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摘要 

 
本文提出使用混合式之基因演算法於武器對目標指派問題。文㆗混合式之基因演算法乃是採

用免疫系統於基因演算法㆗。而武器對目標指派問題乃是 NP-Complete 類型問題，其目的乃是

指派我方所有武器攻擊敵方目標並降低我方的損失。本文提出新的基因配對方法及免疫系統演算

法則，以提高武器對目標指派問題的求解收斂速度，文㆗亦將使用知識之基因演算法的模擬結果

與其他演算法則相比較，其數據顯示使用知識之基因演算法優於其他演算法則。 
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Abstract 
In this paper, a hybrid genetic algorithm by 

combining a genetic algorithm with an immune 
system is proposed and applied to weapon-target 
assignment (WTA) problem. The WTA problem, 
known as a NP-Complete problem, is to find a 
proper assignment of weapons to targets with the 
objective of minimizing the expected damage of 
own-force asset. The used immune system 
serves as a local search mechanism for genetic 
algorithm. Besides, in our implementation, a 
new crossover operator called the elite 
preserving crossover is proposed to preserve 
good information contained in the chromosome. 
A comparison of the proposed algorithm with 
several existing search approaches shows that 
the proposed algorithm outperforms its 
competitors on all tested WTA problems.  

Keywords―Optimization, Genetic Algorithm, 
Immune system, Weapon-Target Assignment. 

1. Introduction 

On modern battle fields, there are vague and 
uncertainties in determining the proper weapons 
while engaging with targets. However, it is an 
important task for a planner to make a proper 
weapon-target assignment (WTA) in front of 
threat targets. The WTA problem is to find a 
proper assignment of weapons to targets with the 
objective of minimizing the expected damage 
value of own-force asset. It has been shown that 
a WTA problem is a NP-compete problem, and it 
is difficult to solve this type of problems directly 
[4,37]. Various methods for solving optimization 
problems have been reported in the literature 
[3,28,29,38,40]. Those methods are based on 
graph search approaches and usually result in 
exponential computational complexities. As a 
consequence, it is difficult to solve this type of 
problems directly while the number of targets or 
weapons are large [16,28,40]. Recently, genetic 

algorithms (GAs) have been widely used as 
search algorithms in various applications and 
have demonstrated satisfactory performances 
[7,11,20,41,42]. GA simulates the evolution of 
individual structures for optimization inspired by 
natural evolution [8,23,39,44]. There are two 
genetic operators, crossover and mutation, 
giving chromosomes the opportunity to 
evolutionarily search for the optima in the space. 
If these two genetic operators were not carefully 
designed, the search might become inefficient or 
even random. This may cause certain degeneracy 
in the search performance [22,30]. That is why it 
is difficult to applied simple GAs into many 
complicated optimization problems successfully. 
GAs used in real-word optimization problems 
usually need to incorporate problem-specific 
knowledge into evolutionary operators [23]. In 
[43], we have employed simple GAs to solve 
WTA problems. Even though they could find the 
best solution in those simulated cases, the search 
efficiency seemed not good enough.  

The idea of local search is to find a better 
candidate nearby the current one before move to 
the next stage of search. There exist approaches 
that adopt the local search idea into their genetic 
algorithms. In the literature, a genetic algorithm 
equipped with a local search approach may be 
referred to as the memetic algorithm, the genetic 
local search, the hybrid genetic algorithm, or the 
cultural algorithm [2,6,30,25]. In those 
approaches, they viewed such algorithms as the 
evolution of ideas. The ideas, combined the 
genetic operators with heuristics, can quickly 
search the interested solution space to find better 
solutions [24,30,31,33]. Ideas can be recombined 
to create new ideas, and good ideas are more 
useful than weak ones. In this paper, we 
proposed to introduce a genetic algorithm with 
an immune system to improve the search 
efficiency. The immune system is a remarkable 
adaptive system and the corresponding concept 
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can provide several important ideas in the field 
of computation [1,9,35]. Biologically, the 
function of immune systems is to protect a body 
from antigens. In combining with GAs, it is to 
improve search ability during the evolutionary 
process [22]. Besides, in our algorithm, a new 
crossover operator, the elite preserving crossover 
(EX) is also proposed. The idea of this operator 
is to preserve only good information contained 
in both parents for the next generation. Several 
cases are simulated in our study, and the results 
demonstrated nice efficiency of our approach 
while compared to other algorithms. 

