
New Efficient Constructions of Binary Asymmetric
Error-Correcting Codes

Abstract - We study the new construction of binary
asymmetric error-correcting codes presented by Fu,
Ling and Xing. The direct construction algorithm
requires)2(nnθ operations in all cases. In this paper,
we first develop a construction algorithm which
requires only)2(nθ operations in all cases. Next, we
improve the algorithm by a bounding function. The
final construction algorithm requires)2(nO op-
erations in the worst case. In most cases, the number
of operations is much lower than n2 .

Keywords: Asymmetric error-correcting codes, code
construction, backtracking algorithm.

1. Introduction

In most binary communication systems, the error
probabilities from 1 to 0 and from 0 to 1 are
approximately the same. This kind of systems is well
modeled by binary-symmetric channel. But in certain
communication systems, the probability from 1 to 0
is much higher than the error probability from 0 to 1.
These communications are modeled by the binary
asymmetric channel, which are also named Z-
channel. Similar to error-correcting codes for binary-
symmetric channel, error-correcting codes for Z-
channel are also discussed widely [1-6]. Recently, a
new construction for asymmetric error-correcting
codes was developed by Fu, Ling and Xing [3].
Their construction provided new lower bounds on
code size.

In this paper, we present two construction
algorithms based on those developed by Fu, Ling
and Xing.

This paper is organized as follows: In Section 2,
we introduce some definitions about binary
asymmetric code. In Section 3, we introduce the new
binary asymmetric error-correcting code construct-
ion introduced by Fu et al.

In Section 4, we first present a backtracking
algorithm for constructing asymmetric codes. Then
we provide a bounding function to improve this
algorithm. In Section 5, we analyze all the
construction algorithms discussed in this paper.

We conclude this section by introducing the
following notations which will be used throughout
this paper.
1. qF : A finite field with q elements.

2. nF2 : }|),...,,({ 221 Fxxxxx in ∈= , a vector

space over 2F of dimension n.
3.][xFq : The ring of polynomials over qF in

variable x .

2. Binary Asymmetric Codes

A binary asymmetric error-correcting code is
defined in terms of the following notations.

For binary vectors
>=< nxxxx ,...,, 21 and >=< nyyyy ,...,, 21 ,

 the asymmetric distance between them is defined as
)},(),,(max{),(xyNyxNyxda = ,

where
}1,0|{#),(=== ii yxiyxN .

For nFC 2⊆ , the minimum asymmetric distance of C
is defined as

} and ,,:),(min{)(yxCyxyxdC a ≠∈=∆ .
A binary code of length n and minimum

asymmetric distance ∆ is called a (n, ∆) asymmetric
code.

It was shown in [4] that a (n, ∆) asymmetric code
can correct ∆-1 or fewer asymmetric errors (from 1
to 0 errors).

3. The Fu, Ling and Xing’s Construction

By Fu, Ling and Xing’s construction, a (n, ∆≥d)
asymmetric error-correcting code can be constructed
in the following steps:

Jen-Chun Chang
Department of Computer Science &

Information Engineering
National Taipei University
jcchang@csie.nctu.edu.tw

Han-Chang Liang
Department of Computer Science &

Information Engineering
National Chiao Tung University

hcliang@csie.nctu.edu.tw

Rong-Jaye Chen
Department of Computer Science &

Information Engineering
National Chiao Tung University

rjchen@csie.nctu.edu.tw

This work was supported by the National Science Council, R.O.C. , under
contracts no. NSC 93-2213-E-009-010- and no. NSC93-2213-E-305-003-.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1036

4. The New Recursive Construction

With Fu, Ling and Xing’s construction, we have
to compute Ω-1 function to obtain the code. In the
direct construction algorithm, it is necessary to
compute nZvv 2 allfor),(∈Ω , and then collect the set

}),()(|{ 2
nFvxgvv ∈=Ω as a code Cg. In this

section, we propose two recursive algorithms to
speed up the computations in all cases.

First, we define a set
}.1for 0 ,|{, njinvCvvC jgig ≤≤+−=∈=

Note that
gg CC =0,

. The main idea of this algorithm
is to compute 0,gC , instead of gC .

Our first algorithm is given below:

In the call tree of construction 1, we notice that
several branches receive empty-set return. We
introduce a bounding function NFq →:λ to help
eliminating sub-trees of the call tree.

We define a λ-function

⎩
⎨
⎧ =∋=

=
otherwise.,

.1|C| someexist if, }1|C| :min{
)(),-(x),-(x ii

n

jj jj
i

αααλ

Example1 Let 13FFq = , n=13,

121211)(234 ++++= xxxxxf , 12~0~ 131 =αα ,

then we have the following λ function:

iα 0 1 2 3 4 5
)(iαλ 3 3 7 3 1 2

iα 6 7 8 9 10 11 12

)(iαλ 2 4 2 2 1 13 13

The second algorithm given below is improved
from construction 1 by applying the λ-function.

Step1:
Select a finite field Fq such that q is a prime
power, and q≥n.

Step2:
Select a monic polynomial][)(xFxf q∈ with
degree d.

Step3:
Select n distinct elements nααα ,...,, 21 in Fq such
that 0)(≠if α , for 1≦i n≦ .

Step4:
Define a multiplicative group),(⊗G , where

.}1))(),((and monic, is)(

)),(deg())(deg(:][)({

=

<∈=

xfxgxg

xfxgxFxgG q

The multiplication operation⊗over G given by
)),(mod)()(()()(xfxbxaMxbxa =⊗ where

)())((1 xhhxhM m
−= , mh is the coefficient of the

highest degree term in h(x).
Step5:

Define GF n →Ω 2 :

Gxccc
n

i

c
in

i ∈−⊗∏
=1

21)(),...,,(αa .

