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Abstract

Recently the relationships among cryptographic criteria of boolean functions, including
balancedness, the algebraic degree, nonlinearity, propagation criterion and correlation im-
munity, have been widely investagated. In this paper, we will present two constructions
of n-variable boolean functions under consideration of resiliency and propagation criterion
simultaneously.

1 Introduction

Symmetric-key cryptography system is the most widely used by industrial, financial and com-
mercial sectors all over the world. It has many advantages of high performance, low cost imple-
mentation, and easy encryption or decryption. Usually, the Symmetric-key cryptography system
can be roughly divided into two classes, block ciphers and stream ciphers. The former contains
AES(Advanced Encryption System), RC6, DES and so on, whereas the LFRS-based stream
cipher and SEAL belong to the latter. Although there are lots of different cipher systems, a core
component of these systems is the cryptographic boolean functions. So the design and analysis
of the cryptographic boolean functions is vitally important.

In the design of a good cryptographic boolean function, the following criteria of the crypto-
graphic boolean functions are considered: (1)algebraic degree, (2)balancedness, (3)correlation
immunity, (4)nonlinearity, and (5)propagation criterion.

Among these criteria, most researches focus on nonlinearity, correlation immunity, propa-
gation criterion and their relationships. In [PLL+90], Linden et al show the relation between
the Walsh-Hadamard transformation and an n-variable boolean function satisfying the propa-
gation criterion with degree t, denoted with PC(t) which means if f changes with probability 1

2
whenever the input x changes at least one and most t coordinates. A general method given in
[KT97] uses linear codes to design functions satisfying PC(t). In recent researches, the explicit
and simple lower bound on the nonlinearity Nf of f with PC(1) is established in [ZZ00],i.e.,
Nf ≥ 2n−1 − 2n−1− 1

2 .
Correlation immunity, introduced by Siegenthaler in 1984 [T.S84], has long been one of

critical indicator of the cryptographic boolean function on stream cipher. A boolean function
f with n-variables is called the m-th-order correlation immune function if when we keep m
variables of input constant, the statistical distribution of output is equivalent to the statistical
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distribution of f . If f is the m-th order correlation immune function and is balanced, f is also
called an m-resilient function. The spectral analysis of a boolean function f satisfying correlation
immunity of order m was first presented in [GZM88a]. Moreover, the designs of the boolean
functions with good correlation immunity have been proposed in [SZZ93][CLLS96]. And the
upper bound of nonlinearity, Nf ≤ 2n−1 − 2n−1− t

2 , is characterized in [Sar00].
The propagation criterion goes against correlation immunity and the same situation exists

between correlation immunity and nonlinearity. So there is no boolean functions satisfying
all of good criteria we mentioned above. As a consequence, the relationships between these
criteria have been widely investigated. If f is m-th order correlation immune, nonlinearity
Nf ≤ 2n−1−2m for m > n

2−1 and Nf ≤ 2n−1−2
n
2
−1−2m for m ≤ n

2−1 [Sar00]. The relationship
between the order of correlation immunity ,m, and the degree of propagation criterion, t, have
been provided in [Car93] and [ZZ01]. Moreover, the upper bound of sum of m and t, m+ t ≤ n,
has been shown in [ZZ00].

This paper, we want to established a construction of an n-variable boolean function under
of consideration of balancedness, the correlation immunity and propagation criterion simultane-
ously. We present two new constructions for this idea. One is to modified the construction of a
boolean function which is balanced and m-th order correlation immune [CLLS96], and the other
is through the concept of the equivalence class of boolean functions [BW74]. We also present
the link between the equivalence class of boolean functions and cryptographic criteria.

The organization of the rest of the paper is as follows. In Section 2, we provide the basic
definitions and notations and show the definition of the Walsh-Hadamard transform. It is the
most powerful tool for analyzing boolean functions. We use this tool to describe the definitions
and properties of cryptographic criteria. In Section 3, we present a new construction of n-variable
and m-resilient boolean function which also satisfies PC(t). Then we introduce the concept of
equivalence classes of boolean functions. Based on this, we present another new construction of
n-variable and m-resilient boolean function which also satisfies PC(t).

2 Preliminaries and Notations

This section will provide some notations and definitions. We also introduce the cryptographic
criteria and the powerful tool–Walsh-Hadamard Transform.

2.1 Boolean functions

We say f is an n-variable boolean function if f is the function from {0, 1}n to {0, 1} (f :
{0, 1}n 7→ {0, 1}). For convenience, we use f(x) to represent f with n input variables, f(x) =
f(x1, x2, . . . , xn). The truth table of f is a (0,1)-valued row vector with length 2n, denoted by
ξf = (f(γ0), f(γ1), . . . , f(γ2n−1)) where γ0 = (0, 0, . . . , 0), γ1 = (1, 0, . . . , 0), . . ., and γ2n−1 =
(1, 1, . . . , 1).

