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Abstract - We study the new construction of binary 
asymmetric error-correcting codes presented by Fu, 
Ling and Xing. The direct construction algorithm 
requires )2( nnθ  operations in all cases. In this paper, 
we first develop a construction algorithm which 
requires only )2( nθ  operations in all cases. Next, we 
improve the algorithm by a bounding function. The 
final construction algorithm requires )2( nO  op-
erations in the worst case. In most cases, the number 
of operations is much lower than n2 . 
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1. Introduction 
 

In most binary communication systems, the error 
probabilities from 1 to 0 and from 0 to 1 are 
approximately the same. This kind of systems is well 
modeled by binary-symmetric channel. But in certain 
communication systems, the probability from 1 to 0 
is much higher than the error probability from 0 to 1. 
These communications are modeled by the binary 
asymmetric channel, which are also named Z-
channel. Similar to error-correcting codes for binary-
symmetric channel, error-correcting codes for Z-
channel are also discussed widely [1-6]. Recently, a 
new construction for asymmetric error-correcting 
codes was developed by Fu, Ling and Xing [3]. 
Their construction provided new lower bounds on 
code size. 

In this paper, we present two construction 
algorithms based on those developed by Fu, Ling 
and Xing. 

This paper is organized as follows: In Section 2, 
we introduce some definitions about binary 
asymmetric code. In Section 3, we introduce the new 
binary asymmetric error-correcting code construct-
ion introduced by Fu et al.  
 
 
 
 

In Section 4, we first present a backtracking 
algorithm for constructing asymmetric codes. Then 
we provide a bounding function to improve this 
algorithm. In Section 5, we analyze all the 
construction algorithms discussed in this paper. 

We conclude this section by introducing the 
following notations which will be used throughout 
this paper. 
1. qF : A finite field with q elements. 

2. nF2 : }|),...,,({ 221 Fxxxxx in ∈= , a vector 

space over 2F  of dimension n. 
3. ][xFq : The ring of polynomials over qF  in 

variable x . 
 
2. Binary Asymmetric Codes 
 

A binary asymmetric error-correcting code is 
defined in terms of the following notations. 

For binary vectors 
>=< nxxxx ,...,, 21  and >=< nyyyy ,...,, 21 , 

 the asymmetric distance between them is defined as 
)},(),,(max{),( xyNyxNyxda = , 

where 
}1,0|{#),( === ii yxiyxN . 

For nFC 2⊆ , the minimum asymmetric distance of C 
is defined as 

} and ,,:),(min{)( yxCyxyxdC a ≠∈=∆ . 
A binary code of length n and minimum 

asymmetric distance ∆ is called a (n, ∆) asymmetric 
code. 

It was shown in [4] that a (n, ∆) asymmetric code 
can correct ∆-1 or fewer asymmetric errors (from 1 
to 0 errors). 
 
3. The Fu, Ling and Xing’s Construction 
 

By Fu, Ling and Xing’s construction, a (n, ∆≥d) 
asymmetric error-correcting code can be constructed 
in the following steps: 
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4. The New Recursive Construction 
 

With Fu, Ling and Xing’s construction, we have 
to compute Ω-1 function to obtain the code. In the 
direct construction algorithm, it is necessary to 
compute nZvv 2 allfor  ),( ∈Ω , and then collect the set   

} ),()(|{ 2
nFvxgvv ∈=Ω  as a code Cg. In this 

section, we propose two recursive algorithms to 
speed up the computations in all cases. 

First, we define a set 
}.1for   0 ,|{, njinvCvvC jgig ≤≤+−=∈=  

Note that
gg CC =0,

. The main idea of this algorithm 
is to compute 0,gC , instead of gC . 
 

Our first algorithm is given below: 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

In the call tree of construction 1, we notice that 
several branches receive empty-set return. We 
introduce a bounding function NFq →:λ  to help 
eliminating sub-trees of the call tree. 
 

We define a λ-function 
 

⎩
⎨
⎧ =∋=

=
otherwise.,                                  

.1|C|  someexist  if,    }1|C| :min{
)( ),-(x),-(x ii

n

jj jj
i

αααλ

 
Example1   Let 13FFq = , n=13,  

121211)( 234 ++++= xxxxxf , 12~0~ 131 =αα ,  
 
then we have the following λ function: 
 

iα  0 1 2 3 4 5 
)( iαλ 3 3 7 3 1 2 

 
iα  6 7 8 9 10 11 12

)( iαλ 2 4 2 2 1 13 13
 

The second algorithm given below is improved 
from construction 1 by applying the λ-function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step1: 
Select a finite field Fq such that q is a prime 
power, and q≥n. 

Step2: 
Select a monic polynomial ][)( xFxf q∈ with 
degree d. 

Step3: 
Select n distinct elements nααα ,...,, 21 in Fq such 
that 0)( ≠if α , for 1≦i n≦ . 

