
Cryptographic Protocols for Sealed-Bid
Auctions Without Trusted Servers

Wen-Guey Tzeng* · Nai-Chia Yeh** · Rong-Jaye Chen**

* Department of Computer and Information Science
National Chiao Tung University, Hsinchu, Taiwan

** Department of Computer Science and Information Engineering
National Chiao Tung University, Hsinchu, Taiwan

e-mail : njyeh@csie.nctu.edu.tw

Abstract

Sealed-bid auctions are a kind of auctions that bidders send their
sealed bidding prices to the auctioneer and the auctioneer opens all
bids to determine the winner and the winning bid. In this paper, we
propose a novel construction on the secure computation of the greater-
than function. This idea is applied to the two-party private bidding
and sealed-bid auction protocols. Our protocols require no trusted
servers. In the private bidding protocol, it needs two rounds of com-
munication between the bidders. In the auction protocol, a public
bulletin board is used. It takes two or three rounds of communication
between the bidders and the board. After the execution of our proto-
cols, no bid information is revealed to any party.

Key words: sealed-bid auction, secure multiparty computation, Diffie-
Hellman key exchange, privacy

1 Introduction

As Internet prevails, electronic commerce becomes an important issue. Tra-
ditional face-to-face communication and trading activities are translated into
electronic processes, such as electronic mail, digital money, electronic voting,
and so forth. Internet indeed facilitates human life, but it is an important
issue how we keep personal information secret in the network. Traditional
laws and contracts are not sufficient to protect our privacy. That is why
we study cryptography. By cryptographic techniques, trading activities are
implemented in the computer network which meets various security require-
ments.
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Generally speaking, a trading process consists of three phases : price
negotiation, payment, and goods delivery. Auctions are a form of price ne-
gotiation that allow buyers to settle the price of goods. They can roughly
be classified into two types, open-cry auctions and sealed-bid auctions. In
the open-cry auction, each buyer bids his price publicly and at the close of
the auction the bidder who bids the highest price wins and gets the goods.
The disadvantages of this type of auctions are time-consuming and revela-
tion of the bid information of buyers. It is almost impossible to have a fair
open-cry auctions in the unreliable network. Sealed-bid auctions are usually
used in the auction of government procurement contracts, public construc-
tion and government-owned land etc. Each bidder seals his bidding price
and submits it to the auctioneer. At the close of the auction, the auc-
tioneer opens all bids to determine the winner and the selling price. This
type of auctions is more efficient in network communication. For the rea-
sons of security and practicability, we study the topic of sealed-bid auctions.
Many researchers are devoted to the study of secure and efficient sealed-
bid auctions[FR96][Sak00][HTK98][Cac99][BS][Fis]. Several approaches are
based on the multiparty computation and secret sharing to ensure the privacy
of bid information.

In this paper, we give a new direction to compare two secrets securely.
One protocol is presented for two-party private bidding and two protocols
for first-price sealed-bid auctions. In the private bidding protocol, no trusted
servers are required for a fair bidding between two players. It needs only
two rounds of interaction. The computation complexity of one party is 4`
modular exponentiations. In the auction protocols, we use a public bulletin
board. One of our auction protocols requires two rounds of communication,
and the other requires three rounds. During each round of our protocols,
each bidder posts some messages on the board. At the end of the auction,
each bidder’s bid information is unknown to others. Only the winning bid is
revealed to all participants by the winner.

2 Our Auction Protocols

This section focuses on our auction protocols. First, we introduce the proto-
col private bidding. It is also the protocol for the millionaires’ problem.
On the basis of private bidding, we develop the auction protocol auc-
tion1. It allows more than two players to compare their bids and finds the
highest one. In this protocol, each player does not have any information
about the value of the other players’ bids, but he can know whose bid is
higher than his, and whose bid is lower. We develop another auction pro-
tocol auction2 to improve the security. In the protocol auction2, each
player knows only his own order among all. Finally, we give security analysis
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of all our protocols.