The paper is organized as follows. In section 
2, a mathematical formulation of WTA problems 
is introduced. The pseudo algorithms of general 
genetic algorithms with local search are 
described in section 3. The proposed algorithm is 
presented and discussed in section 4. In section 5, 
the results of employing the proposed algorithm 
to solve WTA problems are presented. Several 
existing algorithms were also employed for 
comparison. The performance showed the 
superiority of our algorithm. Finally, section 6 
concludes the paper. 

2. The WTA Problem 

It is an important task for battle managers to 
make a proper weapon-target assignment (WTA) 
in front of threat targets. For an example of 
anti-aircraft weapon (AAW) of naval battle force 
platforms, the threat targets may be enemy 
missiles launched form surface ships, aircraft 
and submarines. These missiles have different 
probabilities of killing to platforms which 
dependent on the missile types, target types, etc. 
In this situation, battle managers may use 
information gathered from radars to assign 
proper weapons to destroy these targets. But, 
that is not an easy task for planners to make a 
proper weapon-target assignment with such 
information. Thus, a decision-aided system for 
WTA problems is strongly desired in helping 
and training planners to make proper decisions 
on the battlefield [4].  

To solve WTA problems, the following 
assumptions are made for the formulation of the 
WTA problem. The first one is that there are W 
weapons and T targets and all weapons must be 
assigned to targets. The second assumption is 
that the individual probability of killing (Kij) by 
assigning the i-th target to the j-th weapon is 
known for all i and j. This probability defines the 
effectiveness of the j-th weapon to destroy the 
i-th target. The overall probability of killing (PK) 

value for a target (i) to damage the asset can be 
computed as: 

PK(i)=
W

1

(1 ) ijX
ij

j

K
=

−∏ ,              (1)                    

where ijX  is a Boolean value indicating 
whether the j-th weapon is assigned to the i-th 
target. ijX =1 indicates that the j-th weapon is 
assigned to the i-th target. The considered WTA 
problem is to minimize the following fitness 
function [43,37]:  
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subject to the assumption that all weapons must 
be assigned to targets; that is,  
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Here EDV(i) is the expected damage value of the 
i-th target to the asset. π  is a feasible 
assignment list and π(j)=i indicates weapon j is 
assigned to target i. 

3. Genetic Algorithms with Local Search  

Since the WTA problem has been shown to 
be NP-Complete [10,37], it is difficult to solve 
this kind of problem directly while the number 
of targets and weapons are large. Based on the 
concept of natural selection, GAs search for the 
solution that optimizes a given fitness function. 
In GAs, the variables are represented as genes on 
a chromosome. Through natural selection and 
genetic operators, chromosomes with better 
fitness are found. However, if genetic operators 
were not carefully designed, it might be difficult 
to have effective search. In our previous study 
[43], we have also employed GAs to solve WTA 
problems and the search efficiency of that 
algorithm seemed not good enough.  

Recently, genetic algorithms with local 
search have been considered as good alternatives 
for solving optimization problems [14,18,32,34]. 
In general, GA with local search consists of five 
steps. The first step is to initialize the population 
by randomly selecting a set of chromosomes 
encoding possible solutions. The second step is 
to evaluate the fitness of each chromosome in 
the population. The third step is to create new 
chromosomes by mating current chromosomes 
with the use of recombination and mutation 
operations. The fourth step is to apply local 
search to create new chromosomes, and then 
evaluate the new chromosomes. The fifth step is 
to select the chromosomes with the best fitness 
from the population. It should be noticed that the 



 

algorithm becomes a general GA if the fourth 
step is omitted.  

The general structure of the GA with local 
search is shown in the following where P(t) and 
C(t) are parents and offspring in generation t [23, 
24,30]. 

Procedure:  GA with local search 
Begin 

t ← 0; 
Initialize P(t); 
Evaluate P(t); 
While (not match the termination 

conditions) do 
Recombine P(t) to yield C(t) with 

possible mutation; 
Apply local search for C(t); 
Select P(t+1) from P(t) and C (t ) 

based on the fitness; 
 t ← t+1; 

