

ICS 2002

Workshop on Databases and Software Engineering

Title :
Software Project Risk Management Using
Bayesian Belief Nets (BBNs)

Abstract

 Risk management has been considered as an effective technique to cope with inherent
uncertainty associated with software development. Current software risk management mainly relies
on subjective judgment of project managers. In such subjective approach, decision-making process
is human-intensive and opaque. This paper presents a systematic approach to assist software risk
management using BBN (Bayesian Belief Network). It converts the opaque decision-making
process in risk management into a visible and repeatable process. Our method uses BBNs’ causal
dependency and prediction function to assist managers to perform risk analysis and resource
adjustment. We have implemented the proposed algorithm in a simulation environment. Our
results showed that this BBN-based approach could effectively enhance probabilities of project
success.

Keywords : uncertainty, software project risk management, BBN (Bayesian Belief Network), risk
profile.

Authors: Chin-Feng Fan and Yuan-Chang Yu
Affiliation: Computer Engineering & Science Dept., Yuan-Ze University, Taiwan
Address: 135 Far East Road, Chung-Li, Taiwan 320
E-mail: csfanc@saturn.yzu.edu.tw
Fax : (03)4638850
Contact: Chin-Feng Fan

Software Project Risk Management Using

Bayesian Belief Nets (BBNs)*

Chin-Feng Fan, Yuan-Chang Yu
Computer Engineering & Science Dept., Yuan-Ze University, Taiwan

Abstract

 Risk management has been considered as an
effective technique to cope with inherent
uncertainty associated with software
development. Current software risk
management mainly relies on subjective
judgment of project managers. In such
subjective approach, decision-making process
is human-intensive and opaque. This paper
presents a systematic approach to assist
software risk management using BBN
(Bayesian Belief Network). It converts the
opaque decision-making process in risk
management into a visible and repeatable
process. Our method uses BBNs’ causal
dependency and prediction function to assist
managers to perform risk analysis and resource
adjustment. We have implemented the
proposed algorithm in a simulation
environment. Our results showed that this
BBN-based approach could effectively
enhance probabilities of project success.

Keywords : uncertainty, software project risk
management, BBN (Bayesian
Belief Network), risk profile.

* The research has been partly supported by
National Science Council and Nuclear Energy
Council, Taiwan, under the grant number
NSC90-2213-E-155-008 and
NSC91-2623-7-155-001-NU.

1. Introduction

There exist many uncertainties in
software development processes and products;
for instance, the uncertainties in estimating
software size and quality, or in determining
resource allocation and when to stop testing,
etc. Current software engineering techniques
cannot eliminate such uncertainties. Thus,
risk management is critical. Dr. Kitchenham
proposed that estimate uncertainty is "best
managed across an organization's total
portfolio"[10]. This implies that if resources
can be shared or reallocated among several
projects, then probabilities of project success
can be enhanced. However, it may not be
possible to manage several projects at the same
time and share resources among them. Current
risk management mainly relies on subjective
judgment of project managers. Such subjective
process is human-intensive and opaque. It
will be desirable to assist risk management
with more objective measures. This paper
presents a systematic approach using BBNs
(Bayesian Belief Networks) to assist risk
management. A BBN provides improved
clarity in defining and tracing causal
dependencies. Moreover, it can perform
calculation and prediction under uncertainties.
Using BBN-based profile, our risk
management algorithm can detect potential

risks and trace them to their root causes; our
method can also warn the user of activities'
saturation and assist the user to adjust resource
allocation. In the following, we will first
briefly introduce BBNs, then, present our
proposed algorithm, followed by experimented
case studies.

2. Bayesian Belief Networks (BBNs)

BBNs have attracted much recent
attention in the area of decision support
under uncertainties. BBNs’ underlying
theory (Bayesian probability) has been
around for a long time; while the
implementation algorithms [7] and software
tools (eg., Hugin) [5] are available in these
few years. Bayesian Belief Network [4,7]
is an acyclic graph with an associated set of
probability tables. Nodes in a BBN represent
random variables, whose states are usually
expressed in discrete numbers or ranges.
Arcs represent the casual relationships
between the variables. A Conditional
Probability Table (CPT) is associated with
each node to denote such casual influence.
The node representing a variable A with
parent nodes representing variables B1,
B2, ..Bn is assigned a CPT: P(A| B1,
B2, ..Bn). CPT's are filled with a mixture of
empirical/benchmarking data and subjective
judgments. When the probabilities of
nodes without parents are unknown, current
tools usually assign evenly distributed
probabilities to them. Once new evidence is
obtained, evidence can be plugged in the
graph to update the states of related nodes.
Then, the calculation is propagated from