Definition 2.1. Let v1 and v2 be the binary vectors of length n. The Hamming weight of the
vector is denoted by hw(v1), the number of 1’s in the vector v1. We denote by #(v1 = v2)
(respectively #(v1 6= v2)), the number of places where v1 and v2 are equal(respectively unequal).
The Hamming distance between v1 and v2 is denoted by hd(v1, v2), i.e.

hd(v1, v2) = #(v1 6= v2) = hw(v1 ⊕ v2)

Note that we denote bit-wise XOR operator over by ⊕.
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Besides truth table of f , the following form also can be represent the n-variable function
f(x1, x2, ...., xn). It is called algebraic normal(ANF) form:

f(x1, x2, ...., xn) =
⊕

u∈{0,1}n

ϕ(u)xu1
1 xu2

2 . . . xun
n

where the coefficient ϕ(u) ∈ {0, 1} and u = (u1, u2, . . . , un).
The deg(f) is the algebraic degree, the number of variables of highest order product term

with nonzero coefficient in the algebraic normal form.
We call an n-variable function f is an affine function if deg(f) ≤ 1. It takes the ANF form:

ϕ(γ) = 0 for hw(γ) ≥ 2. Furthermore, f is called the linear function if the constant term ϕ(γ0)
is also zero.

2.2 Walsh-Hadamard Transform

Definition 2.2. Let f be a function on {0, 1}n. The Walsh-Hadamard transform of f(x) is
defined as

Wf (ω) =
∑

x∈0,1n

(−1)f(x)⊕<ω,x>

where ω = (ω1, ω2, ..., ωn) ∈ {0, 1}n, < ω, x > is the inner product of ω and x, < ω, x >=⊕n
i=1 ωixi. The Walsh-Hadamard transform is also called the spectral distribution or the spec-

trum of a boolean function.

The Walsh-Hadamard transform is mostly used in the analysis of an arbitrary boolean func-
tion. The value, Wf (ω), of transform can be viewed as the difference between f and some linear
function < ω, x >.

Wf (ω) =
∑

x∈0,1n

(−1)f(x)⊕<ω,x>

= #{x|f(x) =< ω, x >} −#{x|f(x) 6=< ω, x >}

2.3 Cryptographic Properties for Boolean Functions

2.3.1 Balanced functions

Definition 2.3. f is an n-variable boolean function. f is the balanced function if

#{x|f(x) = 1} = #{x|f(x) = 0}
hw(ξf ) = 2n−1.

Lemma 2.4. Let f be a balanced boolean function. The Walsh-Hadamard transform of f is zero
at ω = (0, . . . , 0), Wf (0, . . . , 0) = 0.

2.3.2 Nonlinearity

The nonlinearity of f is defined to be the minimum Hamming distance between f and all affine
functions.
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Definition 2.5. Let f be an n-variable boolean function. The nonlinearity of f , denoted by Nf ,
is defined as

Nf = min
g∈A(n)

hd(ξf , ξg)

where A(n) is the set of all n-variable affine functions.

According to the definition, we know that a boolean function with high nonlinearity is
difficult to approximate with some affine function. The value of Nf is also formed by the Walsh-
Hadamard transform. Let L(n) be the set of all n-variable linear functions. L(n) is the subset
of A(n). Then

Nf = 2n−1 − max
ω∈{0,1}n

|Wf (ω)|
2

.

2.3.3 Correlation Immune and Resilient Boolean functions

Siegenthaler has defined the correlation immunity [T.S84] as a measure of resistance against
the ciphertext-only correlation attacks in stream cipher [T.S85]. A boolean function f with
n-variables is called the m-th-order correlation immune function if the statistical distribution
of output is equivalent to the statistical distribution of f when we keep m variables of input
constant. If f is also balanced, then f is called the m-resilient function. Xiao and Massey present
the characterization of correlation immune functions on Walsh-Hadamard transform [GZM88a]
as follows:

Theorem 2.6. [GZM88a]An n-variable boolean function is m-th order correlation immune if
and only if its Walsh-Hadamard transform Wf satisfies

Wf (ω) = 0, for 1 ≤ hw(ω) ≤ m

Moreover, if f is m-resilient resilient then

Wf (ω) = 0, for 0 ≤ hw(ω) ≤ m

Lemma 2.7. [T.S84][GZM88a] Let f be an m-th order correlation immune function with n
variables. For m < n − 1, the maximum algebraic degree of f is n −m and if f is m-resilient
then the maximum algebraic degree of f is n−m− 1. For m = n− 1, f is an n-variable affine
function.

2.3.4 Propagation Criterion

Definition 2.8. Let f be an n-variable boolean function. The autocorrelation function Rf (α)
is defined as

Rf (α) =
∑
x

(−1)f(x)⊕f(x⊕α)

Note that Rf (0n) is equal to 2n

An n-variable boolean function f satisfies the propagation criterion with degree t if f(x)
changes with a probability of 1

2 whenever i(1 ≤ i ≤ t) variables of input are complemented
[PLL+90]. Specifically, f is said to satisfy the propagation criterion with degree t if f(x)⊕f(x⊕α)
is a balanced function for 1 ≤ hw(α) ≤ t. We note that f(x) ⊕ f(x ⊕ α) is also called the
directional derivative of f in the direction α.
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Definition 2.9. Let f be an n-variable boolean function satisfying the propagation criterion
with degree k. The autocorrelation function Rf (α):

Rf (α) = 0 for 1 ≤ hw(α) ≤ t

The strict avalanche criterion(SAC) [GZM88b] is equivalent to the propagation criterion
with degree 1 and perfect non-linear is propagation criterion with degree n.

3 Construction

We have known that propagation criterion will goes against the correlation immunity and non-
linearity. In this section, these important cryptographic properties (resiliency, nonlinearity ,
propagation criterion and algebraic degree) will be considered simultaneously for the two new
construction of a boolean function.

