
More on Unscrambling Address Lines

Chang-Chun Lu
Dept of Computer Science and

Information Engineering,
National Cheng Kung University

, No1. TAHSUEH Road,
Tainan 701, Taiwan

E-mail:u6321034@ncnu.edu.tw

Shi-Chun Tsai
∗Dept of Computer Science and

Information Engineering,
National Chiao Tung University

, 1001 TAHSUEH Road,
Hsinchu 300, Taiwan

E-mail:sctsai@csie.nctu.edu.tw

Abstract

A writer stores some data in memory accessible
via address lines. If an adversary permutes the
address lines after the writer leaves the message,
then how can a reader find the permutation?
This is the so-called unscrambling address lines
problem [1]. By generalizing the previous ap-
proach of Broder et al. [1], we give and analyze
a new algorithm, which is parallelizable. We also
consider an alternative version of the problem
by assuming that the writer have the ability to
write at the correct address without the effect
of adversary. In this case, we give a very simple
algorithm to identify the permutation.

Keyword:permutation, field programmable gate
array (FPGA)

1 Introduction

The unscrambling address lines problem [1] arose
in the context of FPGA hardware design. An
FPGA is a user programmable reconfigurable
logic array first introduced in 1986 [2]. The basic
logical element of many FPGA is equivalent to a
look-up table [3]. There are three parties of the
unscrambling address lines problem: a reader, a
writer and an adversary. The writer stores logi-
cal 0’s and 1’s in memory with n-bit address lines,

∗Correspondence may be sent to Prof. Tsai. The work
was done while the authors were at National Chi-Nan
University and supported in part by the National Science
Council of Taiwan under contract NSC 89-2213-E-260-028

which defines 2n locations for storage. After writ-
ing is complete, the adversary permutes the ad-
dress lines. Therefore, the reader would read the
wrong address. Then how can the reader find the
permutation? For example, for n = 4 there are
16 locations in the memory: if the address lines
are set to x3x2x1x0 = 1001, which indicates the
9-th location before the adversary permutes the
address lines. If the adversary exchanges the first
(x1) and third (x3) lines, then x3x2x1x0 becomes
0011– indicating the third location. We consider
two possible models for the memory, i.e, write-
once and re-writable. In the re-writable model
the writer is immune from the effect of adver-
sary and write to the same locations round by
round. This version can be stated equivalently:
Alice (writer) tries to send some 0-1 signals to
Bob (reader) via n channels which the adversary
permutes before they communicate. Then how
can Alice and Bob design a protocol to uncover
the permutation? Broder et al. [1] consider write-
once memory model only. Their method has been
implemented and used in Compaq Systems Re-
search Center [1]. For each model we give a new
efficient and straightforward algorithm with anal-
ysis. When the memory is rewritable, it is much
simpler to find the permutation and the space can
be reduced from O(n log n) to O(n). The general
mechanism of the solution is that: first, we leave
some messages at certain addresses in the mem-
ory. Then we read the memory at these addresses.
According to the output (0 or 1) from the mem-
ory, we can divide address lines into two groups.
Similarly, we can further divide each group into

1

two. If the number of address lines is n, after
log n rounds we will divide address lines into n
groups and each group contains exactly one line.
By collecting the output from the memory in each
round, we will know the permutation of each ad-
dress line. Assume the number of address line is
n = 2r. Then the memory locations can be repre-
sented with n-dimensional 0-1 vectors. The writer
assign 0 or 1 to the locations x = xn−1 · · ·x1x0

∈ {0, 1}n. We use π to denote the permutation
used by the adversary, where the permutation is
on the numbers from 0 to n − 1. For example,
let n = 4 (i.e. there are 4 address lines) and
let π(0) = 1,π(1) = 2,π(2) = 3,π(3) = 0. Then
π(x3x2x1x0)= x2x1x0x3, which means that when
reader tries to read the bit located at x3x2x1x0 it
will actually get the bit stored at x2x1x0x3.

We maintain the following invariant: after
round k, there are 2k groups, each group has n/2k

address lines and if line i is in group (z mod 2k),
then line i will be in either group (z mod 2k+1)
or group (z + 2k mod 2k+1) after the (k + 1)th
round. In each round, groups are independent
from each other. Our algorithms make n log n
memory probes to determine the permutation and
the addresses used are different from the method
by Broder et al [1]. In the write-once model, our
advantage over Broder et al. is that we can par-
allelize our algorithm easily.

2 Preliminary

Let n be the number of address lines. For con-
venience, let n = 2r. Let π be the permutation
that the adversary uses to rearrange the address
lines. We try to find the permutation π by prob-
ing at certain addresses with specific settings. Let
x = xn−1 · · ·x1x0 be an n-bit address for mem-
ory location and π(x) = xπ(n−1) · · ·xπ(1)xπ(0).
We use the convenient notation δR, which is 1 if
the relation R is true; 0 otherwise. A key obser-
vation is: for any integer j, if j mod 2k−1 = z
then j mod 2k = z or z + 2k−1. This observation
makes our algorithms more straightforward and is
the foundation of Broder’s work, but not pointed
out in [1].