Step6:
Select a polynomial Gxg ∈)(.
Let))((1 xgCg

−Ω= , if φ≠gC , then gC is a
(n, ∆ ≥ d) asymmetric code.

Algorithm Construction_1 (g(x), i)
Input: g(x), i
Output: Cg
begin

Initially T1,T2 are two empty sets;
if i = n-1 then

if g(x) = (x-α1) then
return {<1,0,0,…,0>};

else if g(x) = 1 then
return {<0,0,0,…,0>};

Algorithm Construction_2 (g(x), i)
Input: g(x), i
Output: Cg
begin

Initially T1,T2 are two empty sets;
if i = n-1 then

if g(x) = (x-α1) then
return {<1,0,0,…,0>};

else if g(x) = 1 then
return {<0,0,0,…,0>};

else
return {};

endif
endif
if g(x) = (x-αj) for some j then

if i ≥ λ(αj) and i ≤ n-j then
return {v} where v is the jth row of
identity matrix nnI × ;

else if i ≥ λ(αj) and i > n-j then
return {};

else
return {};

endif
endif
T1 = Construction_1(g(x), i+1);
T2 = Construction_1(g(x)⊗ (x-αn-i)-1, i+1);
for all vectors v in T2 do

vn-i=1;
return T1 U T2;

end

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1037

5. Analysis of The

Construction Algorithms

The most expensive operation in all construction
algorithms is the multiplication operation over the
group),(⊗G . We analyze all the construction
algorithms on the number of ⊗ operations that have
been discussed so far.

Theorem 1: The direct construction algorithm
proposed by Fu, Ling, and Xing requires)2(nnθ
multiplication operations over group G in all cases.

Proof: The direct algorithm has to calculate a ⊗
operation for each “1” occurs in each binary vector
from nF2 . Note that we need not calculate the ⊗
operation for the first “1” in each binary vector. Thus,
for 2≥n , the number of ⊗ operation is

).2(
12)2(

)12(

1

0

n

n

n
n

i

n
n

i
i
n

θ=

+−=

−−×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

=
∑

Theorem 2: The Construction 1 algorithm

requires)2(nθ multiplication operations over group
G in all cases.

Proof: Consider a call tree of the construction 1
algorithm, it has exact 12 −n nodes. We have to
calculate a ⊗ operation on each internal node in the
call tree. By pre-calculating

ni1for ,over)(1 ≤≤− − Gx iα ,

the construction 1 algorithm has to calculate the ⊗
operation on 12 1 −−n nodes in the call tree. So the
number of ⊗ operations is)2(12 1 nn θ=−− .

Theorem 3: The Construction 2 algorithm
requires)2(nO multiplication operations over group
G in the worst case.

Proof: By the bounding function λ, we eliminate
at least

∑
≥+−

=>===
≥∈

− −

)(1
},1,:min{},1:min{

2)(, :

1) 22(

i

ji

g

jn
cijjjcii

cwtCcc

j

αλ

nodes in the complete call tree. So, the call tree has
at most

)) 22((12

)(1
},1,:min{},1:min{

2)(, :

1∑
≥+−

=>===
≥∈

− −−−

i

ji
g

jn
cijjjcii

cwtCcc

jn

αλ

nodes.
Thus we have an upper bound of internal nodes

)) 12((12

)(1
},1,:min{},1:min{

2)(, :

1∑
≥+−

=>===
≥∈

− −−−

i

ji
g

jn
cijjjcii

cwtCcc

jn

αλ

Since we have to calculate a ⊗ operation on
each internal node. In worst cases, the number of ⊗
operations is)2(nO .

Example2 Using parameters in example1, in order
to construct

)10(−xC , the number of ⊗ operations
required by each algorithm is:

Algorithm Direct Constuct1 Construct2
of operations 45057 4095 2043

As shown in Figure1, several branches are
eliminated by λ-function (the shadowed area).

Figure 1. Call tree of construction 2

References

[1] S. Al-Bassam and S. Al-Muhammadi, “A Single

asymmetric error-correcting code with 213 codewords
of dimension 17,” IEEE Trans. Inform. Theory, vol. 46,
pp.269-271, Jan, 2000.

[2] B. Bose and S. Al-Bassam, “On systematic asymmetric
error-correcting codes,” IEEE Trans. Inform. Theory,
vol. 46, pp.669-672, Mar, 2000.

[3] Fang-Wei Fu, San Ling, and Chaoping Xing, “New
Lower Bounds and Constructions for Binary Codes
Correcting Asymmetric Errors,” IEEE Trans. Inform.
Theory, vol. 49, no. 12, pp.3294-3299, December,
2003.

[4] T. Klove, “Error correcting codes for the asymmetric
channel,” Dept. Mathematics, Univ. Bergen, Bergen,
Norway, Tech. Rep.18-09-07-81, 1995.

[5] T. R. N Rao and A. S. Chawla, “Asymmetric error
codes for some LSI semi-conductor memories,” in
Proc. Annu. Southeastern Symp. Systems Theory, 1975.

[6] J. P. Robinson, “An asymmetric error-correcting
ternary code,” IEEE Trans. Inform. Theory, vol. IT-24,
pp.258-261, Mar, 1978.

endif
endif
T1 = Construction_2(g(x), i+1);
T2 = Construction_2(g(x)⊗ (x-αn-i)-1, i+1);
for all vectors v in T2 do

vn-i=1;
return T1 U T2;

end

□

□

□

.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1038