2.1 Two-party Private Bidding (Millionaires’ Problem)

We introduce the protocol for computing the greater-than function : GT (x1, x2) =
(x1 > x2) where (x1 > x2) = 1 if and only if x1 > x2. Yao’s millionaires’
problem [Yao82][Yao86] and Cachin’s private bidding problem [Cac99] are
both based on the secure computation of the greater-than function. In the
millionaires’ problem, two millionaires want to compare their fortunes, but
would not like to reveal their assets. In the problem of private bidding, Alice
wants to buy some goods from Bob. The deal will take place if and only if
the price Alice offers is greater than Bob’s selling price. We unify this kind
of problems to the problem of comparison of two `-bit strings, x1, x2, where
x1 = x1,`x1,`−1 . . . x1,1, x2 = x2,`x2,`−1 . . . x2,1, which are possessed by two
players, P1 and P2. Let X1

i , X0
i be two sets of prefix strings such that

X1
i = {xi,`xi,`−1 . . . xi,j+1 | xi,j = 1, 1 ≤ j ≤ `}

X0
i = {xi,`xi,`−1 . . . xi,j+1 | xi,j = 0, 1 ≤ j ≤ `}

where we define the prefix string of xi,` as xi,`+1 = λ.
For example, let x1 = 234. Convert x1 to binary strings, x1 = 11101010.
Then we get

X1
1 = {λ, 1, 11, 1110, 111010}, and

X0
1 = {111, 11101, 1110101}.

With two sets of prefix strings, we can compute the greater-than function by
observing whether X1

1 and X0
2 have intersection, that is,

GT (x1, x2) =

{
1 if X1

1 ∩X0
2 6= ∅

0 if X1
1 ∩X0

2 = ∅

For example, let x1 = 234, x2 = 228. Then

x1 = 11101010
x2 = 11100100
X1

1 = {λ, 1, 11, 1110, 111010}
X0

2 = {111, 1110, 111001, 1110010}

We can easily see that X1
1 ∩ X0

2 = {1110}, so x1 is greater than x2. Up
to now, we have introduced an idea of comparison between x1 and x2. In
order to achieve the goal of secure computation, one player can not directly
give prefix strings to the other party, otherwise it will disclose its secret. We
use the technique of Diffie-Hellman key exchange [DH76] to commit each
element of the prefix-string sets. As the scheme of the key exchange, there is
a public input, a prime p = 2q + 1 where q is also a prime. Our computation
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is all over the order-q subgroup Gq. At first, each player Pi prepares two
prefix-string sets, X1

i and X0
i , from his secret xi and maps each binary prefix

string into a value in Gq with a pre-specified hash function H. This process
forms two `-element sets, Ai = {ai,1, ai,2 . . . ai,`} and Bi = {bi,1, bi,2 . . . bi,`}
where each element in Ai (resp. Bi) is a hash value from each element in
X1

i (resp. X0
i ). If there are not enough elements, randomly choose values

from Gq. The elements in Ai and Bi can be seen as the generators in the
protocol of Diffie-Hellman key exchange. Pi securely checks whether Ai and
Bj have intersection by checking if the key generated from ai,s and the key
generated from bj,t are the same or not. The process is as follows. Each
player Pi randomly chooses a variable ui in Z∗

q to commit each element ai,s

in Ai such that mi,s = aui
i,s, and randomly chooses a variable vi in Z∗

q to
commit each element bi,s in Bi such that µi,s = bvi

i,s. He submits all values
mi,s, µi,s to the other one. Next, each party Pi computes αi,s = mvi

j,s where
mj,s is gotten from the other party, and transmits all values αi,s to Pj. In
the final, Pi computes βi,s = µui

j,s. With the information of αj,s = a
uivj

i,s and
βi,t = b

vjui

j,t , Pi determines himself as the winner if there exists some elements
such that αj,s = βi,t. In other words, Pi is a winner if and only if Ai and Bj

have intersection. The protocol is shown in Figure 1 private bidding. We
omit the modulo computation during the description of the protocol. For the
reason of security, we use a permutation to mix the data sent to the other
side.