Step4: 
Define a multiplicative group ),( ⊗G , where 

.}1))(),(( and monic, is )(                                   

 )),(deg())(deg(  :][)({

=

<∈=

xfxgxg

xfxgxFxgG q

The multiplication operation⊗over G given by 
)),(mod)()(()()( xfxbxaMxbxa =⊗  where 

)())(( 1 xhhxhM m
−= , mh  is the coefficient of the 

highest degree term in h(x). 
Step5: 

Define GF n →Ω 2 :  

Gxccc
n

i

c
in

i ∈−⊗∏
=1

21 )(),...,,( αa . 

Step6: 
Select a polynomial Gxg ∈)( . 
Let ))((1 xgCg

−Ω= , if φ≠gC , then gC is a 
(n, ∆ ≥ d) asymmetric code. 

Algorithm Construction_1 ( g(x), i ) 
Input: g(x), i 
Output: Cg 
begin 

Initially T1,T2 are two empty sets; 
if i = n-1 then 

if g(x) = (x-α1) then 
return {<1,0,0,…,0>}; 

else if g(x) = 1 then 
return {<0,0,0,…,0>}; 

Algorithm Construction_2 ( g(x), i ) 
Input: g(x), i 
Output: Cg 
begin 

Initially T1,T2 are two empty sets; 
if i = n-1 then 

if g(x) = (x-α1) then 
return {<1,0,0,…,0>}; 

else if g(x) = 1 then 
return {<0,0,0,…,0>}; 

else 
return {}; 

endif 
endif 
if g(x) = (x-αj) for some j then 

if  i ≥ λ(αj) and i ≤ n-j then 
return {v} where v is the jth row of 
identity matrix nnI × ; 

else if  i ≥ λ(αj) and i > n-j then 
return {}; 

else 
return {}; 

endif 
endif 
T1 = Construction_1( g(x), i+1 ); 
T2 = Construction_1( g(x)⊗ (x-αn-i)-1, i+1 );
for all vectors v in T2 do 

vn-i=1; 
return T1 U T2; 

end 
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5. Analysis of The 

Construction Algorithms 
 

The most expensive operation in all construction 
algorithms is the multiplication operation over the 
group ),( ⊗G . We analyze all the construction 
algorithms on the number of ⊗  operations that have 
been discussed so far. 
 

Theorem 1: The direct construction algorithm 
proposed by Fu, Ling, and Xing requires )2( nnθ  
multiplication operations over group G in all cases. 

Proof: The direct algorithm has to calculate a ⊗  
operation for each “1” occurs in each binary vector 
from nF2 . Note that we need not calculate the ⊗  
operation for the first “1” in each binary vector. Thus, 
for 2≥n , the number of  ⊗  operation is 

).2(
12)2(

)12(

1

0

n

n

n
n

i

n
n

i
i
n

θ=

+−=

−−×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

=
∑

 

 
Theorem 2: The Construction 1 algorithm 

requires )2( nθ  multiplication operations over group 
G in all cases. 

Proof: Consider a call tree of the construction 1 
algorithm, it has exact 12 −n  nodes.  We have to 
calculate a ⊗  operation on each internal node in the 
call tree. By pre-calculating 

ni1for   ,over  )( 1 ≤≤− − Gx iα , 

the construction 1 algorithm has to calculate the ⊗  
operation on 12 1 −−n  nodes in the call tree. So the 
number of ⊗  operations is )2(12 1 nn θ=−− . 
 

Theorem 3: The Construction 2 algorithm 
requires )2( nO  multiplication operations over group 
G in the worst case. 

Proof: By the bounding function λ, we eliminate 
at least 

∑
≥+−

=>===
≥∈

− −

)(1
},1,:min{},1:min{

2)(, :

1 ) 22(

i

ji

g

jn
cijjjcii

cwtCcc

j

αλ

 

nodes in the complete call tree. So, the call tree has 
at most 

)) 22((12

)(1
},1,:min{},1:min{

2)(, :

1∑
≥+−

=>===
≥∈

− −−−

i

ji
g

jn
cijjjcii

cwtCcc

jn

αλ

 

nodes. 
Thus we have an upper bound of internal nodes 

)) 12((12

)(1
},1,:min{},1:min{

2)(, :

1∑
≥+−

=>===
≥∈

− −−−

i

ji
g

jn
cijjjcii

cwtCcc

jn

αλ

 

Since we have to calculate a ⊗  operation on 
each internal node. In worst cases, the number of ⊗  
operations is )2( nO . 
 
Example2   Using parameters in example1, in order 
to construct 

)10( −xC , the number of ⊗  operations 
required by each algorithm is: 
 

Algorithm Direct Constuct1 Construct2
# of operations 45057 4095 2043 
 

As shown in Figure1, several branches are 
eliminated by λ-function (the shadowed area). 
 

 
 

Figure 1. Call tree of construction 2 
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endif 
endif 
T1 = Construction_2( g(x), i+1 ); 
T2 = Construction_2( g(x)⊗ (x-αn-i)-1, i+1 );
for all vectors v in T2 do 

vn-i=1; 
return T1 U T2; 

end 
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