3.1 Construction I

In [SM00], Sarkar and Maitra provided the construction of n-variable and 1-resilient functions
satisfying PC(n

2 −1), by using (n−2)-variable boolean functions which satisfies PC(n−2). We
call this construction as PC-based Construction. It generates an 1-resilient boolean function
satisfying PC(1

2 − 1), which def(f) = n
2 − 1 and Nf = 2n−1 − 2

n
2 .

Now we propose our new method different from PC-based Construction , namely Resilient-
based Construction, to construct an n-variable and m-resilient boolean function which has
the algebraic degree d, maximal nonlinearity Nf = 2n−1 − 2n−d, and satisfies PC(1). This
Resilient-based Construction is made by modifying the construction of m-resilient functions
in [CLLS96]. At first, we introduce an important theorem of this construction.

Theorem 3.1. [CLLS96] Let n, m and k be three positive integers with n ≥ 4, 1 ≤ m ≤ n− 3,
1 ≤ k ≤ n − m and Sn,m,k = {Ay | Ay ∈ {0, 1}k where hw(Ay) ≥ m + 1 and y ∈ {0, 1}n−k}.
For any a ∈ Sn,m,k, let ua = #{y | Ay = a and y ∈ {0, 1}n−k} and u = maxa ua. We define a
boolean function f : {0, 1}n → {0, 1} by

f(y, x) = (1⊕ y1)(1⊕ y2)...(1⊕ yn−k) < Aη0 , x > ⊕
(1⊕ y1)(1⊕ y2)...(yn−k) < Aη1 , x > ⊕
......⊕
(y1y2...yn−k) < Aη

2n−k−1
, x >

where y = (y1, y2, ..., yn−k) ∈ {0, 1}n−k, x = (x1, x2, ..., xk) ∈ {0, 1}k and ηi ∈ {0, 1}n−k is the
binary representation of i. Then the following conditions hold:

1. f is balanced.

2. f is an m-th order correlation immune function.

3. Nf = 2n−1 − u2k−1.

4. If
⊕

y∈{0,1}n−k Ay is not equal to zero vector then deg(f) = n− k + 1.
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Lemma 3.2. [CLLS96] Let f be an n-variable boolean function constructed by Theorem3.1.
When u = maxa ua = 1 and k = b1 where b1 is defined in Theorem ??, we can obtain the
maximum nonlinearity

max
u,k

Nf = 2n−1 −min
u,k

u2k−1 = 2n−1 − 2b1−1 = 2n−1 − 2k−1

We now take the propagation criterion into consideration and extend Theorem 3.1 to build
the Resilient-based Construction. The following theorem is an important result for Resilient-
based Construction.

Theorem 3.3. Let f(y1, y2, ..., yn−k, x1, x2, . . . , xk) be an n-variable and m-resilient boolean
function with parameter k. ηi ∈ {0, 1}n−k is denoted by a binary representation of decimal
number i. We say that f satisfies PC(1) if the following conditions hold:

1. {Ay | Ay ∈ {0, 1}k wherehw(Ay) ≥ m + 1 and y ∈ {0, 1}n−k}
2. Let ej be the boolean vector with length n − k of which the j-th positions is one and the

others is zero. Then < Ay, x > ⊕ < Ay⊕ej , x > is not a constant function for 1 ≤ j ≤ k
and y ∈ {0, 1}n−k.

3. The sequence (Aη0(i), Aη1(i), ...., Aη
2n−k−1

(i)) is balanced for 1 ≤ i ≤ k, where Ay(i) means
i-th position of the vector Ay. In other words,

∑

y∈{0,1}n−k

Ay(i) = 2n−k−1

Proof. From Theorem 3.1, f is m-resilient functions for condition 1. Next, We define

gys = f(y1, ..., ys ⊕ 1, ..., yn−k, x1, ..., xk)
gxr = f(y1, ..., yn−k, x1, ..., xr ⊕ 1, ..., xk)

If f(y1, y2, ..., yn−k, x1, x2, ..., xk) satisfies PC(1), we must prove that f ⊕ gys for 1 ≤ s ≤ n− k
and f ⊕ gxr for 1 ≤ r ≤ k are both balanced functions. At first, we consider the condition of
f ⊕ gys for 1 ≤ s ≤ n− k.

f ⊕ gys = f(y1, y2, ..., yn−k, x1, x2, ..., xk)⊕ f(y1, ..., ys ⊕ 1, ..., yn−k, x1, ..., xk)
= (1⊕ y1)(1⊕ y2) . . . (1⊕ yn−k) < (Aη0 ⊕Aη0⊕es), x >

(1⊕ y1)(1⊕ y2) . . . (yn−k) < (Aη1 ⊕Aη1⊕es), x > ⊕
......⊕
(y1y2 . . . yn−k) < (Aη

2n−k−1
⊕Aη

2n−k−1
⊕es), x >

Because < (Aηi ⊕ Aηi⊕es), x > is not a constant function, from the proof 1 of Theorem 3.1 we
know f ⊕ gys is balanced.

Next, for f ⊕ gxr where 1 ≤ r ≤ k, we have

f ⊕ gxr = f(y1, y2, ..., yn−k, x1, x2, ..., xk)⊕ f(y1, ..., yn−k, x1, ..., xr ⊕ 1..., xk)
= (1⊕ y1)(1⊕ y2)...(1⊕ yn−k)Aη0(r)

(1⊕ y1)(1⊕ y2)...(yn−k)Aη1(r)⊕
......⊕
(y1y2...yn−k)Aη

2n−k−1
(r)
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Since the vector (Aη0(r), Aη1(r), ...., Aη
2n−k−1

(r)) is balanced for all 1 ≤ r ≤ k, thus f ⊕ gxr is
balanced.