2.2 Auction

We introduce the protocol for the first-price auction. The auction protocol
is an extension of the two-party private bidding protocol. There are n bid-
ders, P1, P2, . . . , Pn. Each of them has his `-bit bidding price xi. After the
execution of the protocol, we want to find the highest bidding price and the
player who bids the winning price. No trusted servers are needed in our pro-
tocol. Instead, a public bulletin board is used for communicating between
bidders. Like the two-party private bidding protocol, there are two rounds of
communication in this protocol. During each round, each bidder reads some
information from the bulletin board and posts some messages on the board.
After the communication, everyone checks if he is the winner or not. If the
player finds his price the highest one, he opens his winning bid and posts
some secrets to prove it. The scheme is similar with the protocol private
bidding in Figure 1. There is a public input, a prime p = 2q+1, and all com-
putation is in Gq. Each player Pi prepares two sets, Ai = {ai,1, ai,2, . . . , ai,`}
and Bi = {bi,1, bi,2, . . . , bi,`}, in which the elements are computed from the
elements in the prefix-string sets X1

i and X0
i with a hash function H. Pi

chooses random variables ui and vi to commit the elements in Ai and Bi

such that mi,s = aui
i,s and µi,s = bvi

i,s. Each player posts the values mi,s and
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Public Input :

• (p, q) : p, q are random primes, p = 2q + 1 and q is k-bit where k is a security
parameter.

• H : H is a hash function mapping the binary string to the value in Gq, which
is the order-q subgroup of Z∗

p .

Secret Input of Pi, i = 1, 2 :

• xi : xi Pi’s secret.

• πi : πi is a permutation over {1, 2, . . . , `} for mix.

Protocol :

• Preparation : Each player Pi converts his secret xi into two sets of prefix
strings, X1

i , X0
i , and then computes two `-element sets Ai = {ai,s | ai,s =

H(x1
i,s), x

1
i,s ∈ X1

i , 1 ≤ s ≤ `} and Bi = {bi,s | bi,s = H(x0
i,s), x

0
i,s ∈ X0

i , 1 ≤
s ≤ `} ,ai,s, bi,s ∈ Gq. If there are not enough elements, randomly choose
values from Gq.

• First Round :

– P1 : Choose a random variable u1 ∈ Z∗
q , and compute m1,s = au1

1,π1(s)

for s = 1, 2, . . . , `.

– P2 : Choose a random variable u2 ∈ Z∗
q , and compute m2,s = au2

2,π2(s)

for s = 1, 2, . . . , `.

– P1 −→ P2 : m1,`,m1,`−1, . . . ,m1,1

– P1 ←− P2 : m2,`,m2,`−1, . . . ,m2,1

• Second Round :

– P1 :

1. Choose a random variable v1 ∈ Z∗
q , and compute µ1,s = bv1

1,π1(s)
for

s = 1, 2, . . . , `.
2. Compute α1,s = mv1

2,π1(s)
for s = 1, 2, . . . , `.

– P2 :

1. Choose a random variable v2 ∈ Z∗
q , and compute µ2,s = bv2

2,π2(s)
for

s = 1, 2, . . . , `.
2. Compute α2,s = mv2

1,π2(s)
for s = 1, 2, . . . , `.

– P1 −→ P2 : (µ1,`, µ1,`−1, . . . , µ1,1) , (α1,`, α1,`−1, . . . , α1,1)

– P1 ←− P2 : (µ2,`, µ2,`−1, . . . , µ2,1) , (α2,`, α2,`−1, . . . , α2,1)

• Final :

– P1 : Compute β1,s = µu1
2,s, for s = 1, 2, . . . , `. Check if there exists some

elements such that α2,s = β1,t , 1 ≤ s, t ≤ `. If it does, he knows x1 is
greater than x2.

– P2 : Compute β2,s = µu2
1,s, for s = 1, 2, . . . , `. Check if there exists some

elements such that α1,s = β2,t , 1 ≤ s, t ≤ `. If it does, he knows x2 is
greater than x1.

Figure 1: private bidding
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µi,s on the bulletin board. Like the protocol private bidding, each one
computes αi,j,s = mvi

j,s for all other players Pj and posts the values αi,j,s on
the board. To compare with Pj’s bidding price, the player Pi reads µj,s and
αj,i,s from the board and computes βi,j,s = µui

j,s. Pi checks if there exists some
values αj,i,s = a

uivj

i,s and βi,j,t = b
vjui

j,t such that αj,i,s = βi,j,t. If it does, he an-
nounces himself as the winner. The protocol is shown in Figure 2 auction1.
Permutations are also used for mixing the data posted on the board.

