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Abstract

Let G be an undirected graph with non-
negative edge lengths. Given two vertices
as sources and all vertices as destinations,
and aslo given arbitrary requirements be-
tween sources and destinations, we investi-
gated the problem how to construct a span-
ning tree of G such that the total communica-
tion cost from sources to destinations is min-
imum, where the communication cost from a
source to a destination is the path length mul-
tiplied by their requirement. In the paper,
we present a 3-approximation algorithm for
general graph inputs, and a 2-approximation
algorithm for metric graphs.
Keywords: approximation algorithms, net-
work design, spanning trees.

1 Introduction

Consider the following optimum communi-
cation spanning tree (OCT) problem formu-
lated by Hu in [4]. Let G = (V, E,w) be
an undirected graph with nonnegative edge
length function w. We are also given the re-
quirements λ(u, v) for each pair of vertices.
For any spanning tree T of G, the commu-
nication cost between two vertices is defined
to be the requirement multiplied by the path
length of the two cities on T , and the com-
munication cost of T is the total communi-
cation cost summed over all pairs of vertices.
Our goal is to construct a spanning tree with
minimum communication cost. That is, we
want to find a spanning tree T such that∑

u,v∈V λ(u, v)dT (u, v) is minimized, where
dT (u, v) is the distance between u and v on
T .

The requirements in the OCT problem are
arbitrary nonnegative numbers. By restrict-
ing the requirements, several special cases of

the problem have been studied.

• λ(u, v) = 1 for each u, v ∈ V . The prob-
lem is called the minimum routing cost
spanning tree (MRCT) problem (also
called the shortest total path length span-
ning tree problem), and is NP-hard [3, 5].
The first constant ratio approximation
algorithm for the MRCT appeared in [6].
It was shown that there is a shortest path
tree which is a 2-approximation of the
MRCT. In [7], the approximation ratio
was improved to (4/3 + ε) for any fixed
ε > 0, and then further improved to
a polynomial time approximation scheme
(PTAS) in [8].

• λ(u, v) = r(u)r(v) for each u, v ∈ V ,
where r(v) is the given nonnegative ver-
tex weight for each vertex v. This ver-
sion is the optimal product-requirement
communication spanning tree (PROCT)
problem. A 1.577-approximation al-
gorithm for the PROCT problem was
shown in [9], and then improved to a
PTAS in [10].

• λ(u, v) = r(u) + r(v) for each u, v ∈
V , where r(v) is the given nonnega-
tive vertex weight for each vertex v.
It is called the optimal sum-requirement
communication spanning tree (SROCT)
problem. The problem was introduced
in [9] and a 2-approximation algorithm
for the SROCT problem were shown.

The k-source MRCT problem is a special
case of the SROCT problem, in which k ver-
tices are given as sources and all vertices
(including the sources) are destinations. In
other words, the vertex weight of each source
is one and the weights of all the other ver-
tices are zeros. The 2-source MRCT prob-
lem has been shown to be NP-hard even for



metric inputs [11]. A PTAS for the prob-
lem was also proposed. In this paper, we
investigate a generalization of the 2-source
MRCT problem. We considered the case that
there are also only two sources but the re-
quirement for each pair of source and desti-
nation is arbitrary. We call it the 2-source
optimum communication spanning tree (2-
OCT) problem. Given two vertices s1, s2

as sources and all vertices as destinations,
the 2-OCT is a spanning tree T of G such
that the total communication cost, defined by∑

v(r1(v)dT (v, s1) + r2(v)dT (v, s2)), is mini-
mum, in which, for each vertex v, r1(v) and
r2(v) are the given requirements from v to s1

and s2 respectively.
In this paper, we present a 3-approximation

algorithm for the 2-OCT when the input is
a general graph, and a 2-approximation algo-
rithm when the input is a metric graph, i.e., a
complete undirected graph with edge lengths
satisfying the triangle inequality. The rela-
tionship of the different versions of the OCT
problems is illustrated in Figure 1, and the
currently best approximation ratios are sum-
marized in Table 1.