Then we have completed the proof.

A boolean function f constructed by Resilient-based Construction, the nonlinearity is
2n−1− u2k−1. From Lemma 3.2, when u = 1 (i.e. Aηi 6= Aηj for all i 6= j and Aηi ,Aηj ∈ Sn,m,k),
we can obtain the maximal nonlinearity which is only determined by k. Next lemma will show
what relation exists among n, m, k in Resilient-based Construction.

Lemma 3.4. Let n, m, k be positive integers. If an n-variable and m-resilient boolean function
f(y, x) satisfying PC(1) is generated by Resilient-based Construction, then n ≥ 5, 1 ≤ m ≤
bn−3

2 c and max{2m + 2, bn
2 c+ 1} ≤ k ≤ n− 1.

Proof. We choose parameter k and thus f(y, x) is the form of f(y1 , y2,. . ., yn−k, x1, x2,. . . ,xk).
We know that if the set Sn,m,k defined in Theorem 3.1 meets the two conditions mentioned in
Theorem 3.3, an m-resilient boolean function f(y, x) satisfying PC(1) can be constructed. For
the first condition, we can pick out the distinct vectors to make the set Sn,m,k. At the same time,
the nonlinearity of f is maximal. For the second condition, the (Aη0(t), Aη1(t), ...., Aη

2n−k−1
(t))

must be balanced for all 1 ≤ t ≤ k. This means the sum of Hamming weight of Ay is k2n−k−1.And
the Hamming weight of Ay is greater than or equal to m + 1 for y ∈ {0, 1}n−k. So we have

hw(Ay) ≥ m + 1 and
∑

y hw(Ay) = k2n−k−1

(m + 1)2n−k ≤ k2n−k−1

2m + 2 ≤ k

Since vectors in the set Sn,m,k are distinct, u = 1 and k must meet the condition:
(

k
m + 1

)
+

(
k

m + 2

)
+ . . . +

(
k
k

)
≥ 2n−k

Then

2k − 2n−k ≥
(

k
0

)
+

(
k
1

)
+ . . . +

(
k
m

)

Therefore, k > n− k and k ≥ bn
2 c+ 1.

For k = n, f(y, x) = f(x1, x2, ..., xn) =< Aη0 , x > is an linear function and f(y, x) will not
satisfy PC(1). Therefore, k is at most n− 1. So max{2m + 2, bn

2 c+ 1} ≤ k ≤ n− 1 and we can
deduce that n ≥ 5, 1 ≤ m ≤ bn−3

2 c.
Lemma 3.5. A boolean function f(y, x) constructed by Resilient-based Construction with
parameter k has the algebraic degree at most n− k.

Proof. From the condition 2 of Theorem 3.3, we know that
∑

y∈{0,1}n−k Ay is a zero vector. In
the ANF of f(y, x), there is no product term y1y2 . . . yn−kxi for 1 ≤ i ≤ k. So algebraic degree
of f is at most n− k. When deg(f) = n− k, the following condition holds:

⊕

ηi≤ηj

Aηi is not the zero vctor where hw(ηj) = n− k − 1

where ηi ≤ ηj means ηi(i) implies ηj(i).
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Now we use an example to explain this method. Suppose we want to construct a 6-variable
and 1-resilient boolean function which satisfies PC(1), then

Step 1. n = 6 and m = 1, the condition for m and n holds.

Step 2. Then max{2m+2, bn
2 c+1} ≤ k, and we know 4 ≤ k ≤ 5. Since

(
4
2

)
+

(
4
3

)
+

(
4
4

)
>

26−4, we have k = 4.

Step 3. Choose 4 balanced vectors with length 26−4 to be columns of matrix An,m,k,

A6,1,4 =




Aη0

Aη1

Aη2

Aη3


 =




1 1 0 0
0 1 1 0
0 0 0 1
1 0 1 1




Then check if Aη0 6= Aη1 6= Aη2 6= Aη3 and hw(Aηi) ≥ 2 for i = 0, 1, 2, 3. We find the
Hamming weight of Aη2 = [0, 0, 0, 1] is 1 and adjust the first column of A6,1,4 with the
vector [1, 0, 1, 0]T . So we have

A6,1,4 =




Aη0

Aη1

Aη2

Aη3


 =




1 1 0 0
0 1 1 0
1 0 0 1
0 0 1 1




Step 4. Construct f(y, x) as follows:

f(y, x) = (1⊕ y1)(1⊕ y2)(x1 ⊕ x2)⊕
(1⊕ y1)(y2)(x1 ⊕ x2)⊕
(y1)(1⊕ y2))(x1 ⊕ x4)⊕
(y1y2)(x3 ⊕ x4)

Then f(y, x) is 1-resilient function and satisfies PC(1). Since
∑

ηi≤η1
Aηi = Aη0 ⊕ Aη1 =

(1, 0, 1, 0) and
∑

ηi≤η2
Ai = Aη0 ⊕Aη2 = (0, 1, 0, 1), then the algebraic degree of f is 2.

For the following theorem, we can extend the Theorem 3.3 to Extended-Resilient-Based
Construction. By this construction, an n-variable and m-resilient boolean function f is gen-
erated. Moreover, f satisfies PC(t).