We must point out that auction1 has weaker security. Although each
bidding price is not revealed exactly, each bidder knows whose bids are higher
than his and whose bids are lower than his after the communication. We mod-
ify the scheme to enhance the security by presenting another auction protocol
auction2, for which each bidder knows only his own order among all. The
basic idea is that xi > xj if and only if X1

i and X0
j have intersection. In

particular, exactly one element appears in the intersection. Let Θ =
⋃
j 6=i

X0
j

∗. If xi is greater than all other xj where j 6= i. X1
i and Θ must have in-

tersection and there are (n− 1) elements in the intersection. The difference
of this protocol is that each player Pi does the union for Pi−1. The public
inputs, secret inputs of each player, and the preparation, first round, second
round in this protocol are similar with those in the protocol auction1. In
order to conceal the comparing information αi,j,s, each player Pi chooses a
key pair of his encryption scheme (Ei,Di), publishes the encryption function
Ei and keeps the decryption function Di secret. A prime p is the public
input where p = 2q + 1 and q is also a prime. All computation is in the
order-q subgroup Gq. Each player prepares two sets Ai = {ai,1, ai,2, . . . , ai,`}
and Bi = {bi,1, bi,2, . . . , bi,`} from prefix-string sets X1

i and X0
i with a hash

function H. Random variables ui and vi are chosen by Pi for committing
each element in Ai and Bi. Pi calculates mi = aui

i,s, µi,s = bvi
i,s, and posts

all values mi,s, µi,s on the board. In the next round, Pi reads the data
mj,s, computes αi,j,s = mvi

j,s. In order to keep Pj from knowing the infor-
mation of αi,j,s, Pi encrypts αi,j,s by the encryption function Ej+1 such that
ei,j,s = Ej+1(αi,j,s), and then submits ei,j,s to the board. In the third round,
each player Pi reads all values ej,i−1,s, and decrypts them by his decryption
function Di such that αj,i−1,s = Di(ej,i−1,s). Pi randomly chooses a variable
wi in Z∗

q , and computes two sets Γi−1 = {γi−1,1, γi−1,2, . . . , γi−1,(n−1)`} and
∆i−1 = {δi−1,1, δi−1,2, . . . , δi−1,(n−1)`} for the player Pi−1

† where each element
in Γi−1 (resp. ∆i−1) is the value αj,i−1,s (resp. µj,s), j 6= (i− 1), to the power
of wi. Γi−1 and ∆i−1 are posted on the board by Pi. In the final, Pi computes
the set ∆′

i = {δ′i,1, δ′i,2, . . . , δi,(n−1)`} where δ′i,s = δui
i,s. He checks if there are

(n − 1) elements in the intersection of Γi and ∆′
i. If it does, Pi announces

himself as the winner. The protocol auction2 is shown in Figure 3. All

∗Θ may be a multi-set which allows duplicate items in one set.
†If i = 1, i− 1 means n.
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Public Input :

• (p, q) : p, q are random primes, p = 2q + 1 and q is k-bit where k is a security
parameter.

• H : H is a hash function mapping the binary string to the value in Gq, which
is the order-q subgroup of Z∗

p .

Secret Input of Pi for i = 1, 2, . . . , n :

• xi : xi is the bidding price.

• πi : πi is a permutation over {1, 2, . . . , `} for mix.

Protocol :

• Preparation : Each player Pi converts his bid xi into two sets of prefix
strings, X1

i , X0
i , and then computes two `-element sets Ai = {ai,s | ai,s =

H(x1
i,s), x

1
i,s ∈ X1

i , 1 ≤ s ≤ `} and Bi = {bi,s | bi,s = H(x0
i,s), x

0
i,s ∈ X0

i , 1 ≤
s ≤ `} ,ai,s, bi,s ∈ Gq. If there are not enough elements, randomly choose
values from Gq.

• First Round : Each player Pi does the following :

1. Choose a random variable ui ∈ Z∗
q , and compute mi,s = aui

i,πi(s)
for

s = 1, 2, . . . , `.

2. Post the values mi,s on the bulletin board for s = 1, 2, . . . , `.

• Second Round : Each player Pi does the following :

1. Choose a random variable vi ∈ Z∗
q , and compute µi,s = bvi

i,πi(s)
for

s = 1, 2, . . . , `.

2. In accordance with the variables mj,s that Pj , 1 ≤ j 6= i ≤ n, posts,
compute αi,j,s = mvi

j,πi(s)
for s = 1, 2, . . . , `.