parent nodes to child nodes and vice versa.
The BBN graph can be expanded into an
influence diagram by adding decision nodes
and utility (cost, or profit) nodes,
represented by rectangles and diamonds
respectively. Hadar Ziv[14] has used BBN
in software testing and maintenance.
Fenton[3] proposed that BBN would be the
promising approach for representing and
calculating complex software metrics.

3. BBN-based software project risk
management

Our risk management scheme uses

BBNs’ clear causal dependency to identify risk
source, and their estimation power to predict
resource effectiveness. Our method provides a
simple and visible analytical solution for risk
management problems; it can be combined
with other methods such as simulation to assist
human experts. The system context of our
method is shown in Fig.1, where the algorithm
utilizes BBNs to analyze risks and generates
information to the manager, while the manager
may input evidence or decisions to the BBNs
for further estimation. A risk profile and a
knowledge base of risks are the associated data
structures. The proposed algorithm is given
in Fig. 2. General speaking, software risk
management process, as indicated in IEEE
standard 1540 [6], should include the
following tasks:

(a) Planning Risk Management
(b) Managing the Project Risk Profile
(c) Performing Risk Analysis
(d) Performing Risk Treatment
(e) Performing Risk Monitoring

anager capability

Developer capability

Product qualityProduct performance

Training

Training Cost

Risk
Profile

Thus, we may categorize our steps similarly.
The following is a simple explanation.

Steps 1 to 4 (Planning and initialization):
Construct a BBN and initialize it.

A basic BBN including general factors
[8,9] influencing project risks can be
developed first as a template for our method.
The first step will expand this basic BBN to
further comprise factors specific to the
examined project. The manager may use this
expanded BBN to answer various "what-if"
questions for resource planning.
Assumptions may be used for initializing root
nodes; then, the related expectation states may
be saved in a separate file. Nodes to be
monitored are also set. For example, if the
assumption is that verifiers' capability is high,
then the expected state is that the defects
detection rate is high.

Manager

Step 5 (Risk Profile): Keep chronological

records of the BBN’s state probabilities
and evidence inputs.
Once the project starts, a continuously

monitoring loop will start. Whenever new
evidence is obtained, evidence will be plugged
into the BBN for analysis.

Steps 6-8 (risk monitoring and analysis)
 To be able to perform risk analysis, various
pre-assumptions should be correct in the first
place. When evidence is gathered, it is
plugged in the network to recalculate
probabilities of its related ancestors or
descendants. Tracing Module in our algorithm
will be invoked when the average of previous
N units of evidence conflict with original
expectation. The Tracing Module shown in

Risk- Management

Algorithm

BBN

Information

Data

Update Consult

Information

Data/Decisi

Knowledge

B

Information

Fig.1. System context

(c, e)

(b)

 (d)

(a)

1. Construct BBN for the examined case

2. BBN initialization

3. Resource planning (what-if)

4. Set expectation states & nodes to observe

5. Record evidence (risk profile)

8. adjust resource utilization:

Periodically:

For each of current activities X

Call Saturation Module() ;

For the set of observed activities

Call Ranking Module()

7. Perform Risk Analysis:

IF Average product quality of past N2 records

< threshold1

Call Tracing Module ()

IF Average Stage delay of past N2 records >

threshold2

Call Tracing Module()

IF Average Over budget of past N2 records

> threshold3

Call Tracing Module()

9. risk management decision (may refer to the knowledge base)

10. BBN prediction of the effectiveness of the decision

11. perform the action

6. Correct estimates:

IF average of past N1

evidence conflict with

expectation

Call Tracing Module ()

Human adjustment of

incorrect estimates

Fig.2. Risk management Procedure

Fig. 3 traces the current evidence back to its
leading causes and interactively display them
to the user, so that the user can identify the
erroneous pre-assumptions and correct them.

