manages the log-in procedures of users.
This mechanism lightens the load of the appli-
cation servers and the security risks which re-
sult from the different log-in policies.

Figure 3. PKI domain vs. authentication domain

As what we see in Figure 3, the PKI domain is
constructed of a number of hierarchical CAs. Each
CA is responsible for the issuance and the revoca-
tion of public key certificate in a specific applica-
tion. And a root CA exists for the management of
all CAs. On the other hand, the authentication
domain contains a single AS, one or some TGSs,
one or several BSPSs, a few of client machines,
and a number of application servers. The user must
be verified by the authentication servers before
starting his/her accesses.

The different between the PKI domain and the
authentication domain is that the CA in the PKI
domain services not only our system but also other
applications. In other words, the PKI domain must
be system independent. Our system focuses on the
establishment of secure authentication in the au-
thentication domain.

authentication
servers

AS TGS BSPS

Root
CA

CA

CACA

RA

RA client

The dotted lines
mean the cross-
domained operations

authentication domain B

PKI domain

app.
server

AS TGS BSPS

authentication domain A

authentication
servers

4.2. The Authentication Flowchart of the
Proposed Authentication System

4.2.1. Intra-Domain Authentication

Figure 4. Access request in the intra domain

We illustrate the authentication flow of Figure 4

in the following walk-through.

(1) The user tries to access the protected ser-
vice(s) in the target application server. The
application server requests this user for a one-
time session key. If the key is unavailable, the
application server asks the user to be first
verified by the trusted BSPS.

(2) The client sends a LOG_IN request to the
BSPS. If this client machine has been verified
by the BSPS. A pre-negotiated key between
the smart card (not the client machine) and
the BSPS will be used to encrypt the login
ticket to the target application server before
its delivery to the BSPS. If this client machine
is a new node, the BSPS requests the client
machine for the negotiation of a shared key.
Then, the client machine asks the user to plug
his/her smart card in the card reader. The cli-
ent machine and the BSPS must apply mutual
authentication before the transmission of the
fingerprint features on the smart card. After
the mutual authentication, the smart card and
the BSPS use DH algorithm [18] to negotiate
a secret key. Besides, the user must capture
his/her fingerprint via the fingerprint capturer
and pass it to the BSPS (if the fingerprint cap-
turer supports encryption, the captured fin-
gerprint can be encrypted before its transmis-
sion). Once the BSPS receives both
fingerprint templates, it can verify the identity
of the card holder. An AUTHENT request is
responded to the LOG_IN request after the
successful verification of the BSPS.

(3) The client sends its network address, the
value of current time, and the public key of
AS to the smart card (the public key of AS is
obtained form the local RA). The card gener-
ates two session keys via two functions—

}||{ TSFPHashK au = and }{ auc KHashK = . Then
}||||||}||{{

,,
FlagsADKTSKEE ccauKK cprivaspub

, which
is an authentication request, is delivered to the
AS via the transmission of the client machine
(Flags define some characteristics which this
user needs in these requests of TGT and
server-granting ticket). The AS decrypting

}||{
,

TSKE auK cpriv
 to verifies the user’s identity

(note that TS is used to detect replay). Then
the AS generates the same cK from the hash
function. By now, the smart card and the AS
have known a shared key. This key can be
used to encrypt and update the TGT (we will
introduce the update of TGT in Subsection
4.2.3). }||||||||{ __

lifetimeFlagsADIDKE cctgscK tgsas
,

which is a TGT, is delivered to the user. Next,
the AS renews the cK via }{ cc KHashK = . Then,

}||||||||||{ _ TSFlagsADIDKTGTE tgstgstgscK c
 is re-

sponded to the user’s AUTHENT request. Af-
ter the decryption with the updated cK , the
smart card can get the TGT and a secret key
between itself and the TGS.

(4) }||||||||||{
_

TSFlagsADIDTGTIDE ccvK tgsc
, which is a

TICKET request generated by the smart card,
is sent to the TGS. A vTicket with the format
of }||||||||{ __

lifetimeFlagsADIDKE ccbspscK tgsv
 is sealed

in }||||||||||{ __
TSFlagsADIDKTicketE ccbspscvK tgsc

after
the successful examination of the TGS. Once
again, only the correct smart card can obtain
the vTicket and the bspscK _ from the decryption
of the TGS’s response.