3. Post the values µi,s and αi,j,s on the board where 1 ≤ s ≤ `, 1 ≤ j 6= i ≤
n.

• Final : Each player Pi does the following :

– For comparing with Pj , 1 ≤ j 6= i ≤ n, compute βi,j,s = µui
j,s for s =

1, 2, . . . , `. Check if there exists some elements such that αj,i,s = βi,j,t ,
1 ≤ s, t ≤ `. If it does, he knows xi is greater than xj .

– After all checks, if xi is greater than all other xj , 1 ≤ j 6= i ≤ n, post
the variables ui,vi and his winning bid xi. Other bidders can verify it by
the same way.

Figure 2: auction1
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posted values are also disordered by permutations.

2.3 Security Analysis

We discuss the security requirements of our protocols. A secure private bid-
ding or auction protocol must satisfy two requirements : correctness and
privacy. In the proof of correctness, we show that the player announces that
he is the winner if and only if he has the highest bidding price. In the proof
of privacy, we require that nobody gets the others’ bidding prices except the
winning price. As we mentioned above, after the execution of the proto-
col auction1, each player knows the greater-than or less-than relationship
between his bid and those of the other bidders. However, he learns no in-
formation about the relationship between any pair of the others. After the
execution of the protocol auction2, each bidder knows his order among all,
but no information about others’ orders.

2.3.1 Correctness

The correctness of our three protocols is basically based on the correctness
of the greater-than function we present. Given two `-bit secrets, x1 and x2,
x1 is greater than x2 if and only if the intersection of X1

1 and X0
2 is not

empty and there is only one element in the intersection. The error occurs
when players randomly choose some variables in Gq to fill two sets Ai and Bj

such that X1
i and X0

j have no intersection but Ai and Bj have intersection.
The probability we randomly select the same element in Gq is O(2−k). If
k is large enough (ex. k = 1024), the error probability is negligible. We
can disregard it. Besides, in the protocol auction2, the error also occurs
when γi,s(= a

uivjwi+1

i,s ) equals δ′i,t(= b
uivhwi+1

h,t ) but ai,s 6= bh,t, j 6= h. The
probability is O(2−k). We can also ignore it. Therefore, after the protocols
private bidding, auction1, auction2, the winner is the player who bids
the highest price with overwhelming probability.

2.3.2 Privacy

An important goal of the private bidding or sealed-bid auctions is to keep
each player’s bidding price secret during the protocol. We say that one player
Pi gets no information about any other’s bidding price xj if the view of Pi in
the execution of the protocol where Pj bids xj is indistinguishable from the
view in the execution of the protocol where Pj bids x∗j .

Based on the DDH assumption, the following pairs of ensembles can be
reduced to be polynomially indistinguishable.

• R∗ = {R∗
n} and D∗ = {D∗

n} :

– R∗
n = (p, q, g1, g2, g

a
1 , g

b
2)
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Public Input :

• (p, q) : p, q are random primes, p = 2q + 1 and q is k-bit where k is a security parameter.

• H : H is a hash function mapping the binary string to the value in Gq , which is the order-q
subgroup of Z∗

p .

• Ei, 1 ≤ i ≤ n : Ei is the encryption function of the bidder Pi.

Secret Input of Pi :

• xi : xi is the bidding price.

• πi : πi is a permutation over {1, 2, . . . , `} for mix.

• Di : Di is the decryption function for Ei.

Protocol :

• Preparation : Each player Pi converts his bid xi into two sets of prefix strings, X1
i , X0

i ,
and then computes two `-element sets Ai = {ai,s | ai,s = H(x1

i,s), x
1
i,s ∈ X1

i , 1 ≤ s ≤ `} and

Bi = {bi,s | bi,s = H(x0
i,s), x

0
i,s ∈ X0

i , 1 ≤ s ≤ `} ,ai,s, bi,s ∈ Gq . If there are not enough

elements, randomly choose values from Gq .

• First Round : Each player Pi does the following :

1. Choose a random variable ui ∈ Z∗
q , and compute mi,s = a

ui
i,πi(s)

for s = 1, 2, . . . , `.

2. Post the values mi,s on the bulletin board for s = 1, 2, . . . , `.

• Second Round : Each player Pi does the following :

1. Choose a random variable vi ∈ Z∗
q , and compute µi,s = b

vi
i,πi(s)

for s = 1, 2, . . . , `.