Theorem 3.6. Let f(y1, y2, ..., yn−k, x1, x2, . . . , xk) be an n-variable and m-resilient boolean with
parameter k. f is generated by Theorem 3.1. And α = (b, a) is a boolean vector with length n
where b ∈ {0, 1}n−k and a ∈ {0, 1}k. We say that f satisfies PC(t) if the following conditions
hold:

1. < Ay, x > ⊕ < Ay⊕b, x > is not a constant function for 1 ≤ hw(b) ≤ min{n − k, t} and
y ∈ {0, 1}n−k.

2. The sequence (< Aη0 , a >, < Aη1 , a >, . . ., < Aη
2n−k−1

, a >) is balanced for 1 ≤ hw(a) ≤
min{k, t}. In other words,

∑

y∈{0,1}n−k

< Ay, a >= 2n−k−1 for 1 ≤ hw(a) ≤ min{k, t}
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Proof. From the definition of PC(t), we know if f satisfies PC(t) then f(y, x)⊕f(y⊕αn−k, x⊕
αk) is balanced for 1 ≤ hw(α) ≤ t. Then

f(y, x)⊕ f(y ⊕ b, x⊕ a)
= (1⊕ y1)(1⊕ y2) . . . (1⊕ yn−k)(< (Aη0 ⊕Aη0⊕b), x > ⊕ < Aη0⊕b, a >)⊕

(1⊕ y1)(1⊕ y2) . . . (yn−k)(< (Aη1 ⊕Aη1⊕b), x > ⊕ < Aη1⊕b, a >)⊕
. . . . . .⊕
(y1y2 . . . yn−k) < (Aη

2n−k−1
⊕ (Aη

2n−k−1
⊕b), x > ⊕ < Aη

2n−k−1
⊕b, a >)

Then we consider the following:

case (i). b is not a zero vector. We know that < Aηi , x > ⊕ < Aηi⊕b¿ is not a constant function
for 1 ≤ hw(b) ≤ min{n− k, t}. Therefore, no matter what a is, (< (Aηi ⊕Aηi⊕b), x > ⊕ <
Aηi⊕b, a >) is always a balanced function. So f(y, x)⊕ f(y ⊕ b, x⊕ a) is balanced.

case (ii). b is a zero vector. So < (Aηi ⊕Aηi⊕b), x > is a constant function. Then

f(y, x)⊕ f(y ⊕ b, x⊕ a) = f(y, x)⊕ f(y, x⊕ a)
= (1⊕ y1)(1⊕ y2) . . . (1⊕ yn−k)(< Aη0 , a >)⊕

(1⊕ y1)(1⊕ y2) . . . (yn−k)(< Aη1 , a >)⊕
......⊕
(y1y2 . . . yn−k)⊕ (< Aη

2n−k−1
, a >)

From the condition 2, we know
⊕

y∈{0,1}n−k < Ay, a >= 0 for 1 ≤ hw(a) ≤ min{k, t}. So
f(y, x)⊕ f(y, x⊕ a) is balanced for 1 ≤ hw(a) ≤ min{k, t}.

Finally, we complete this proof.

In the following example, we use the Extended-Resilient-Based Construction to gen-
erate a 9-variable and 1-resilient boolean function f(y, x) which satisfies PC(2). First of all, we
decide parameter k. From Lemma 3.4 we know 2× 1 + 2 ≤ k ≤ 9− 1 and

k = 5

(
5
2

)
+

(
5
3

)
+

(
5
4

)
+

(
5
5

)
≥ 29−5

We use the computer to search 29−5 × 5 matrix A9,1,5. But A9,1,5 which follows the conditions
defined in Lemma ?? and hw(Aηi) ≥ 2, is not found when k = 5. So k is assigned to 6 and we
find 29−6 × 6 matrix S9,1,6:

A9,1,6 =




Aη0

Aη1

Aη2

Aη3

Aη4

Aη5

Aη6

Aη7




=




0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 0 1 1
1 1 1 0 0 0
0 0 1 1 0 1
1 0 0 1 1 0
0 1 0 1 0 0
1 1 1 1 1 1




,when k = 6
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Thus we can use A9,1,6 to form f(y, x):

f(y, x) = (1⊕ y1)(1⊕ y2)(1⊕ y3)(x3 ⊕ x5)⊕
(1⊕ y1)(1⊕ y2)(y3)(x1 ⊕ x6)⊕
(1⊕ y1)(y2)(1⊕ y3)(x1 ⊕ x5 ⊕ x6)⊕
(1⊕ y1)(y2)(y3)(x1 ⊕ x2 ⊕ x3)⊕
(y1)(1⊕ y2)(1⊕ y3)(x3 ⊕ x4 ⊕ x6)⊕
(y1)(1⊕ y2)(y3)(x1 ⊕ x4 ⊕ x5)⊕
(y1)(y2)(1⊕ y3)(x2 ⊕ x4)⊕
(y1)(y2)(y3)(x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6)

Therefore, a 9-variable and 1-resilient boolean function f(y, x) is generated. f(y, x) also satisfies
PC(2). It is easy to check that for some i and hw(ηi) = 2,

∑
ηj≤ηi

Aηj 6= 0. Thus def(f) = 2.The
nonlinearity Nf = 29−1 − 26−1 = 224.

The Extended-Resilient-Based Construction is provided to construct an n-variable and
m-resilient boolean function which satisfies PC(t). Unfortunately, it is easy to find the matrix
An,m,k for t = 1 but not for t ≥ 2. Form the previous example, we use the exhausting search to
decide the matrix An,m,k which meets the conditions in Theorem ??. It will be open problem
of an efficient way to find the matrix An,m,k for the future research.