End 
End 

In our study, a chromosome represents a list of 
weapons to targets assignment, where the value 
of the i-th gene indicates to which target is 
assigned to the i-th weapon. Take W=4 and T=4 
as an example, a chromosome (2 4 1 3) 
represents a feasible assignment list where target 
2 is assigned to weapon 1, target 4 is assigned to 
weapon 2, and so on. In GA, two genetic 
operators, crossover and mutation, must be 
implemented. Traditionally, the one-cut-point 
(OCP) operator is employed as the crossover. 
The one-cut-point operator is to randomly 
generate one cut-point and swap the cut parts of 
two parents to generate offspring [21,23]. 
Mutation operation is performed to perturb genes 
M times within permissive integers from 1 to T, 
where M (<W) is randomly generated [23]. Local 
search approach has the advantage of providing 
a variety for possible solutions in a local manner. 
Furthermore, a selection operator is employed to 
select chromosomes in the population for the 
next generation. The better the chromosome is, it 
is more likely selected for reproduction in the 
next generation. After those new chromosomes 
are selected, GA with local search is again 
conducted and the consequent processes follow 
until a stop criterion is satisfied. 

Local search approaches incorporated into 
GA algorithms have produced excellent results, 
and these approaches have played a key role in 
solving real world optimization problems 
[2,19,25]. The general idea of local search is 
shown in the following pseudo code [30]: 

Procedure:  General local search 

Begin 
While (local search is stopped) do 

Generate a neighborhood solution 'π  
If ( )'C π < C(π) then π= 'π  

  End; 
End; 

General local search starts from the found 
feasible solution and repeatedly tries to improve 
the current assignment by local changes. If a 
better assignment is found, then it takes place of 
the current assignment and the algorithm 
searches from the new assignment again. These 
introduced steps are repeated until a criterion is 
satisfied. The used criterion usually is to perform 
N times of local changes, where N (<W) is 
randomly generated. Usually, the neighborhood 
solution is defined as a chromosome obtained by 
randomly swapping two positions in the current 
chromosome [13,30].  

Simulated annealing (SA) takes advantage 
of search strategies in which cost-deteriorating 
neighborhood solution may be accepted to 
search the optimal solutions [13]. In SA, in 
addition to better-fitness neighbors are always 
accepted, worse-fitness neighbors may also be 
accepted according to a probability that is 
gradually decreased in the cooling process. With 
the stochastic nature, SA enables asymptotic 
convergence to optimal solution and has been 
widely used for solving optimization problems 
[12,15,27]. In SA, if a modified solution is found 
to have better fitness than its ancestor then the 
modified solution is retained and the previous 
solution is discarded. If the modified solution is 
found to have less fitness than its ancestor, the 
modified solution may be still retained with a 
probability related to the current temperature. As 
the process continues and the temperature 
decreases, unsatisfactory solutions are less likely 
accepted. By using this approach, it is possible 
for the SA algorithm to move out of local 
minima, and more likely that good solutions will 
not be discarded. The pseudo code of the SA 
algorithm is described as follow [15,36,26].  

Procedure: SA algorithm 
Begin 

Define the initial temperature T1 and 
the coefficient γ (0<γ<1); 

λ ←1; 
While (SA has not been frozen) do 

s ←0; f ←0; 
    While (equilibrium is not 

approached sufficiently closely) 
do  



 

Generate new solution from 
the current solution; 

       !F= fitness of current 
solution �fitness of new 
solution; 

Pr = exp(-!F/ Tλ); 
If Pr ≥ random[0,1] then  

Accept new solution; 
current solution←new 

solution; 
f ←f+1; 

End 
s ←s+1; 

End  
Update the maximum and 

minimum fitness; 
Tλ+1←Tλ * γ; 
λ←λ+1 

End 
End  

The initial temperature is set as [22]:  

1 ln( / 1)elitistT F λ= + ,            (4) 

where Felitist is the elitist fitness in the beginning. 
New solutions are generated by inversing two 
randomly selected positions in the solution. The 
new generated solution is regarded as the next 
solution only when exp(-∆F/Tλ) ≥ random[0,1], 
where random[0,1] is a uniformly random value 
in [0,1]. If the generated solution is better, ∆F is 
negative and exp(-∆F/Tλ) is always greater than 
1. Thus, the solution is always updated. If the 
new solution is not better than its ancestor, the 
solution may still take place of its ancestor in a 
random manner. The process is repeated until the 
equilibrium state is approached sufficiently close. 
The equilibrium state is defined as follows [45]:  

( ) or ( )
1.5 ,W W

σ φ≥ Γ ≥ Φ 
 Γ = Φ = 

             (5) 

where s is the number of new solutions 
generated, f is the number of new solutions 
accepted, G is the maximum number of 
generation, and F is the maximum number of 
acceptance. This algorithm is repeated until it 
enters a frozen situation, which is:  

max min max( ) /  F F F ε− ≤ or Tλ ≤ ε1   (6) 

where Fmax and Fmin are the maximum and 
minimum fitness, ε and ε1 are pre-specified 
constants (ε=0.001, ε1=0.005).  
4. The Proposed Algorithm 