2. In accordance with the variables mj,s that Pj , 1 ≤ j 6= i ≤ n posts, compute αi,j,s =

m
vi
j,πi(s)

, and use the encryption function Ej+1 to encrypt αi,j,s such that ei,j,s =

Ej+1(αi,j,s) for s = 1, 2, . . . , `.

3. Post the values µi,s and ei,j,s on the board where 1 ≤ s ≤ `, 1 ≤ j 6= i ≤ n.

• Third Round : Each player Pi does the following :

1. Use the decryption function Di to decrypt all values ej,i−1,s such that αj,i−1,s =
Di(ej,i−1,s) where 1 ≤ j 6= (i − 1) ≤ n, 1 ≤ s ≤ `.

2. Choose a random variable wi ∈ Z∗
q , and compute two sets Γ(i−1) = {αwi

j,i−1,s|1 ≤ j 6=
(i − 1) ≤ n, 1 ≤ s ≤ `} and ∆(i−1) = {µwi

j,s|1 ≤ j 6= (i − 1) ≤ n, 1 ≤ s ≤ `}. Use the

mix technique to disorder the elements in each set.

3. Post the sets Γ(i−1) = {γ(i−1),1, ..., γ(i−1),(n−1)`} and ∆(i−1) =

{δ(i−1),1, ..., δ(i−1),(n−1)`} on the bulletin board.

• Final : Each player Pi does the following :

– Read the information of two sets Γi and ∆i on the board. Then compute ∆′
i =

{δ′i,s|δ
′
i,s = δ

ui
i,s, 1 ≤ s ≤ (n − 1)`}.

– Check how many pairs (γi,s, δ′i,t) there exists such that γi,s = δ′i,t , 1 ≤ s, t ≤ `. If
there are (n-1) or more equivalent pairs, he is the winner. Then post the variables

ui,vi and the wining price xi. Other bidders can verify it by the same way.

Figure 3: auction2
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– D∗
n = (p, q, g1, g2, g

a
1 , g

a
2)

• S = {Sn} and T = {Tn}

– Sn = (p, q, g1, g2, h1, h2, g
a
1 , g

a
2)

– Tn = (p, q, g1, g2, h1, h2, h
a
1, h

a
2)

• S ′ = {S ′
n} and T ′ = {T ′

n}

– S ′
n = (p, q, g1, g2, ..., g`, h1, h2, ..., h`, g

a
1 , g

a
2 , ..., g

a
` )

– T ′
n = (p, q, g1, g2, ..., g`, h1, h2, ..., h`, h

a
1, h

a
2, ..., h

a
` )

where p is an n-bit prime, p = 2q + 1, q is also a prime, gi,hi are generators
of the order-q subgroup Gq of Z∗

p , and a, b are chosen uniformly from Z∗
q .

In the protocols private bidding and auction1, we say Pi gets no in-
formation about Pj’s bidding price if the following two views are polynomially
indistinguishable :

• 〈(mj,`, ...,mj,1), (µj,`, ..., µj,1), (αj,i,`, ..., αj,i,1)〉 with Pj’s bid xj

• 〈(m∗
j,`, ...,m

∗
j,1), (µ

∗
j,`, ..., µ

∗
j,1), (α

∗
j,i,`, ..., α

∗
j,i,1)〉 with Pj’s bid x∗j

where xj and x∗j satisfy the result, ex. xj < xi and x∗j < xi. Based on the
polynomial indistinguishability of the two ensembles S ′ and T ′, the following
pairs of views are polynomially indistinguishable :

1. • 〈p, q, aj,`, ..., aj,1, a
∗
j,`, ..., a

∗
j,1, mj,` = (aj,`)

uj , ...,mj,1 = (aj,1)
uj〉

• 〈p, q, aj,`, ..., aj,1, a
∗
j,`, ..., a

∗
j,1, m

∗
j,` = (a∗j,`)

uj , ...,m∗
j,1 = (a∗j,1)

uj〉

2. • 〈p, q, bj,`, ..., bj,1, b
∗
j,`, ..., b

∗
j,1, µj,` = (bj,`)

vj , ..., µj,1 = (bj,1)
vj〉

• 〈p, q, bj,`, ..., bj,1, b
∗
j,`, ..., b

∗
j,1, µ

∗
j,` = (b∗j,`)