Fig 3. Tracing Module

Step 7 (Risk Analysis)

We analyze the average of the previous
N risk profile data to identify whether there
exist such risks as behind schedule, over
budget, and poor quality. Assume that the basic
BBN contains nodes stage delay, over budget,
and quality. Then, these nodes are examined
against the predefined thresholds. Once
potential hazards are identified, our algorithm
will invoke Tracing Module for the user to
locate its major causes so as to assist the user
to make risk treatment decision.

Step 8 (Resource adjustment)

Resources utilized in software activities
may have their diminishing return points or
saturation points; i.e., from a certain point on,
the more resource spent, the less return it will
yield. Thus, if project managers can realize
such saturation points in time, they can
reallocate these resources to alternative
activities or save them for other more

productive activities at later stages.

Fig. 4 Saturation Module

BBN risk profile can be used in revealing the
falling cost-effectiveness of a certain activity,
and identify its potential saturation points.
Periodically, say daily or weekly, our algorithm
invokes Saturation Module (Fig. 4) to check
saturation points of the observed activities and
ranking their cost-effectiveness (Fig. 5). In the
Saturation Module, performance of observed
activity X is examined; if its average value is
less than the expected threshold, the saturation
may be reached. To avoid possible transient
situation, our algorithm continues to monitor
the following M time units before reaching a
final conclusion. Then the user will be
informed.

Moreover, to better utilize resources,

Enter new evidence of activity X, update BBN

Average performance of X’s observed node
in the last N records worse than threshold

Observed node is still worse

Start to monitor X for the next M units

Reached saturation point of X, display the message

Y

Y

Next step

M times

Next step

N

N
For evidence node X, trace it back to

its parent nodes and display

next level of causes ?

yes

no

Enter new evidence of activity X, update BBN

Average performance of X’s observed node
in the last N records worse than threshold

Observed node is still worse

Start to monitor X for the next M units

Reached saturation point of X, display the message

Y

Y

Next step

M times

Next step

N

N

Ranking Module (Fig. 5) is invoked
periodically to compare and rank related
activities. There are two different cases. If
the set of activities have quantitative evidence
in the risk profile; their effects per thousand
dollars can be calculated straightforwardly;
then, the ranking of these activities'
cost-effectiveness are obtained and shown to
the user. On the other hand, if there are no
direct quantitative data for these activities, then,
BBN should be used to estimate the
effectiveness. Both the ranking of
effectiveness and the ranking of their costs are
sorted in separate sets. The best situation is
that the ranking order of costs should be
identical to that of their effectiveness;
otherwise, resource adjustment may be needed
to achieve better cost-effectiveness.

Steps 9 to 11 (risk treatment)

After the above analyses have been done,
the manager may make decisions to treat
possible risks. The knowledge base keeping

rules of thumb for risk treatment can be
consulted. BBN calculation can be used to
estimate the effectiveness of decided risk
treatment.

4. Implementation and Test Cases

We have implemented the above

algorithm and tested it in a simulation
environment. We have used a simple
simulator to simulate the progress of the
examined project and fed the resulting data to
BBN for risk analysis.

4.1. Simulation Formulae
The proposed algorithm is implemented

in ANSI C, using Hugin’s APIs [5]; while the
results are plotted by Borland C++. There
exist some implementation issues. BBN
variable states are discrete, yet input data to
BBNs and various thresholds are numerical.
Thus, conversion between numerical values
and discrete probability states are needed. To

Set the costs of the set of observed activities

Quantitative evidence of effectiveness exit?

Calculate and rank their cost-effectiveness

Use BBN to predict their risk contributions

Sort risk contributions

Display the ranking to the user

Sort and rank costs

Fig. 5. Ranking Module

convert quantitative numbers to BBN variable
state probabilities, we use fuzzy triangular
functions. Fig. 6 is a simple three-state
example, where the value 0.6 is mapped to
probabilities of State high=0.2, mid=0.8, and
low=0. In our test runs, we generally use
three-state variables. On the other hand, to
convert a BBN node's current state
probabilities to a value, we use weighted
summation. Currently we assign the
continuous weights 1,2,3, etc. to the states low,
mid, high, etc. For example, for a node with
probability of State high=0.2, and mid=0.8, it
will be quantified into (0.2×3 +0.8×2 + 0×

1)=2.2. Thus, for a three-state node, its state
probabilities are converted into a number
between 1 to 3.