(5) The smart card generates and sends
}||||||||||{

_
TSFlagsADIDTicketIDE ccvvK bspsc

to the
BSPS. After checking the vTicket , an encrypted
one-time session key (}||{

_
TSKE sK bspsc

) will be
delivered to the smart card.

(6) The BSPS must also tell the application server
about the existence of the authenticated user
by sending }||{

_
TSKE sK bspsv

.
(7) By now, the user can start his/her accesses

with the sK .

4.2.2. Inter-Domain Authentication

client environment

card
reader

user
API

fingerprint
capturer

AS

TGS

BSPS

authentication
servers

client machine

app. server

(1) (2)

(3)

(4)

(5)

(6)

(7)

Figure 5. Ticket request of the inter-domain
operation

If the client machine and the target application

server are sited in different domains, the user must
request the remote BSPS for a log-in key. The
procedures of biometric verification are the same
as the step (1) and (2) of the intra-domain opera-
tion. The TGT and the cross-domain ticket re-
quests are similar to that in PKCROSS [19, 20]. In
Figure 5, we show the flow of requesting a ticket
for a remote service. First, the user requests the
local AS for a TGT. Second, he/she presents the
TGT to the local TGS for a ticket to the remote
TGS. Thirdly, the TGS acts as an agent of this

user—it requests the remote AS for a remote TGT
(the local TGS and the remote AS apply mutual
authentication to authentication the identity of
each other). Fourthly, this user can request the
remote TGS for a ticket to the target application
server just like that of the intra-domain operation.

4.2.3. Credential Update
A long-lived user must update his/her TGT

when it has expired. In our system, when a new
user is requesting AS for a TGT, we assume that
there is no pre-negotiated secret between the
communicating parties. Therefore, public-key
cryptography must be adopted in this case. Besides,
A share key (}||{ TSFPHashKc =) will be established
between Java card and AS by using a timestamp
and the fingerprint features stored in the smart card.
Once the TGT is overdue, the user first updates
the cK via }{ cc KHashK = . Then a TGT-update request
(}||||||||{ TSFlagsADIDTGTE ccKc

), which contains the
overdue TGT, is sent to the AS for another TGT.
After the authentication in the AS, the user can get
an updated TGT.

4.2.4. Ticket Update
When the user is accessing a long-lived service,

his/her ticket may be invalid (the lifetime has ex-
pired). Therefore, ticket update is also an impor-
tant functionality of authentication system. In our
system, the user can ask an updated ticket by seal-
ing the overdue ticket in the TICKET-UPDATE
request (}||||||||||{

_
TSFlagsADIDTicketIDE ccvvK tgsc

) to
the TGS. After the examination of the TGS, this
user can obtain another ticket with a valid lifetime.
Then, the user can resume his/her unfinished ac-
cess with the updated ticket.

5. Security Analysis

Except IC card based authentication systems,
most authentication systems rely on the client ma-
chines to store user’s data. In these kinds of au-
thentication systems, user must first log-in some
particular client terminals when he needs the pro-
tected services in the network. This is inconvenient
and insure because the user must register himself
with a new client every time he uses an unfamiliar
end-terminal. In the proposed system, client serves
as a message transmitter. The user’s data is stored
in a smart card. He/She can access the protected
services from any client machine which support
our system.

Authentication domain A
Authentication

 domain B

authentication
servers

AS TGS

authentication
servers

AS TGS

TGT request

TGT response

remote ticket request

remote ticket response

request a ticket to the remote application server

response a ticket to the remote application server

client

remote TGT request

remote TGT response

(1) TGT request:
}||||||}||{{

,,
FlagsADKTSKEE ccauKK cprivaslpub −

}||{ TSFPHashK au = , }{ auc KHashK =

(2) TGT response:
}||||||||||{ _ TSFlagsADIDKTGTE tgsltgsltgslclocalKc −−−

}{ cc KHashK = ,

}||||||||{ __
lifetimeFlagsADIDKETGT cctgslcKlocal tgslasl −−−

=

(3) remote ticket request:
}||||||||||{

_
TSFlagsADIDTGTIDE cclocalvK tgslc −

(4) remote TGT request:

}||||||||||||{
,

RDTSFlagsADIDADIDE tgsltgslcvK asrpub −−−

(5) remote TGT response:
}||{

, tgsrremoteK documentTGTE
tgslpub −−

}||||||||{ __
lifetimeFlagsADIDKETGT cctgsrcKremote tgsrasr −−−

=

TSFlagsADIDKdocument tgsrtgsrtgsrctgsr ||||||||_ −−−− =

(6) remote ticket response:
}||||||||||{ ,_

TSFlagsADIDKTGTE cctgsrcremoteK tgsrc −−

(7)request a ticket to the remote application server:
}||||||||||{

_
TSFlagsADIDTGTIDE ccremotevK tgsrc −

(8)response a ticket to the remote application server:
}||||||||||{ __

TSFlagsADIDKTicketE ccbspscvK tgsrc −

}||||||||{ _ lifetimeFlagsADIDKETicket ccbspscKv tgsv
=

Performance is what a user always concerns. On
the other hand, security is always the first thing of
administrators. In the symmetric cryptography
based system, such as Kerberos, the trusted au-
thentication server must maintain a password table,
which is a public target of attackers. In our system,
the initial authentication adopts public key crypto-
system. A secret key, which is derived from the
timestamp and the fingerprint features stored in the
smart card, is sealed in the credential request. If
the user has to update his/her identity credential,
this key is used to encrypt the transmitted mes-
sage(s). Once the AS is cracked, the user does not
re-enrol his/her fingerprint but renews this shared
key by simply re-plugging his/her smart card. This
mechanism brings users both security and conven-
ience.

Figure 6. The authentication pyramid of the

proposed system

In our system, the application servers can focus

on their service providing. The procedures of log-
in management are left to the BSPS. This brings
two benefits: (1) lighten the load of application
servers and (2) avoid security perplexity results
from different authentication procedures and
trusted linkages. The log-in examinations of BSPS
include the biometric verification and ticket check.
A user must prove himself/herself before present-
ing his/her ticket. With this mechanism, the hack-
ers can not fool our authentication system if they
can not get the fingerprint features from the crack
of the smart card or the transmitted message be-
tween the smart card and the BSPS. Therefore, the
authentication scheme of our system forms a
pyramid authentication structure, which is showed
in Figure 6. The basis of our system is biometric
verification. In a word, we deem that the authenti-
cation is meaningful just one can propose the proof
of his/her participation.

6. Conclusions

In this paper, we proposed a network authenti-
cation system to achieve on five considerations:

user convenience, storage security, robust
authentication, administrator management, and
attack resistance.

In our system, users adopt the smart card to
store their fingerprint features, which is a strong
evidence of one’s identity. In addition, smart card
is securer than the client machine. In other words,
our system brings users both convenience and
storage security.

A new server named Biometric Secure Policy
Server (BSPS) is proposed in our system to meet
three goals—robust authentication, separated ticket
management, and attack resistance. For a user,
BSPS serves as the doorkeeper of application serv-
ers. Anyone must be verified by this server. From
the viewpoint of application servers, they do not
need to manage tickets. This task is left to BSPS.
These application servers only have to take care of
their services. This mechanism fits in with the
concept of task separation.

Attack resistance plays an important role in
our system designation. Because the client is inse-
cure, we apply the smart card as the agent of the
real user. The fingerprint features and other impor-
tant messages of Java card must be encrypted be-
fore their transmission in the client machine. For
intruders and Trojan horses, in order to obtain the
communicating messages, they must derive the
key between the smart card and the communicat-
ing parity from the stolen messages. But, a cracked
key will be useless in the next session because the
generating procedures of key involve timestamp.
On the other hand, we take the attacks of servers
into consideration. There are four kinds of servers
in our system: Authentication Server (AS), Ticket-
granting Server (TGS), BSPS, and application
server. Once AS or TGS is cracked by a hacker, he
can obtain the credentials and the tickets of all
users. However, this hacker is not able to fool our
system because he must first be verified via the
biometric verification procedures before using
these stolen documents.

Besides, we also consider the trade-off between
security and performance in the construction of our
system. The main problem of symmetric-key based
authentication systems comes form the inevitable
share secrets between servers and users. Other
kinds of authentication systems are based on
asymmetric-key cryptography. The secret
communications between servers and users rely on
public-key algorithms. Nevertheless, all public-key
algorithms are more computing complex than
symmetric-key cryptography. Thus, asymmetric-
key based authentication systems are usually more
secure but show poorer performance. In our

 biometric
authentication

TGT
request

ticket
request

start
service

show poorer performance. In our system, the cre-
dential request of a new user is encrypted with
AS’s public key. At the same time, a secret key is
sealed in this request. Once the credential has ex-
pired, this user can request AS for a renew creden-
tial by using the secret key. With this mechanism,
we can reduce the use of asymmetric-key cryptog-
raphy.