vj , ..., µ∗
j,1 = (b∗j,1)

vj〉

The two views (αj,`, ..., αj,1) and (α∗
j,`, ..., α

∗
j,1) are identically distributed since

αj,s = a
uivj

i,s = α∗
j,s. Therefore, two views of Pi are polynomially indistinguish-

able. No player gets any information about any other’s bidding price. We
must point out that when xi is greater than xj, Pi knows that there exists
a bit b such that b = 1 in xi and b = 0 in xj, and the prefix strings of b in
xi and in xj are equal. However, if there are more than one bit 1 in xi, Pi

still gets no information about which bit 1 makes xi greater than xj since
each player uses a permutation to randomize the sequence of the variables
he sends to the other party.

The protocol auction2 is a modification of the protocol auction1, but
the security is stronger such that no bidder gets any information about
the others’ bidding prices except the order of his bid among all. We say
that the player Pi has no information about the others’ bids xj except
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his order ω if given two (n − 1)-bid vectors 〈x1, ..., xi−1, xi+1, ..., xn〉 and
〈x∗1, ..., x∗i−1, x

∗
i+1, ..., x

∗
n〉 such that (ω − 1) bids xj (resp. x∗j) are greater

than xi and others are less, Pi can not distinguish the following two views :

• 〈{mj,s, µj,s, ej,i,s, γi,t, δi,t|1 ≤ j 6= i ≤ n, 1 ≤ s ≤ `, 1 ≤ t ≤ (n− 1)`}〉
with input 〈x1, ..., xi−1, xi+1, ..., xn〉

• 〈{m∗
j,s, µ

∗
j,s, e

∗
j,i,s, γ

∗
i,t, δ

∗
i,t|1 ≤ j 6= i ≤ n, 1 ≤ s ≤ `, 1 ≤ t ≤ (n− 1)`}〉

with input 〈x∗1, ..., x∗i−1, x
∗
i+1, ..., x

∗
n〉

The proof is similar with that of the protocol auction1, it can be shown
that the following pairs of views are polynomially indistinguishable.

1. • 〈p, q, {aj,s, a
∗
j,s, mj,s = (aj,s)

uj |1 ≤ j 6= i ≤ n, 1 ≤ s ≤ `}〉
• 〈p, q, {aj,s, a

∗
j,s, m

∗
j,s = (a∗j,s)

uj |1 ≤ j 6= i ≤ n, 1 ≤ s ≤ `}〉

2. • 〈p, q, {bj,s, b
∗
j,s, µj,s = (bj,s)

vj |1 ≤ j 6= i ≤ n, 1 ≤ s ≤ `}〉
• 〈p, q, {bj,s, b

∗
j,s, µ

∗
j,s = (b∗j,s)

vj |1 ≤ j 6= i ≤ n, 1 ≤ s ≤ `}〉

3. • 〈p, q, {bj,s, b
∗
j,s, δi,t = (bj,s)

vjwi+1 |
1 ≤ j 6= i ≤ n, 1 ≤ s ≤ `, 1 ≤ t ≤ (n− 1)`}〉
• 〈p, q, {bj,s, b

∗
j,s, δ

∗
i,t = (b∗j,s)

vjwi+1 |
1 ≤ j 6= i ≤ n, 1 ≤ s ≤ `, 1 ≤ t ≤ (n− 1)`}〉

Since ej,i,s = Ei+1(αj,i,s) = Ei+1((ai,s)
uivj), e∗j,i,s = Ei+1(α

∗
j,i,s) = Ei+1((ai,s)

uivj)
and γi,s = (ai,s)

uivjwi+1 = γ∗i,s, the following pairs of views are identically dis-
tributed

1. • 〈{ej,i,s|1 ≤ j 6= i ≤ n, 1 ≤ s ≤ `}〉
• 〈{e∗j,i,s|1 ≤ j 6= i ≤ n, 1 ≤ s ≤ `}〉

2. • 〈{γi,t|1 ≤ t ≤ (n− 1)`}〉
• 〈{γ∗i,t|1 ≤ t ≤ (n− 1)`}〉

Thus, two views of Pi are polynomially indistinguishable. Since xj (resp. x∗j)
is chosen to satisfy the result of the protocol, Pi finds the order of his bid
ω in the final phase. Therefore, no player gets any information about the
others’ bids except the order of his bid among all.

