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Abstract

Since the “Square” attack was introduced by Joan Daemen, Lars R. Knudsen and Vin-
cent Rijmen in 1997, its variants has been reported to go against 9 rounds of AES. We
analyse the features of some cryptanalysis and try to find out what properties are used to
attack block ciphers.

We propose MAES, a modified version of AES, in order to have higher security level
in prevention from the “Square” attack. Furthermore, we also compare the security levels
between AES and MAES. Finally we prove that MAES provides higher security than AES.

1 Introduction

The “Square” attack, a dedicated attack on Square, was introduced in the paper presenting
the Square cipher itself[DKR97]. It is also valid for AES[DR98] since AES inherits many
properties from the Square cipher. This attack takes advantage of the byte-oriented struc-
ture of AES and the properties of the outputs of the 3rd round of AES. It is independent of
the specific choices ofByteSub, the multiplication polynomial ofMixColumn, and the key
schedule in AES.
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For 128-bit keys, the “Square” attack associated with the “partial sums” technique[FKL+00]
is faster than exhaustive key search for AES variants by up to 7 rounds. For 192-bit keys,
it is faster than exhaustive key search by up to 8 rounds. For 256-bit keys the “Square”
attack associated with the related key attack is faster than exhaustive key search by up to 9
rounds.

Since the “Square” attack is based on some properties of theΛ-set and the structure of
AES, we want to reduce these properties by slightly modifying the specification of AES.

2 Preliminaries

2.1 Λ-set

To describe the “Square” attack we need the notion of aΛ1-set, a set of 256 states that are
all different in the same bytes.

Definition 1: (state)
Thestatemeans the intermediate cipher result.

Definition 2: (Λ-set)
A Λ-set is a set of28 states that are all different in some of the state bytes (the active bytes)
and all equal in the other state bytes (the passive bytes). For two distinct states x and y in
a Λ-set we always have

∀x,y∈ Λ :

{
xi, j 6= yi, j if the byte at position (i,j) is active, and
xi, j = yi, j otherwise

Moreover, a “Λk-set” is a Λ-set with exactly k active bytes.

The properties of applying the 4 transformations of AES on the elements of aΛ-set are
described in [DR98]. By the structure of AES, consider aΛ1-set as inputs. The evolution
of the positions of the active bytes forms theΛ16-set through 2 rounds. Then these would
lead to thatXORingwith all relevant bytes of the output ofMixColumnin the 3rd round
equals zero. And the subsequentAddRoundKeydoes not affect this property. Therefore,
all bytes at the output of the 3th round are still balanced. Nevertheless this does not mean
the bytes range over all possible values and the balance is destroyed by the subsequent
application ofByteSub.

2.2 Differential Attack

Differential attack introduced by Biham and Shamir[BS91] is one of the most significant
advances in cryptanalysis. It is known as a chosen-plaintext attack or a statistical attack
against block ciphers. The main idea is to compare two separate encryptions which use the
same key and to look at theXORof the S-box inputs and outputs. This step is independent
of the key being used. Then it would be known as various inputXOR- outputXORpairs,
called characteristics, occurring with particular probabilities.
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Definition 3: (characteristic)
A particular input XOR value and output XOR value pair which occurs with some proba-
bility is called a characteristic.

Definition 4: (differential distribution table)
A table that shows the distribution of the input XOR and output XOR of all the possible
pairs of an S-box is called thedifferential distribution tableof the S-box. In this table
each row corresponds to a particular input XOR, each column corresponds to a particular
output XOR and the entries themselves count the number of possible pairs with such an
input XOR and output XOR.

Definition 5: (δ f )
Let f be a substitution function from GF(2n) into GF(2n). Let a be the input XOR andb
be the output XOR. Then each entryδ f (a,b) is defined by:

δ f (a,b) = #{x∈GF(2n) : f (x+a)⊕ f (x) = b}

Let δ f denote the maximal value of the entries of the differential distribution table. We
have

δ f = max
a6=0

max
b

δ f (a,b) (1)

We usually use the equation (1) to measure the resistance to the differential attack. The
moreδ f increases, the less resistance to the differential attack it is.

2.3 Nonlinearity

Although the S-boxes were designed to be non-linear, it turns out that some of the in-
puts/outputs can be approximated by linear functions. Using this feature to attack the
cipher can reveal some key bits and the remaining key bits can be gained by exhaustive
search.

Definition 6: (NonlinearityN f )
Let f be a substitution function from GF(2n) into GF(2n). Leta andb be two binary vectors
in {0,1}n. We have

λ f (a,b) = |#{x∈GF(2n) : a·x+b· f (x) = 0}−2n−1|
λ f = max

a
max
b6=0

λ f (a,b) (2)

NonlinearityN f = 2n−1−λ f (3)

We usually use the equation (3) to measure the nonlinearity of a S-box. The moreλ f

is, the less the nonlinearity is.