3.2 Construction II

We can construct an n-variable boolean function which is m-resilient and satisfies PC(t) by the
PC-based Construction or Extended-Resilient-Based Construction. However, these
constructions can not cover all m-resilient functions which satisfy PC(t) if functions really ex-
ist. For example, the PC-based Construction is useful only for n is even and m = 1. And
it is impossible that a 1-resilient boolean function which satisfies PC(1) can be generated by
Extended-Resilient-Based Construction when n is less than 4. So we want to know whether
there exists a construction which can generate a boolean function for given cryptographic pa-
rameters such as balancedness, the degree of propagation criterion, the order of correlation
immunity and nonlinearity. In this section, we present our idea through the equivalence class of
boolean functions.

At first, we introduce the concept of equivalence classes of boolean functions. Consider two
three-variable boolean functions

f(x1, x2, x3) = x1x2

and
g(y1, y2, y3) = y2y3 ⊕ y2.

We observe that f(x1, x2, x3) and g(y1, y2, y3) are equivalent by match variables as {x1 →
y2,x2 → (y3 + 1), x3 → y1}. Two boolean functions are equivalent if there exist input per-
mutation and output shifted by an affine function that can transform one function to the other.
In [BW74], the concept of equivalence classes is defined as follows:

Definition 3.7. [BW74] Let f and g be n-variable boolean function and f 6= g. If f is equivalent
to g, then there exists an invertible n× n matrix U ,two n-length binary vectors λ and β, and a
binary value c such that

g(x) = f(xU ⊕ λ)⊕ < β, x > ⊕c

10



where x = (x1, x2, . . . , x2n−1).

According to the above definition, we can divide the set of boolean functions with n variables
into numerous equivalence classes Efi

. For any boolean function fj in the equivalence class Efi
,

fj is equivalent to fi. When n=3, we can find three equivalence classes:

Ef1 : f1(x) = x1x2x3

Ef2 : f2(x) = x1x2

Ef3 : f3(x) = 0

For n = 4 and n = 5, the equivalence classes are listed in Appendix A (Table 2 and Table 3). The
following theorem will show the characteristic of the equivalence class for the Walsh-Hadamrad
transform and the autocorrelation function.

Theorem 3.8. Let f and g be n-variable boolean functions and f is equivalent to g.Then

1. Wg(ω) = (−1)c⊕<β⊕ω,λU−1>Wf ((β ⊕ ω)(U−1)T ).

2. Rg(α) = (−1)<β,α>Rf (αU).

Proof. We know if f and g are in the same equivalence class. Then

g(x) = f(xU ⊕ λ)⊕ < β, x > ⊕c

1. For Walsh-Hadamard transform of f and g,

Wg(ω) =
∑

x∈{0,1}n

(−1)g(x)⊕<ω,x>

=
∑

x∈{0,1}n

(−1)(f(xU⊕λ)⊕<β,x>⊕c)⊕<ω,x>

= (−1)c
∑

x∈{0,1}n

(−1)f(xU⊕λ)⊕<β⊕ω,x>

= (−1)c
∑

z∈{0,1}n

(−1)f(z)⊕<β⊕ω,(z⊕λ)U−1>

= (−1)c⊕<β⊕ω,λU−1>
∑

z∈{0,1}n

(−1)f(z)⊕<(β⊕ω)(U−1)T ,z>

= (−1)c⊕<β⊕ω,λU−1>Wf ((β ⊕ ω)(U−1)T )

2. For autocorrelation functions,

Rg(α) =
∑

x∈{0,1}n

(−1)g(x)⊕g(x⊕α)

=
∑

x∈{0,1}n

(−1)f(xU⊕λ)⊕f((x⊕α)U⊕λ)⊕<β,α>

= (−1)<β,α>
∑

z∈{0,1}n

(−1)f(z)⊕f(z⊕αU)

= (−1)<β,α>Rf (αU)

11



From Theorem 3.8, we note that Wg(βi) may be equal to Wf (βj) or −Wf (βj) if f and g
are in the same equivalence class. |Wg(ω)| 7→ |Wf (ω)| is an one-to-one and onto mapping. This
is also true for the autocorrelation function of f and g. So we can further characterize the
equivalence class by the following definition:

Definition 3.9. Let P be a set of patterns and P = {p1, p2, . . . , pl} where pi is positive integer
or 0. A real-valued set , S = {s1, s2, . . . , sl} ,with size l is P−patterns if {|s1|,|s2|,. . .,|sl|} = P.

For example, let P be a pattern set with eight elements, P = {0, 0, 0, 0, 0, 2, 2, 4}. Then
S1 = {0, 0, 0, 2, −4, 2, 0, 0} is P − class while S2 = {2, 0, 0, −2, 2, 0, 0, 0} is not.

Now we define two pattern sets for a boolean function fi as follows:

PWfi = {|Wfi(ω)| for ω ∈ {0, 1}n}
PRfi = {|Rfi(α)| for α ∈ {0, 1}n}

Lemma 3.10. If f and g are equivalent, then

1. the algebraic degree: deg(f) = deg(g),

2. PWf = PWg and PRf = PRg,

3. nonlinearity: Nf = Ng.