We have constructed a process simulator

to generate continuous project data as evidence
for the BBN diagram. The inputs to the
simulator include the following:
Project size (function points)
Schedule
Personnel (numbers of experts, average staff,
and novices)

Productivity (function points/week)
Defect generation (numbers/week)
Defect detection rate for V&V activities (% of
defects detected /week)
Observed nodes
Thresholds

The formulae we used in this simulator are
given below [11]:

(1) Weekly team productivity =
(Σi=novice..expert Pi*Si)*C(S)*L(T)* COV

Where
Pi =weekly productivity of employees of type i
Si= numbers of employees of type i
S= total numbers of employees

Communication overhead C(S)=1-t(S)
t(S)=1-{1.03exp(-0.02S)} [13]
Learning factor at time T =L(T) We used it
when adding or changing staff after the project
starts.
Coefficient of Variation COV=±10% It is

generated by random numbers.

(2) numbers of defects produced weekly =
(Σi=novice..expert S i * Di)* Pressure (delay) * COV

Where
Di =Defect generation rate
Pressure factor Pressure(delay) is determined
by current delay percentage.

(3) remaining defect numbers at time t
Rt=

max (Rt-1* (1- average defect removal rate), r)

Where r = total number of defects * maximum

detection efficiency

0 0.5 1

1
highmidlow

X=0.6
Mapped to high=0.2

mid =0.8
low =0

Fig. 6. Triangular function example

Y=2x-1
Y= -2x+2

0.2

0.8

4.2 Test case 1 : tracing causes and risk
analysis

We used the BBN diagram in Fig.7 to

test tracing and risk analysis modules. The test
data are shown in Table 1. When our risk
management scheme was used, at week 6,
project delay caused Tracing Module to be
invoked. The associated Hugin’s monitor
window is shown in Fig. 8; while the simulator
called Hugin’s APIs and got trace output

shown in Fig. 9. It suggested that the potential
causes for the delay might be staff numbers,
capability, experience, and workload.
Assume that the manager at this point decided
to adjust and improve staff members’
capability to be 10 experts, 10 average ones,
and none novice. The performance with and
with such adjustment is shown in Fig. 10. It is
obvious that project delay and product quality
were significantly improved.

Table 1 Simulation runs for case 1

Size (function points FP) 800

Schedule (weeks) 52

Personnel (expert, average, novice) 2, 10, 8

Productivity (FP/week) 1, 0.5, 0.2

Defect generation (# / week) 0.02, 0.05, 0.1

Observed nodes Delay, quality, over budget

Learning factors L(T) 0.7 for 2 months when T <=10%
0.6 for 3 months when 10% < T <=
50%
0.4 for 4 months when T > 50%
1 otherwise

Pressure (delay) 0.7 when delay <0%
1 when delay=0
1.3 when 0%<delay <50%
1.5 when delay > 50%

Tracing module() invoked at week 6 (Fig.8,9)

Staff adjusted
(expert, average, novice)

10, 10, 0 at week 6 (Fig. 10)
10, 10,. 0 at week 35 (Fig.10)

Time adjusted Expand to 100 weeks at week 6 (Fig.
11)

Risk

Quality Delay
Over_budget

Project_complexity
Number_of_defects_produced

Capability

Experience

Number_of_developers

Workload

Developer_performance

Fig. 7 Simplified BBN used in Case Study

Delay

Capability

Experience

Number_of_developers

Workload
Developer_performance

Fig. 8 Tracing back to causes

Fig. 9 Trace module output

Fig.10 . Delay and Quality Nodes with and without risk management

Adjust people in 35th week

Adjust people in 6th

Original

Original

Adjust people in 6th week

Adjust people in 35th week

Fig. 11. Delay and Quality nodes with and without risk management
(Adding time to 100 weeks)

Note that changing staff at week 6 incurred
learning overhead, which is shown by the
higher delay and lower quality in Fig. 10
immediately after the change. However, since
it was still at the early development stage of
the development, eventually the adjusted one
outperformed the original one.

To compare the effect of changing staff at
different stages, we also tested the personnel
adjustment at a much later stage, say at 35th
week in this case. The results are also shown in
Fig. 10. As can be seen in the figure, there
may have little improvement due to learning
factors and the timing.