2.4 Performance

We discuss the computation and communication cost of our protocols. Let n
be the number of bidders, ` be the bit length of bidding prices, and p be the
modulo of the discrete logarithm problem. The protocol private bidding in
Figure 1 requires two rounds of communication. The amount of data in each
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round is O(`). Each bidder spends about 4` modular exponentiations in Zp.
The protocol auction1 in Figure 2 requires two rounds of communication.
In the first round, the amount of data on the bulletin board is n`. In the
second round, the amount is n2`. Each bidder spends about 2n` modular
exponentiations in Zp. The protocol auction2 in Figure 3 requires three
rounds of communication. In the first round, the amount of data on the
board is n`. In the second round, the amount is n2`. In the third round,
the amount is 2n2` − 2n`. Each bidder spends about 4n` − 2` modular
exponentiations in Zp.

We compare our protocols with the existing private bidding and sealed-
bid auction protocols. Table 1 shows the types of trusted third parties used
in all the protocols compared. Table 2 shows the computation complexity.
Table 3 shows the communication complexity. Table 4 shows the privacy of
auction protocols.

Table 1: comparison of trusted third parties

protocol trusted third party

[Cac99] private bidding 1 oblivious server

[Cac99] auction 2 non-colluding servers

[Fis] private bidding 1 oblivious server

[BS] auction 1 semi-trusted server

our private bidding none

our auction1 1 public bulletin board

our auction2 1 public bulletin board

Table 2: comparison of computation complexity

computation complexity

protocol bidder server

[Cac99] private bidding ` encryptions 2` modular exponentiations

[Cac99] auction 2n` encryptions 2n` modular exponentiations

[Fis] private bidding 6`λ + ` modular multiplications 2`λ decryptions

[BS] auction n` encryptions n(n − 2)`(n−1) modular multiplications

our private bidding 4` modular exponentiations

our auction1 2n` modular exponentiations

our auction2 4n` − 2` modular exponentiations
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Table 3: comparison of communication complexity

round(s)

protocol bidder ⇔ bidder bidder ⇔ server(board) server ⇔ server

[Cac99] bidding 1 1

[Cac99] auction 1 O(n)

[Fis] bidding 1 1

[BS] auction 1

our private bidding 2

our auction1 2

our auction2 3

message complexity (in blocks)

protocol bidder ⇔ bidder bidder ⇔ server server ⇔ server total amount

(bidder ⇔ board) on the board

[Cac99] bidding `

[Cac99] auction 2n` `

[Fis] bidding ` `λ

[BS] auction n` n`n−1

our private bidding 2`

our auction1 n` n2`

our auction2 2n` − 2` 2n2` − 2n`

Table 4: comparison of privacy

protocol privacy

[Cac99] auction reveal the greater-than and less-than relationship of bids to one auctioneer

[BS] auction reveal nothing

our auction1 reveal the greater-than and less-than relationship of bids to bidders

our auction2 reveal the order of bids among all to bidders
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3 Conclusion

In this paper, we proposed a novel construction for the secure computation of
the greater-than function. We applied it to the two-party private bidding and
first-price sealed-bid auction. Compared with existing schemes, our protocols
require no trusted third parties. Instead, a public bulletin board is used.
In the private bidding protocol private bidding, it needs two rounds of
communication between two bidders. In the auction protocol auction1,
it takes two rounds of communication between the bidders and the bulletin
board, and in auction2, it takes three rounds. All computation is linear
in the bit length of the bidding price `, the number of bidders n, and the
security parameter k.

Finally, we want to point out some possible improvements or directions
for further work.

• Enhanced Security : The auction protocols we developed reveal the
partial order of bids to bidders.

• Robustness : An actively cheating player might collapse the process.
For example, there are no good ways to prevent a bidder from preparing
incorrect prefix-string sets of his bidding price. Although an adversary
gets nothing by cheating, his improper play might cause a failure to
the auction.

• Vickrey auction : The Vickrey acution has better revenue since the
optimal strategy for each bidder is to bid his true value in this type of
auctions. Some researchers are devoted to Vickrey or M + 1-st price
auctions. However, their methods need the support of trusted third
parties.
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