3 Modification

The “Square” attack exploits the byte-oriented structure of AES. Moreover, 4 bytes output
depend on 4 bytes input of an intermediate round of AES and 1 byte output depend on

3



1 byte input of the final round of AES. We wish to make this relationship more complex
but keep the feature of uniform diffusion. Then we need to think about the influences on
changes of any components of AES.

The ByteSubtransformation operates on each state byte independently. It does not
change the position of each byte, and has no effect on diffusion. If we replace it with
another format of S-boxes, other transformations are not affected. The round function still
works normally.

TheShi f tRowtransformation cyclically shifts the rows of the state over different off-
sets. Each byte of the state is unchanged and its position is simply shifted over a offset.
If we replace it with other offsets, either it has no influence on the round function or the
round function is not able to spread uniformly.

TheMixColumntransformation replaces each column with another column by multi-
plying a polynomialc(x) overGF(28). It has high intra-column diffusion. By composing
the Shi f tRowtransformation with theMixColumn transformation, it has high diffusion
over multiple rounds. If we replace theMixColumn transformation with another trans-
formation, we also need to replace theShi f tRowtransformation. Otherwise, the round
function is not able to spread uniformly.

TheRoundKeyAdditiontransformation applies the round key to the state by a simple
bitwiseXOR. If we replace it with another format of the round key addition, we may also
need to redesign the key schedule.

We think that modifying theByteSubtransformation would cost minimally. Therefore,
we design another transformation instead of theByteSubtransformation. TheTwoByteSub
transformation is a new component designed by us and the detail is described below. Unlike
ByteSub, it treats every two bytes in a state as the basic unit for the operation and divides a
state into 8 units.

Definition 7: (unit)
Each unit is a two-byte variable of a state. The unit ui, j denotes the bytes in position (i,2j)
and (i,2j+1) of a state.

Each unit operates with theTwoByteSubtransformation independently. The detailed
design criteria for the S-box used in theTwoByteSubtransformation are listed below:

1. Invertibility

2. MappingT : {0,1}16→{0,1}16

3. High nonlinearity

4. Minimization of the greatest non-trivial value in the differential distribution table

Although the size of S-box grows 512 times bigger than the original one, it just needs 128
kilo bytes. We think this is acceptable in modern computer technologies.

Similar to theByteSubtransformation, we construct a S-box of theTwoByteSubtrans-
formation from the method mappingp⇒ p−1 in GF(216) mentioned in [Nyb94]. Since
GF(216) is equivalent toF2[x]/M(x), whereM(x) is a irreducible polynomial with degree
16. We can treat every two bytes as a binary polynomial and compute its inverse in the
finite field. The related properties of the inverse mapping inGF(2n) are described below:

1. NonlinearityN f ≥ 2n−1−2
n
2
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2. The S-box is differentially 2-uniform if n is odd and it it differentially 4-uniform if n
is even.

3. x−1 is computed by the Euclidean algorithm in polynomial time with respect ton.

By the properties listed above theTwoByteSubtransformation is guaranteed to be low
λ f (see Equation 2) and lowδ f (see Equation 1). Furthermore, the nonlinearityN f is
at least 32512 and theδ f is 4. In order to do multiplication of polynomials modulo an
primitive binary polynomial of degree 16, we choose a primitive polynomialM(x) from
[BMS87]. The primitive polynomialM(x) is given by:

M(x) = x16+x5 +x3 +x2 +1

or ‘1002D′ in hexadecimal representation. Moreover, we apply an affine transformation
to the result of the multiplicative inverse for complicating the algebraic expression in
GF(216). In fact, this affine transformation does not affect the properties claimed above.
We have written a program to test it and got the same properties. The goal of it is just to
avoid some weak mapping.

Definition 8: (TwoByteSub)
The TwoByteSub transformation T(p) is defined by:

∀p∈GF(216), T(p) = A· p−1 +B mod M(x)

where


A = x14+x11+x10+x8 +x6 +x2 +x
B = x14+x11+x7 +x6 +x5 +x2 +1
M(x) = x16+x5 +x3 +x2 +1

These two polynomialsA andB are chosen in such a way that the S-box has neither
fixed points (S-box(a) = a) nor opposite fixed points (S-box(a)=a).

4 Security Analysis

As we concentrates the modification on the property in resistance to the “Square” attack,
we will show that the necessary property needed by the “Square” attack is reduced by our
modification.