In the above approaches, the local search 
approach separates from genetic operators. 
However, recent work has suggested that local 
search approach can be integrated into genetic 
operators [5]. In this paper, we employ local 
search integrated into genetic operators to provide 
the best solution in a local manner. In this research, 
we viewed the search in GA as the global sense, 
which provides a main portion of diversity in 
search, and the local search plays a major role to 
nail down a local optimum for the current solution. 
Thus, we proposed to use an immune system in 
place of a local search approach. The immune 
system has two main features: one is vaccination 
used for reducing the current fitness and the other 
is the immune selection used for preventing 
deterioration [22]. Vaccination is used to modify 
current solution with heuristics so as to find better 
solution. In this process, it should repair the 
wrong genes and keep the good genes of current 
solution by the information abstracted from the 
problem itself. In our implementation, the j-th 
good gene is an assignment of the j-th weapon to 
the target with the highest Kij*EDV(i), where i=1 
to T. The value of a wrong gene is repaired by a 
randomized integer from 1 to T. After vaccination, 
the immune selection is performed to obtain 
solutions for the next step. The immune selection 
includes two steps: the immune test and the 
annealing selection. In the immune test, repaired 
genes with better fitness are always accepted and 
genes with worse fitness are also accepted 
according to the annealing selection. In our 
implementation, the selection probability for the 
j-th repaired gene is calculated as follows:  

1

1

/

/

1

ij

ij

F T
j

W
F T

j

eP
e

λ

λ

=

=
∑

                  (7) 

where ijFλ  is the value of Kij*EDV(i), which is 
the damage of the j-th weapon assigned to the 
randomly generated target (i) at iteration l. 

Beside of using the traditional one-cut-point 
operator, we also proposed another crossover 
operator, called the elite preserving crossover 
(EX) operator, to enrich a more effective search. 
EX is adopted from CX [30], in which the genes 
shared by both parents are all preserved and then 
the remaining genes are then randomly swapped 
to generate offspring. Since the problem 
considered in [30] has constraints for their 
solutions, a repair algorithm is employed to 
make new chromosomes feasible. EX also 
adopts the similar concept, except preserves only 



 

those genes which are possible good genes. The 
EX operator is described as follows: 

Step 1: Find the genes with the same values 
(targets) in both parents. 

Step 2: Inherited good genes from both parents.  
Step 3: Randomly select two genes that are not 

inherited from parents.  
Step 4: Exchange the selected genes in both 

parents to generate offspring. 
Step 5: Update the best solution and repeat to 

step 1 until a stop criterion has satisfied. 
Step 6: Return the best solution.  

It is noted that there are no constraints on the 
assignment in our WTA definition. Our 
implementation of EX has omitted the repair 
process as used for CX [30]. To see the 
procedure, consider two chromosomes: 

A= 1 2 2 4 8 6 3 8 9 
B= 1 4 2 9 8 2 3 6 8 

First, the genes of 1, 3, 5, and 7 with the same 
values in both parents are found. The values of 
Kij*EDV(i) among these weapon-target pairs of 
the 1st, the 3rd, the 5th, and the 7th weapons (j=1, 
3, 5, and 7) to all targets (i=1 to T) are evaluated. 
It is assumed that these values of K11*EDV(1), 
K23*EDV(2), and K85*EDV(8) are the highest 
values among these weapon-target pairs of the 
genes of 1, 3, 5, and 7. Then, they are called 
good genes and inherited from parents. 
Thereafter, two positions, e.g., the 4th and the 7th 
positions, are selected at random in those two 
chromosomes and then genes are exchanged to 
generate the offspring as: 

A�= 1 2 2 3 8 6 9 8 9 
B�= 1 4 2 3 8 2 4 6 8 

These steps are repeated until a stop criterion, 
which is randomly generated M (<W) times, is 
satisfied. The crossover operation will not be 
performed if the number of wrong gene is less 
than two. 