An equivalence class Efi can be characterized by a pair of pattern sets, PWfi and PRfi . For
n=3, the pattern sets of three equivalence classes are:

Ef1 : PWf1 = {2, 2, 2, 2, 2, 2, 2, 6}
PRf1 = {4, 4, 4, 4, 4, 4, 4, 8},

Ef2 : PWf2 = {0, 0, 0, 0, 4, 4, 4, 4}
PRf1 = {0, 0, 0, 0, 0, 0, 8, 8},

Ef3 : PWf2 = {0, 0, 0, 0, 0, 0, 0, 8}
PRf1 = {8, 8, 8, 8, 8, 8, 8, 8},

We list tables of equivalence classes and corresponding pattern sets for n = 4 and 5 in the
Appendix A. Considering the cryptographic properties of all boolean functions , we can only
focus on the pattern sets, PWfi and PRfi , of the equivalence class. Moreover, for a given
n, the number of equivalence classes is smaller than the number of boolean functions. When
n = 3, 28 boolean functions are only divided into 3 equivalence classes. When n = 5, there
are 48 equivalence classes for 232 boolean functions. Thus a boolean function with specific
cryptographic properties can be generated by finding its equivalence class.

Now we want to find a 5-variable boolean function g with the algebraic degree 3. We
also expect that g is 1-st order correlation immune, satisfies PC(2) and achieves maximum
nonlinearity. From the previous section, neither the PC-based Construction nor Extended-
Resilient-Based Construction can be used to generate such function. So we consider the
following construction through the equivalence classes. We note that the degree of propagation

12



criterion is 2 and order of correlation immunity is 1. The number of zeros, ZRg and ZWg , must
meet the following constraints:

ZRg ≥ C5
1 + C5

2 = 16 and
ZWg ≥ C5

1 = 5

And the maximum nonlinearity for n = 5 is 25−1 − 2
5+1
2 = 8. By looking up the pattern sets

in Table 3 and Table 6, we can find that Ef41 meets our requirements. From Theorem 3.8, it is
possible to find a matrix U and a vector β such that Wg(ω) = 0 for hw(ω) = 1 and Rg(α) = 0
for for 1 ≤ hw(α) ≤ 2. Then we obtain

U =




1 1 0 1 1
1 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1




β =
[

1 1 0 0 0
]

So g is

g(x1, x2, x3, x4, x5) = x3x2x1 ⊕ x5x4 ⊕ x5x1 ⊕ x4x2 ⊕ x4x1

⊕x3x2 ⊕ x3x1 ⊕ x2x1 ⊕ x2 ⊕ x1

ξg = (0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,

0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0)

From the concept of equivalence class of boolean functions, it is easy to see the crypto-
graphic properties of all boolean functions. We can find a boolean function with some given
cryptographic properties by the corresponding equivalence class if the function exists. However,
the number of equivalence classes of boolean functions is unknown for n ≥ 6. It will be an inter-
esting problem to develop an efficient algorithm to find all equivalence classes and corresponding
pattern sets.

4 Conclusion

In this paper, we present two new constructions to generated a boolean function which take
all these cryptographic properties into considered. One is the Resilient-based Construction
and the other is the method through the concept of the equivalence classes of boolean func-
tion. We link the concept of equivalence classes with the Walsh-Hadamard transform and the
autocorrelation function which are both used to analyze cryptographic properties of boolean
functions.If there exists an efficient method to find all equivalence classes of boolean functions.
For studying cryptographic boolean functions, we can focus on the equivalence classes by the
patter sets, PWf and PRf . It is helpful for the design of applications which use cryptographic
boolean functions as a core component.
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A Equivalence classes for n=3,4 and 5

A.1 Equivalence classes

Efi def(fi) fi

Ef1 3 x1x2x3

Ef2 2 x1x2

Ef3 ≤ 1 0
Table 1: The equivalence classes for n = 3.

Efi def(fi) fi

Ef1 4 x1x2x3x4

Ef2 4 x1x2x3x4 ⊕ x1x2

Ef3 4 x1x2x3x4 ⊕ x1x2 ⊕ x3x4

Ef4 3 x2x3x4

Ef5 3 x2x3x4 ⊕ x1x2

Ef6 2 x1x2 ⊕ x3x4

Ef7 2 x1x2

Ef8 ≤ 1 0
Table 2: The equivalence classes for n = 4.

Efi def(fi) fi

Ef1 5 x1x2x3x4x5

Ef2 5 x1x2x3x4x5 ⊕ x1x2

Ef3 5 x1x2x3x4x5 ⊕ x1x2 ⊕ x3x4

Ef4 5 x1x2x3x4x5 ⊕ x1x2x3

Ef5 5 x1x2x3x4x5 ⊕ x1x2x3 ⊕ x1x2

Ef6 5 x1x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4

Ef7 5 x1x2x3x4x5 ⊕ x1x2x3 ⊕ x4x5

Ef8 5 x1x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4 ⊕ x2x5

Ef9 5 x1x2x3x4x5 ⊕ x1x2x3 ⊕ x1x2 ⊕ x4x5

Ef10 5 x1x2x3x4x5 ⊕ x1x2x3 ⊕ x1x2 ⊕ x3x4

Ef11 5 x1x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4x5

Ef12 5 x1x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x1x2

Ef13 5 x1x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x2x3

Ef14 5 x1x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x2x3 ⊕⊕x4x5

Ef15 5 x1x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x2x4

Ef16 5 x1x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x2x3 ⊕⊕x2x4

Ef17 5 x1x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x2x4 ⊕⊕x3x5

Ef18 5 x1x2x3x4x5⊕x1x2x3⊕x1x4x5⊕x2x3⊕x2x4⊕⊕x3x5

Ef19 5 x1x2x3x4x5⊕x1x2x3⊕x1x4x5⊕x2x3⊕x2x4⊕⊕x3x5⊕
x4x5

Ef20 4 x2x3x4x5
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Ef21 4 x2x3x4x5 ⊕ x1x2