Since our modification just replaces theByteSubtransformation with the other trans-
formation and never attends to change the structure of AES, the advantages of the security
level is not affected by it. In fact the original 8×8 S-box used in theByteSubtransforma-
tion has good properties in resistance to linear attacks and differential attacks. MAES still
has at least the same degree of security as long as we choose the 16×16 S-box carefully.

4.1 Square Attack

After replacing theByteSubtransformation with theTwoByteSubtransformation, we now
trace the procedure of attacking MAES by the “Square” attack. Since theTwoByteSub
transformation treats every two close bytes as a unit, we need to choose theΩ-set instead
of the Λ-set. If we still use aΛ1-set as the inputs of theTwoByteSubtransformation, it
does not lead to aΛ1-set as the outputs. That is to say we need 216 plaintexts as a set for
our analysis.
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Definition 9: (Ω-set)
An Ω-set is a set of216 states that are all different in some of the state units (the active
units) and all equal in the other state units (the passive units). For two distinct states x and
y in anΩ-set we always have

∀x,y∈ Ω :

{
xi, j 6= yi, j if the unit at position (i,j) is active, and
xi, j = yi, j otherwise

Moreover, an “Ωk-set” is anΩ-set with exactly k active units.

The properties of applying the 4 transformations of MAES on the elements of anΩ-set
are described below. Notice that one active unit can denote two active bytes repeated 28

times.

Lemma 1: Applying the TwoByteSub transformation on anΩ-set results in anΩ-set with
the positions of the active units unchanged.

Proof: SinceTwoByteSubis a one-to-one and onto mapping and operates on each unit
independently, applying it on anΩ-set properly results in anΩ-set with the positions of the
active units unchanged.

Lemma 2: Applying the Shi f tRow transformation on anΩ1-set results in two active bytes
repeated28 times where the active bytes are transposed by Shi f tRow.

Proof: SinceShi f tRowjust cyclically shifts each row independently and anΩ1-set can be
viewed as two active bytes repeated 28 times, applying it on anΩ1-set results in two active
bytes repeated 28 times.

Lemma 3: Applying the MixColumn transforation on anΩ1-set results in anΩ4-set. The
8 active bytes are in two adjacent columns and each active byte is repeated28 times.

Proof: SinceMixColumncan only operate with the bytes in the same column and two
bytes in a unit must be in the same row, applying it on aΛ1-set repeated 28 times results
in a Λ4-set repeated 28 times and the 4 active bytes are in the same column. Therefore,
applyingMixColumnon anΩ1-set results in anΩ4-set and the 8 active bytes are in two
adjacent columns.

Lemma 4: Applying the AddRoundKey transformation on anΩ-set results in anΩ-set
with the positions of the active units unchanged.

Proof: SinceAddRoundKeyjust applies the round key to the state by a simple bitwise
XOR, applying it on anΩ-set can be viewed as permuting each active byte independently.

Lemma 5: Applying the MixColumn transforation on a set with 2 active bytes repeated28

times in the same column results in a set with 4 active bytes repeated28 times in it.

Proof: Two active bytes can be viewed as a two-layered loop. SinceMixColumnis a one-
to-one and onto function, each output byte is affected by changing these two active bytes
and is still an active byte repeated 28 times.
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By the structure of MAES, consider aΩ1-set. We now trace the evolution of the posi-
tions of the active bytes through 2 rounds.

1. MixColumnof the 1st round converts the active bytes to two complete columns of
active bytes and forms theΩ4-set.

2. Shi f tRowof the 2nd round spread the eight active bytes of two columns over four
columns. Each column consists of 2 active bytes and 2 passive bytes.

3. Then each byte of the output of theMixColumntransformation of the 2nd round is
affected by 2 active bytes and it is still an active byte repeated 28 times.

4. Then this stays as aΛ16-set repeated 28 times until the input ofMixColumnof the
3rd round.

Then these would still lead to thatXORingwith all relevant bytes of the output ofMixColumn
in the 3rd round equals zero. And the subsequentAddRoundKeydoes not affect this prop-
erty. Therefore, all bytes at the output of the 3th round are still balanced. Nevertheless this
does not mean the bytes range over all possible values and the balance is destroyed by the
subsequent application ofTwoByteSub.

When the 4th round is the last round, it does not contain theMixColumntransforma-
tion. Every input byte of the 4th round affects two output bytes of the 4th round. Lets4

be the output of the 4th round,s3 be the output of the 3rd round andSubKey4 be the round
key of the 4th round. We have:

s3
i′, j ′ = Sbox−1(

s4
i, j ⊕SubKey4i, j , s4

k,m⊕SubKey4k,m
)

By assuming two key values forSubKey4i, j andSubKey4k,m, we can compute the value ofs3
i′, j ′

for all elements of theΛ16-set from the ciphertexts. If the values ofs3
i′, j ′ are not balanced

overΛ16-set, the assumed value for the key must be wrong. Otherwise, it is not always true.
This is expected to reject all but approximately 1 key value, and can be repeated for the
other bytes of the round keySubKey4. This attack needs 216 plaintexts and the complexity
is O(216).