The remaining sections are organized as fol-
lows: In Section 2, some definitions and no-
tations are given. The approximation algo-
rithms for the 2-OCT problem on general and
metric graphs are shown in Section 3 and 4
respectively.

2 Preliminaries

By G = (V,E, w), we denote a graph G with
vertex set V , edge set E, and edge length
function w. The edge length function is as-
sumed to be nonnegative. A metric graph
is a complete undirected graph and the edge
lengths satisfy the triangle inequality. Let
s1 and s2 be the given two sources. For
each vertex v, r1(v) and r2(v) are the given
nonnegative requirements from v to s1 and
s2 respectively. For any graph G, V (G) de-
notes its vertex set and E(G) denotes its edge
set. Let w be an edge length function on a
graph G. For a subgraph H of G, we define
w(H) = w(E(H)) =

∑
e∈E(H) w(e). We shall

also use n to denote |V (G)| when there is no
ambiguity.

Definition 1 : Let G = (V, E, w) be a
graph. For u, v ∈ V , SPG(u, v) denotes a
shortest path between u and v on G. The

shortest path length is denoted by dG(u, v) =
w(SPG(u, v)).

Definition 2: Let H be a subgraph of G.
For a vertex v ∈ V (G), we use dG(v, H) to de-
note the shortest distance from v to H, i.e.,
dG(v, H) = minu∈V (H) dG(v, u). The defini-
tion also includes the case that H is a vertex
set but no edge.

We now define the communication cost of
a spanning tree.

Definition 3: Let T be a tree. For any
vertex v ∈ V (T ), cT (v) = r1(v)dT (v, s1) +
r2(v)dT (v, s2). For any spanning tree T of
G, the communication cost of T is defined by
c(T ) =

∑
v∈V (T ) cT (v).

3 On general graphs

In this section, we investigate the 2-OCT
problem in the case that the input is a gen-
eral graph. Our approximation algorithm is
to construct a shortest path forest rooted at
the two sources, and then connect the two
source by a shortest path. The algorithm is
presented below.

Algorithm Approx1
Input:A graph G, two vertices s1, s2,
and requirements r1(v), r2(v).
Output:A spanning tree T of G.
Find a shortest-path forest with roots

s1, s2. Let T1, T2 be the two trees
containing s1, s2 respectively.

Find a shortest path P between s1 and s2.
Let P = (p1 = s1, p2, . . . , s2).

Find the first vertex pi not in T1.
Join T1 and T2 into a tree T by adding

edge (pi−1, pi).
Output T .

To analyze the performance of the algo-
rithm, we first give a trivial lower bound of
the optimal in the next lemma.

Lemma 1 : Let Y be the 2-OCT. For
any vertex v, cY (v) ≥ r1(v)dG(v, s1) +
r2(v)dG(v, s2).

Proof: Since dG(v, s1) is the shortest dis-
tance from v to s1, dG(v, s1) ≤ dY (v, s1).
Similarly dG(v, s2) ≤ dY (v, s2). The result
is obvious by the definition of cY (v).



m
or

e 
ge

ne
ra

l

k-source MRCT, arbitrary  k

2-source MRCT

Optimum Communication spanning Tree

SROCTPROCT

Minimum Routing Cost spanning Tree

2-source OCT

Figure 1: The relationship of the OCT problems.

Table 1: The restrictions and currently best ratios of the OCT problems
problem restriction ratio reference
OCT no O(log n log log n) [8]
PROCT λ(u, v) = r(u)r(v) PTAS [10]
SROCT λ(u, v) = r(u) + r(v) 2 [9]
MRCT λ(u, v) = 1 PTAS [8]
2-source MRCT λ(u, v) = r(u) + r(v) PTAS [11]

r(s1) = r(s2) = 1
r(v) = 0 for v /∈ {s1, s2}

2-source OCT λ(u, v) = 0 for u, v /∈ {s1, s2} 2 (metrics) this paper
3 (general graphs)

We now show the performance ratio in the
next lemma, in which T is the spanning tree
obtained by the approximation algorithm.