Ef22 4 x2x3x4x5 ⊕ x2x3

Ef23 4 x2x3x4x5 ⊕ x2x3 ⊕ x4x5

Ef24 4 x2x3x4x5 ⊕ x1x2 ⊕ x3x4

Ef25 4 x2x3x4x5 ⊕ x1x2x3

Ef26 4 x2x3x4x5 ⊕ x1x2x3 ⊕ x1x2

Ef27 4 x2x3x4x5 ⊕ x1x2x3 ⊕ x2x4

Ef28 4 x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4

Ef29 4 x2x3x4x5 ⊕ x1x2x3 ⊕ x4x5

Ef30 4 x2x3x4x5 ⊕ x1x2x3 ⊕ x1x2 ⊕ x3x4

Ef31 4 x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4 ⊕ x3x5

Ef32 4 x2x3x4x5 ⊕ x1x2x3 ⊕ x1x2 ⊕ x4x5

Ef33 4 x2x3x4x5 ⊕ x1x2x3 ⊕ x2x4 ⊕ x3x5

Ef34 4 x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4x5

Ef35 4 x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x4x5

Ef36 4 x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x2x4 ⊕ x4x5

Ef37 4 x2x3x4x5 ⊕ x1x2x3 ⊕ x1x4x5 ⊕ x2x4 ⊕ x3x5

Ef38 3 x1x2x3

Ef39 3 x1x2x3 ⊕ x4x5

Ef40 3 x1x2x3 ⊕ x1x4

Ef41 3 x1x2x3 ⊕ x1x4 ⊕ x2x5

Ef42 3 x1x2x3 ⊕ x1x4x5

Ef43 3 x1x2x3 ⊕ x1x4x5 ⊕ x2x3

Ef44 3 x1x2x3 ⊕ x1x4x5 ⊕ x2x4

Ef45 3 x1x2x3 ⊕ x1x4x5 ⊕ x2x3 ⊕ x2x4 ⊕ x3x5

Ef46 2 x1x2

Ef47 2 x1x2 ⊕ x3x4

Ef48 ≤ 1 0
Table 3: The equivalence classes for n = 5.

A.2 Pattern Sets of Equivalence Classes

Let N be an integer. We denote Ni by the sequence of N ’s with length i. For example, 23 means
the sequence 2, 2, 2.

Efi Patterns Sets
PWf PRf

Ef1 27 61 47 81

Ef2 04 44 06 82

Ef3 07 81 88

Table 4: The pattern sets of equivalence class for n = 3.

Efi
Patterns Sets

15



PWf PRf

Ef1 215 141 1215 161

Ef2 212 63 101 412 123 161

Ef3 210 66 415 161

Ef4 08 47 121 814 162

Ef5 06 48 82 09 86 161

Ef6 416 015 161

Ef7 012 84 012 164

Ef8 015 161 1616

Table 5: The pattern sets of equivalence class for n = 4.

Efi Patterns Sets
PWf PRf

Ef1 231 301 2831 321

Ef2 228 143 181 424 287 321

Ef3 216 610 106 430 281 321

Ef4 224 67 261 2028 283 321

Ef5 224 64 103 221 1224 204 283 321

Ef6 222 66 102 141 181 418 126 206 281, 321

Ef7 221, 67 101 143 424 207 321

Ef8 216 610 106 427 123 201 321

Ef9 215 613 103 141 424 126 201 321

Ef10 222 64 104 142 418 1212 281 321

Ef11 218 612 141 181 416 129 206 321

Ef12 215 610 101 221 1221 209 321

Ef13 219 69 103 181 413 1215 203 321

Ef14 215 615 101 181 410 1220 321

Ef15 218 610 102 142 420 129 202 321

Ef16 216 610 106 425 126 321

Ef17 219 67 105 141 421 1210 201 321

Ef18 216 610 106 425 126 321

Ef19 212 616 104 428 123 321

Ef20 016 415 281 2430 322

Ef21 014 410 122 162 017 87 247 321

Ef22 016 410 123 201 824 246 322

Ef23 016 410 126 830 322

Ef24 08 414 88 122 017 813 241 321

Ef25 012 416 83 241 1625 246 321

Ef26 012 414 84 201 819 169 243 321

Ef27 010 416 84 162 016 84 169 242 321

Ef28 011 414 84 122 161 011 813 166 241 321

Ef29 012 412 84 124 018 86 167 321

Ef30 012 412 84 124 08 821 161 241 321
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Ef31 08 414 88 122 015 814 162 321

Ef32 07 416 88 161 06 822 163 321

Ef33 04 416 812 024 86 161 321

Ef34 09 415 86 121 161 09 816 166 321

Ef35 010 415 86 201 816 1615 321

Ef36 010 413 86 123 012 816 163 321

Ef37 06 415 810 121 015 816 321

Ef38 024 87 241 1628 324

Ef39 428 124 024 167 321

Ef40 022 88 162 018 1612 322

Ef41 016 816 027 164 321

Ef42 430 121 201 816 1615 321

Ef43 019 812 161 09 816 166 321

Ef44 428 124 012 816 163 321

Ef45 016 816 015 816 321

Ef46 028 164 024 328

Ef47 016 816 030 322

Ef48 031 321 3232

Table 6: The pattern sets of equivalence class for n = 5.
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