Selection is performed after the offspring 
have been evaluated and generated. It chooses 
the best chromosome from the pool of parents 
and offspring to reduce the population to its 
original size. In order to select the best 
chromosomes from the parents and offspring, 
selection is referred to as (u + λ) �ES (evolution 
strategy) survival where u corresponds to the 
population size and λ refers to the number of 
offspring created [17,30].  
5. Simulation and Results 

In the following simulations, the default 
following values are used: the size of the initial 
population for GAs is the same as the maximum 

number of targets or weapons considered, the 
crossover probability Pc=0.8 and the mutation 
probability Pm=0.4, and γ=0.5 for SA. In this 
paper, first scenario is to test the performance for 
crossover operators. It consists of randomized 
data for 10 targets and weapons. All algorithms 
consistently use the same initial population when 
they are randomly generated. In this study, the 
effects for crossover operator of one-cut-point 
(OCP), CX, and EX are studied. The maximum 
generation is 2000, and experiments were run on 
PCs with Pentium 1GHz processor. The 
simulation is conducted for 10 trials and the 
average results are reported here. The simulation 
results are listed in Table 1. From Table 1, it is 
evident that the EX operator can have the best 
performances among all operators in both 
general GA, and GA with an immune system. 
Since the EX operator can result in better 
performance, in the following simulations EX is 
used as the crossover operator.  

Several scenarios are considered to compare 
the performances of existing algorithms. These 
algorithms include general GA, simulated 
annealing (SA), GA with general local search, 
GA with SA as local search, GA with an 
immune system as local search (the proposed 
algorithm). Since those algorithms are search 
algorithms, it is not easy to stop their search in a 
fair basis from the algorithm itself. In our 
comparison, we simply stopped these algorithms 
after a fixed time of running. Experiments were 
also run on PCs with Pentium 1GHz processor, 
and were stopped after two hours of running. 
The results are listed in Table 2. From Table 2, it 
is easy to see that algorithms with local search 
approaches have better performance than 
algorithms without them. It also shows that the 
proposed algorithm can always find the best 
solution among these algorithms; meanwhile 
other algorithms may not find the best solution 
all the time. 

Furthermore, we want to test the converged 
performance for algorithms with local search 
approaches. This scenario consists of 
randomized data for 120 weapons and 100 
targets. In our study, we stopped those 
algorithms when the best fitness of all 
algorithms converged to a solution. The results 
are listed in Table 3. From Table 3, it is shown 
that the proposed algorithm could efficiently find 
the converged solution among those algorithms. 
It concludes that the proposed algorithm has also 
better long-term search capability than other 
algorithms do.  



 

6. Conclusions 

In this paper, we presented a hybrid genetic 
algorithm by including domain specific 
knowledge into the crossover operator and an 
immune system for solving weapon-target 
assignment (WTA) problems. From simulations, 
it can be found that the proposed algorithm can 
indeed have best search efficiency among 
existing genetic algorithms.  
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Table 1. The simulation results for randomized data of W=10 and T=10. Results are averaged over 10 
trials. 

 
Algorithm Operator Best fitness Percentage of 

convergence 
Converged 
generation 

CPU time (sec) 

OCP  92.7668 10 % N/A N/A 

CX 75.9367 20% N/A N/A 

 
General GA 

EX  69.3263 40 % N/A N/A 

OCP  61.1183 80% N/A N/A 

CX 58.4774 100% 733 82.29 

GA with 
immune 
system 

EX  58.4774  100% 465 51.15 

N/A-Not Available 

 
Table 2. Compare the best fitness of randomized scenarios obtained by various search algorithms. 

Results are averaged over 10 trials.  

Algorithms W=50 

T=50 

W=80 

T=80 

W=100 

T=80 

W=120 

T=80 

SA 290.4569 352.5413 290.564 175.6310 

General GA  282.6500 351.7641 279.558 140.1381 

GA with general local 
search  

226.335 348.4352 197.8655 106.4778 

GA with SA as local 
search 

230.5209 347.1698 203.586 105.5135 

The proposed 
algorithm 

171.8513 282.2294 161.3612 98.8892 



 

Stop 

Table 3. The simulation results for randomized data of W=120 and T=100.  
 

Algorithm Best fitness CPU time (minute) 

GA with general local search 173.3241 335.3 

GA with SA as local search 173.3241 316.5 

The proposed algorithm 173.3241 285.4 

 
 

 

Apply crossover and greedy 
reformation on P(t) to yield C(t) 

Apply mutation and immune system on C(t) 
to yield and then evaluate D(t) 

Select P(t+1) from P(t) and D(t) based on 
the fitness  

Initialize population P(t) 

Evaluate P(t) 

Apply crossover and immune system on 
P(t) to yield C(t) 

Stop criterion 
satisfied? 

t ← t+1 
Figure 1. The flow diagram of the proposed algorithm 
 