Lemma 2: Let Y be the 2-OCT. For any
vertex v, cT (v) ≤ 3cY (v).

Proof: First we show that the path be-
tween s1 and s2 is a shortest path. By
the algorithm, dT (s1, s2) = dT (s1, pi−1) +
w(pi−1, pi) + dT (pi, s2). Since T1 and T2

are shortest path trees, dT (s1, pi−1) =
dG(s1, pi−1) and dT (pi, s2) = dG(pi, s2).
Therefore dT (s1, s2) = w(P ) = dG(s1, s2).

Any vertex may be in either T1 or T2.
There are two cases.

• Case dG(v, s1) ≤ dG(v, s2): Since
dG(s1, s2) ≤ dG(v, s1) + dG(v, s2) by
the triangle inequality of shortest path
lengths,

cT (v)

≤ (r1(v) + r2(v))dG(v, s1)
+r2(v)dG(s1, s2)

≤ (r1(v) + r2(v))dG(v, s1)
+r2(v)(dG(v, s1) + dG(v, s2))

= r1(v)dG(v, s1) + r2(v)dG(v, s2)
+2r2(v)dG(v, s1)

Since dG(v, s1) ≤ dG(v, s2), we have

cT (v)
≤ r1(v)dG(v, s1) + r2(v)dG(v, s2)

+2r2(v)dG(v, s2)
≤ 3(r1(v)dG(v, s1) + r2(v)dG(v, s2))

By Lemma 1, cY (v) ≥ r1(v)dG(v, s1) +
r2(v)dG(v, s2), and we have cT (v) ≤
3cY (v) for any vertex v in T1.

• Case dG(v, s1) > dG(v, s2): Similarly,

cT (v)
≤ (r1(v) + r2(v))dG(v, s2)



+r1(v)dG(s1, s2)
≤ (r1(v) + r2(v))dG(v, s2)

+r1(v)(dG(v, s1) + dG(v, s2))
= r1(v)dG(v, s1) + r2(v)dG(v, s2)

+2r1(v)dG(v, s2)
≤ r1(v)dG(v, s1) + r2(v)dG(v, s2)

+2r1(v)dG(v, s1)
≤ 3cY (v)

We have that cT (v) ≤ 3cY (v) for any ver-
tex v in T2.

The following theorem summarizes our
result for the 2-OCT problem on general
graphs.

Theorem 3: In O(n2) time, the algorithm
Approx1 computes a 3-approximation of the
2-OCT of a general graph.

Proof: By Lemma 2, cT (v) ≤ 3cY (v)
for any vertex v. Since c(T ) =

∑
v cT (v),

c(T ) ≤ 3c(Y ). For the time complexity, the
shortest path forest can be found by an algo-
rithm similar to the one for the shortest path
trees. The time complexity is O(n2) [2, 1].
Since all other steps can be done in O(n2)
obviously, the total time complexity is O(n2).

4 On metric inputs

In this section, we give a 2-approximation al-
gorithm for the 2-OCT problem with metric
inputs. A metric graph is a complete graph
and the edge between any pair of vertices is
a shortest path. Our algorithm greedily con-
nects the vertices to one of the sources. In
each iteration, we connect a vertex v to ei-
ther s1 or s2 depending on which has the
smaller communication cost. By the proper-
ties of metric graphs and the 2-OCT problem,
we shall show the performance ratio is two in
the worst case. The algorithm is given in the
following.

Algorithm Approx2
Input:A metric graph G, two vertices
s1, s2, and requirements r1(v), r2(v).
Output:A spanning tree T of G.
Initially T contains only one edge (s1, s2).
For each vertex v ∈ V do

/* Connect each v to either s1 or s2 */
If (r1(v) + r2(v))w(v, s1) + r2(v)w(s1, s2)
≤ (r1(v) + r2(v))w(v, s2) + r1(v)w(s1, s2)

Insert edge (v, s1) into T
else

Insert edge (v, s2) into T
endif

Output T .