Another possibility for risk treatment at
week 6 is to allocate extra time extension since
Trace module indicated work load was not
justified. Suppose that the completion time was
adjusted to be 100 weeks. The resulting
performance is shown in Fig. 11. Due to the

fact that time pressure was lifted, the number
of generated defects was reduced. Thus,
delay and quality nodes were much better than
the original ones.

In both cases, our algorithm could warn
the manager of the potential risks at an early
stage. Thus, proper measures could be taken to
greatly improve the probability of project
success.

5.2 Test case 2: Saturation point
identification

 We have tested Saturation module using a
past problematic software project, the Sizewell
B project [12]. This Britain’s digital reactor
protection system was developed by Westing
House in early 90’s with huge V&V effort. To
ensure its safety, besides Westing House’s
V&V, the system was verified by the following

Original

Add time at week 6

Original

Add time at week 6

Independent Verification and Validation
(IV&V): NNC Ltd.’s Independent Design
Assessment, TA Consultancy Services’
MALPAS (TCAS’s IV&V), NE Technology’s
source to code comparison, as well as Rolls
Royce and Associates’ testing (RR&A’s
IV&V). The project spent 200 man-years
development effort, and yet 50 man-year V&V
effort, which did not find any significant
defects. .

The BBN diagram of a Sizewell B-like
case is shown in Fig.12. The data are given in
Table 2. In the original execution, the BBN’s
product quality would have the numerical
curve depicted in Fig. 13. If our algorithm
was used, when software quality could not be
improved, Saturation Module was activated
and would inform the manager of this situation.
Suppose that the manager decided to terminate
the V&V activities (Fig. 14); then extra
resources were saved. The comparison can

be seen from Fig. 13 and 14, where product
quality was the same, while with saturation
identified, 14-week resources could be saved.
With our risk management scheme, warning of
potential risks for appropriate resource saving
or adjustment is possible.

Table 2 Simulation run for test case 2

Size 1200

Number of defects 125

Maximum defection
efficiency

95%

V&V schedule 20

Organization defect
detection capability

25% ±5%

per week

Without risk
management

Fig. 13

With saturation point
identified (at week 6)

Fig. 14

NNCRRnATACS

NNC_number_of_detected_defects

RRnA_number_of_detected_defects

TACS_number_of_detected_defects

Product_Quality

Tool

Capability

Time_PressureEnvironment_Tool

Activity coverge

Activity effective

time_pressure

tool effective

Test coverge

Fig. 12 IV&V Case (test Saturation module)

Fig. 13. Quality node at the original execution

Figd

Fig .14 Quality node with Saturation identified and process terminate at week 6

AnalysisTestReview

Analysis_number_of_detected_defe

Test_number_of_detected_defects

Review_number_of_detected_defects

V&V_Quality

Tool

Capability

Time_PressureEnvironment_Tool

Time_pressure

Plan

time_pressure

tool

Experience

Fig. 15. Analysis, Review, and Testing (test saturation and ranking)

5.4. Test case 3: test Saturation and Ranking
Modules together

 The last test case we have tested the
saturation module and ranking module
working together. We assumed that three
different activities: testing, review, and
analysis were used. Periodically, the saturation
and ranking algorithm would be invoked.
The simplified BBN diagram is shown in
Fig.15. In general, whether analysis is effective
depends on analysts' capability; review
depends on reviewers' experience; while
testing depends less on capability and
experience.

The third test case assumed that given
analysts are novice or average; thus, very soon,

the analysis’ saturation point was reached. The
input data is given in Table 3. Our algorithm
would identify that the analysis activity was
not productive any more and notify the
manager. The manager might terminate this
activity and reallocate the resources
(person/time/budget) to most productive V&V
activity suggested by the Ranking Module.
The original performance is shown in Fig.16,
where review outperformed testing and
analysis. When our algorithm was used,
Saturation Module was invoked at week 6 and
found that novice analysis could not progress
much. The Ranking Module() periodically
listed the cost-effectiveness ranking among
these three methods. For this particular set of
data, testing is most cost-effective since