Square attack AES MAES
# Plaintexts # Operations # Plaintexts # Operations

4 Rounds 28 28 216 216

5 Rounds 28 240 216 280

(extended at the end)

5 Rounds 232 240 296 2112

(extended at the beginning)

6 Rounds 232 272 296 2176

Table 1: The Comparison of complexity of the “Square” attack

Table 1 presents the comparison of complexity of the “Square” attack against AES and
MAES. Although the “Square” attack can still be used to attack MAES, its complexity
grows fast. Moreover, the complexity of the 6 round atack of MAES with 128-bit keys is
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higher than the exhaustive key search. We claim that MAES provides higher security level
than AES in resistance to the “Square” attack.

4.2 Differential Attack

Since the differential attack is based on the differential distribution table of a S-box and
the invertible S-box of MAES is constructed by the method mappingp⇒ p−1 in GF(216)
mentioned in [Nyb94]. We now build the differential distribution table of the S-box of
MAES and analyse it.

There are some regular rules in this differential distribution table. Each row (except the
row 0) of it consists of 32769 0’s, 32766 2’s, and one 4. As this S-box is invertible, the
distribution of the columns is similar to the rows. The row 0 means the inputXORequals
0, and the same inputs always lead to the same outputs. Therefore, theδ f is 4 and one
of them appears in (inputXOR, outputXOR) = (1, 19782) with probability 4

65536. In this
situation it is difficult to attack MAES by the differential attack.

Moreover, we show the comparison between DES, AES, and MAES about the resis-
tance to the differential attack in table (2). Since the maximal probability of characteristics

Block ciphers S-box size The differential δ f Max. characteristic
distribution table size probability

DES 6×4 26×24 14 14
64

AES 8×8 28×28 4 4
256

MAES 16×16 216×216 4 4
65536

Table 2: The Comparison about the resistance to the differential attack

of MAES is 4
65536 far small than that of AES, we claim that MAES provides higher security

than AES in resistance to the differential attack.

4.3 Nonlinearity

If we want to analyse AES in resistance to linear attacks, we need to do 2128×2128×2128

comparisons in order to get the effective linear expressions. It would take too much time
to analyse. The only nonlinear component in AES is theByteSubtransformation, and
furthermore all other components are linear. Since our modification focuses on the S-box
of AES, we would do the analysis of the nonlinearity of the S-box of MAES. Then we
compare it with the nonlinearity of the S-box of AES in order to show the security level of
MAES.

By the equation (3) we can measure the nonlinearity and computeλ f . Accordingly we
need to compute 216×216 λ f (a,b) to getλ f .

Finally we getλ f of the S-box of MAES equal to 256. One of these approximate affine
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functions is as follows:

∀p∈GF(216) and s =T(p)
p0⊕s12⊕s6⊕s5⊕s1⊕s0 = 0

where

{
pi is a bit of inputp in positioni
sj is a bit of outputs in position j

Althoughλ f of MAES is greater than that of AES, the nonlinearity grows with the size of
the S-boxes. Consequently the probability of the successes of this equation is256

65536. Table
(3) shows the comparison of the nonlinearity of S-boxes. Therefore, the nonlinearity of the

Block ciphers S-box size λ f N f Probability of
successful attack

AES 8×8 16 112 6.25 %
MAES 16×16 256 32512 0.39 %

Table 3: The Comparison of the nonlinearityN f of S-boxes

S-box of MAES is higher than that of AES.

5 Conclusion

We analyse the structure of AES and the procedures of several cryptanalysis in order to find
out their relations. Since AES is designed to resist any attacks which have been reported,
we have to guarantee the same security level after modifying AES. However, the “Square”
attack is successful on the reduced-round variants of AES. We want to conquer it.

We introduce a modified version of AES in order to have the higher security level in
opposition to the “Square” attack. Since the “Square” attack is based on some properties
of the Λ-set and the structure of AES, we reduce these properties by slightly modifying
the specification of AES. By replacing theByteSubtransformation with theTwoByteSub
transformation we achieve the goal. By reserving the other structures of AES it still has
most of the advantages of AES. Furthermore, we compare AES and MAES in terms of
resistance to the “Square” attack, the differential attack and the linear attack. We claim
that MAES provides higher security than AES.
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