For convenience, we first define some nota-
tions.

Definition 4: Let Y be the 2-OCT and
P be the path between s1 and s2 on Y .
We define f1(v) = dY (v, s1) − dY (v, P ) and
f2(v) = dY (v, s2) − dY (v, P ) for each each
vertex v.

The next lemma gives a formula of the op-
timal cost. The formula directly follows the
above notations and the definition of the com-
munication cost. We omit the proof.

Lemma 4: Let Y be the 2-OCT and P be
the path between s1 and s2 on Y . c(Y ) =∑

v∈V ((r1(v) + r2(v))dY (v, P ) + r1(v)f1(v) +
r2(v)f2(v).

The next theorem shows the result of the
approxiamtion algorithm.

Theorem 5 : Except for the time of in-
put, the algorithm Approx2 computes a
2-approximation of the 2-OCT of a metric
graph in O(n) time.

Proof: The time complexity is obvious
and we shall show the performance ratio. Let
Y be the 2-OCT and P be the path between
s1 and s2 on Y . By the triangle inequality,
w(v, s1) ≤ dY (v, s1) = dY (v, P ) + f1(v). We
have

(r1(v) + r2(v))w(v, s1) + r2(v)w(s1, s2)
≤ (r1(v) + r2(v))(dY (v, P ) + f1(v))

+r2(v)(f1(v) + f2(v))
= (r1(v) + r2(v))dY (v, P )

+(f1(v)r1(v) + f2(v)r2(v)) + 2f1(v)r2(v)
= cY (v) + 2f1(v)r2(v)

Similarly w(v, s2) ≤ dY (v, s2) = dY (v, P ) +
f2(v) and we have

(r1(v) + r2(v))w(v, s2) + r1(v)w(s1, s2)
≤ (r1(v) + r2(v))(dY (v, P ) + f2(v))



+r1(v)(f1(v) + f2(v))
= (r1(v) + r2(v))dY (v, P )

+(f1(v)r1(v) + f2(v)r2(v)) + 2f2(v)r1(v)
= cY (v) + 2f2(v)r1(v)

Since the vertex v is connected to either s1

or s2 by choosing the minimum of the two
costs,

cT (v)
= min{(r1(v) + r2(v))w(v, s1) + r2(v)w(s1, s2),

(r1(v) + r2(v))w(v, s2) + r1(v)w(s1, s2)}
= cY (v) + min{2f1(v)r2(v), 2f2(v)r1(v)}
Since the minimum of two number is no

more than their weighted mean, we have

cY (v) + min{2f1(v)r2(v), 2f2(v)r1(v)}

≤ cY (v) +
r1(v)2

r1(v)2 + r2(v)2
2f1(v)r2(v)

+
r2(v)2

r1(v)2 + r2(v)2
2f2(v)r1(v)

= cY (v) +
2r1(v)r2(v)

r1(v)2 + r2(v)2

×(f1(v)r1(v) + f2(v)r2(v))

Since r1(v)2 +r2(v)2−2r1(v)r2(v) = (r1(v)−
r2(v))2 ≥ 0, we have

cT (v) ≤ cY (v) + f1(v)r1(v) + f2(v)r2(v)
≤ 2cY (v)

We have shown that cT (v) ≤ 2cY (v) for any
vertex v. Therefore c(T ) =

∑
v∈V cT (v) ≤

2
∑

v∈V cY (v) = 2c(Y ), and T is a 2-
approximation of the optimal.

5 Concluding remarks

In this paper, we present approximation algo-
rithms for the two-source optimum commu-
nication spanning trees. An interesting open
question is the approximability of the prob-
lem. Another interesting problem is if the
technique developed in this paper can be ex-
tended to k-source OCT for any fixed integer
k.
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