According to the above discussions, we can
conclude that our authentication architecture can
provide higher security and better efficiency than
other authentication systems. Hence, our proposed
system is appropriate for log-in authentication in
distributed computing environment.

References

[1] John Kohl and B. Clifford Neuman. “The
Kerberos Network Authentication Service
(Version 5),” Internet Request for Comments
RFC-1510, September 1993.

[2] Tom Packer and Denis Pinkas “SESAME-V4
Overview,” Bull SA (Bull), International
Computers Ltd (ICL), Siemens Nixdorf In-
formationssymteme (SNI), December 1995.

[3] Ashley, P. and Broom, B. “An Implementa-
tion of the SESAME Security Architecture for
Linux,” Australian UNIX and Open Systems
Group Technical Conference, 1997.

[4] Isobe, Y., Saeto, Y., and Kataoka, M. “Devel-
opment of Personal Authentication System
Using Fingerprint with Digital Signature
Technologies,” Proceedings of the 34th An-
nual Hawaii International Conference on Sys-
tem Sciences, pp. 4039~4047, 2001.

[5] Ju-Chen Hsueh “Design of Authentication
Systems with IC Cards,” (NCS99) Nation
Computer Symposium, 1999.

[6] Roger M. Needham and Michael D. Schroe-
der “Using Encryption for Authentication in
Large Networks of Computers,” Communica-
tions of the ACM, vol. 21, no. 12, December
1978.

[7] V. L. Voydock and S. T. Kent, “Security
Mechanisms in High-Level Network Proto-
cols,” Computing Surveys of the ACM, vol.
15, no. 2, June, 1983.

[8] John T., Kohl, B., Clifford Neuman, and
Theodore Y. T'so “The Evolution of the Ker-
beros Authentication System,” IEEE Com-
puter Society Press on Distributed Open Sys-
tems, pp. 78~94, 1994.

[9] S. M. Bellovin and M. Merritt. “Limitations
of the Kerberos Authentication System,”

Computer Communication Review, vol. 20,
no. 5, pp. 119~132, October 1990.

[10] Ganesan, R. “Yaksha: Augmenting Kerberos
with Public Key Cryptography,” Proceedings
of the Symposium on Network and Distributed
System Security, pp. 132~143, 1995.

[11] Alvare, A. “How Crackers Crack Passwords
or What Passwords to Avoid,” Proceedings of
UNIX Security Workshop II, August 1990.

[12] Ashley, P., Rutherford, M., Vandenwauver,
M., and Boving, S. “Using SESAME's GSS-
API to Add Security to UNIX Applications,”
(WET ICE '98) Proceedings of the 7th IEEE
International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative En-
terprises, pp. 359~364, 1998.

[13] Ashley, P. and Broom, B. “An Implementa-
tion of the SESAME Security Architecture for
Linux,” Australian UNIX and Open Systems
Group Technical Conference, 1997.

[14] Vandenwauver, M., Govaerts, R., and
Vandewalle J. “Overview of Authentication
Protocols,” Proceedings of the 31st Annual
IEEE Carnahan Conference on Security
Technology, pp. 108~113, 1997.

[15] Isobe, Y., Seto, Y., and Kataoka, M. “Devel-
opment of Personal Authentication System
Using Fingerprint with Digital Signature
Technologies,” Proceedings of the 34th An-
nual Hawaii International Conference on Sys-
tem Sciences, pp. 4039~4047, 2001.

[16] ISO/IEC JTC 1/SC 21, Technical Corrigen-
dum 2 to ISO/IEC 9594-8: 1990 &1993
(1995:E), July 1995.

[17] “Public Key Infrastructure Specification,”
The specification issued by Object Manage-
ment Group (OMG), February 2001, available
at http://www.omg.org/issues/

[18] Diffie, W. and Hellman, M. “New Directions
in Cryptography,” IEEE Transactions on In-
formation Theory, November 1976.

[19] Brian Tung, Tatyana Ryutov, and Clifford
Neuman “Public Key Cryptography for
Cross-Realm Authentication in Kerberos,”
internet draft working documents of IETF,
May 8 2001, available at http://search.ietf.
org/internet-drafts/draft-ietf-cat-kerberos-pk-
cross-08.txt

[20] Harbitter, A.H. and Menasce, D.A. “Perform-
ance of Public-Key-Enabled Kerberos Au-
thentication in Large Networks,” Proceedings
of 2001 IEEE Symposium on Security and
Privacy, pp. 170~183, 2001.