Table 3 Simulation run for test case 3

size 1200

defect 125

Maximum detection efficiency 90%

Saturation threshold Average 0.5 in the past 3 weeks

Defect detection rate (expert, average, novice)
per week

Analysis: 20%, 10%, 2%
Review: 20%, 15%, 8%
Testing: 15%, 12&, 10%

Team capability Analysis: novice
Review: average
Testing: average

Cost (analysis, review, test) 600, 450, 300

Observed nodes Number_of_detected_defects

With risk management Fig. 16

With ranking and adjustment Fig. 17 (terminated analysis at week 6,
reallocated analysis personnel to testing)
Fig. 18 (numbers of remaining defects)

Fig.16. Performance of analysis, test, and review without risk management

R

T

A

Fig.17. Resource reallocated to test at week 8

Fig.18 Remaining defects with and without resource adjustment

R

T

A

original

With adjustment

it was cheapest and depended less on personnel
capability and experience than the other two
methods. At week 8 the manager was
advised that analysis’ saturation had been
reached. Suppose that the manager also took
the suggestion from the Ranking Module. Thus,
he terminated analysis activity and reallocated
the analysis team to perform testing. This
adjusted performance is shown in Fig.17. It is
obvious that testing performance improved
afterwards. To observe the overall effects of
with or without risk management, we also plot
the remaining numbers of defects for both
cases in Fig. 18. It is noticeable that with
dynamic resource allocation outperforms the
one without it.

In all of the above cases, we have shown
significant improvement can be achieved by
using our BBN-based risk management
algorithm. Our experiments demonstrated the
feasibility and effectiveness of our method.
Moreover, the rationales of manager's decision
making is visible and repeatable when BBNs
are used.

5. Conclusion

This paper proposed a BBN-based
project risk management method. We
utilized BBN's estimation power to predict
potential risks or activity effects; also, we
used BBN's causal dependencies to trace
the potential causes of the risks. The
BBN-based approach have the virtues in
visibility and repeatability in the decision
making process of software risk
management. Using BBN, our method can

continuously monitor and predict potential
problems so as to assist the manager to
perform risk treatment. We have
implemented the proposed algorithm and
tested it in a simulation environment.
The experiment results show that the
algorithm is effective. Further application
of BBNs to other aspects of software
project assessment seems to be promising.

References

[1] Marc Bouissou, et al., "Assessment of a

Safety-Critical System Including Software:
A Bayesian Belief Network for Evidence,"
1999 IEEE Proceedings of Annual
Reliability and Maintainability
Symposium, pp. 142-150, 1999.

[2] Fred Brooks, "No Silver Bullet: Essence

and Accidents of Software Engineering,"
IEEE Computer, April 1987, pp. 10-19.

[3] Norman E. Fenton and Martin Neil,

"Software metrics, failures and new
directions," The Journal of Systems and
Software, 47, pp. 149-157, 1999.

[4] David Heckerman and Michael P. Wellman,

"Bayesian Networks," Vol.38, No. 3
Communication of ACM, pp.23-30, March
1995.

[5] Hugin, A. S. , 1989, www.hugin.dk.

[6] IEEE Standard for Software Life Cycle

Processes-Risk Management, IIEEE Std
1540-2001.

[7] Finn V. Jensen, An Introduction to

Bayesian Networks, Springer1996.

[8] James J. Jiang and Gary Klein, "Risks to

different aspects of system success,"
Information & management 36 (1999),
Elsevier Science, pp. 263-272, 1999.

[9] Dale Walter Karolak, Software Engineering
Risk Management, 1996 IEEE Computer
Society Press.

[10] Barbara Kitchenham and Stephen

Linkman, "Estimates, Uncertainty, and
Risk," IEEE Software, May 1997, pp.
69-74.

[11] Chi Y. Lin, “Software-Engineering

Process Simulation Model (SEPS), “ J. of
System Software, vo. 38, pp. 253-277,
1997.

[12] “Sizewell B reactor protection reliability:

Nuclear Electric presents its case,”
Nuclear Engineering International, pp.
28-33, March 1993.

[13] Tausworthe, R. C., “Information Models

of Software productivity: Limits on
Productivity Growth,” J. System Software,
21, pp. 185-201, 1992

[14] Hadar Ziv, Debra J. Richardson,

Constructing Bayesian-network Models of
Software Artifact Uncertainties, PhD
thesis University of California, Irvine,
June 1997.