Let M(x) refer to the value stored at address x.
After the writer and adversary, the reader will get
the value M(π(x)) instead of M(x) when probing

at x. For i = 0, · · · , n − 1, let ei = xn−1 · · ·x1x0

denote the address with xi = 1 and xj = 0 for all
j 6= i. We define Sw ⊆ {0, · · · , n − 1}, for all 0-1
string w of length at most r, to be the subsets of
the labels of address lines. Note that the string
w also denotes a binary representation of the set
index. Initially, Sε = {0, · · · , n − 1}, where ε is
the empty string. We abuse the notation a little
bit by treating all the 0-strings 0∗ as zero. Note
that ε is zero when treated as a number. Let u be
a 0-1 string of length k < r and Su be a subset
of the address labels after round k. After round
k + 1, Su will be evenly split into S0u and S1u.
The splitting depends on what we read from the
written bits at the specific addresses. Formally,
we define Sw’s recursively.

Definition2.1 For any positive integer n = 2r,
integer k < r and permutation π, define Sε =
{0, · · · , n − 1}. For any k-bit binary string w,
S0w = {i|i ∈ Sw, π(i) mod 2k+1 = w} and S1w =
{i|i ∈ Sw, π(i) mod 2k+1 = w+2k}, where we also
treat w as a k-bit binary number.

Lemma2.1 For any i ∈ Sw, we have π(i) mod
2|w| = w and |Sw| = n/2|w|, where |w| is the
length or the number of bit of w and let |ε| = 0.

Proof: We prove by induction on |w|. For |w| = 0
(i.e. w = ε and Sε = {0, · · · , n − 1}), it is clear
that, for any i ∈ Sε, π(i) mod 1 = 0. Suppose it is
true up to |w| = k. By the definition of S0w and
S1w, it is clear for the case of |w| + 1. Similarly,
we have |Sw| = n/2|w|. �

Now the problem turns out to be how to find
out whether i ∈ S0w or i ∈ S1w for each i ∈ Sw

by probing the value at certain memory locations.
For the re-writable case, it is rather straightfor-
ward. For the write-once case, we need to decide
which addresses to set the values. These addresses
are independent of the permutation. For reader,
the addresses are decided adaptively round by
round.

3 Main results

3.1 Re-writable case

First we consider the re-writable case, i.e., the
adversary doesn’t affect the writer. In this case,

Algorithm 1 (Writer1(k, n))

for i = 0 to n− 1 do M(ei)← δ(i mod 2k)≥2k−1 ;

——————————————————-

Algorithm 2 (Reader1(k, n, z))

for i = 0 to n− 1 do
if (M(ei) == 1) then zi ← zi + 2k−1;

Figure 1: Writer and reader with re-writable
memory model.

the reader and writer only access the addresses
ei’s for i = 0, · · · , n−1. In round k (k = 1, · · · , r),
the writer sets M(ei) = 0 if (i mod 2k) < 2k−1; 1
otherwise. All the other locations won’t be used.
For n = 8, we have the setting as in table 1, where
columns 2, 3 and 4 are the values set by the writer
in round 1, 2 and 3, respectively. .

Table 1: The values and addresses used in the
re-writable case.

address M(ei)
in
round
1

M(ei) in round 2 M(ei)
in
round
3

e0: 00000001 0 0 0
e1: 00000010 1 0 0
e2: 00000100 0 1 0
e3: 00001000 1 1 0
e4: 00010000 0 0 1
e5: 00100000 1 0 1
e6: 01000000 0 1 1
e7: 10000000 1 1 1

Lemma3.1 With the above setting, for each ad-
dress line j, 0 ≤ j ≤ n − 1, and an arbitrary
permutation π we obtain π(j) mod 2k after round
k.
Proof: We prove by induction on k. Let j indicate
any address line. For k = 1, we have M(π(ej)) =
M(eπ(j)), which is 1 iff π(j) ≡ 1 (mod 2). In
other words, by probing the value at ej , indeed
eπ(j), we obtain π(j) mod 2k. Suppose it is true
up to k − 1, i.e., we know π(j) mod 2k−1 after

k − 1 rounds. Now consider the k-th round. Let
z = π(j) mod 2k−1. Then π(j) mod 2k = z or z+
2k−1. This can be decided by reading M(π(ej)) =
M(eπ(j)), which is 0 iff (π(j) mod 2k) < 2k−1 by
the setting for round k. This completes the proof.
�

By the above, after r rounds, we will obtain
π(j) for each j and recover the permutation π.
The algorithms are described in figure 1, where
z = zn−1 · · · z0 with zi = π(i) mod 2k−1 as part
of the input. In the first round, all zi is zero
initially. After calling Reader1, each zi is updated
to be π(i) mod 2k.

3.2 Write-once case

In the write-once case, writer can only write to
a location once and thus each location cannot
be rewritten. We illustrate the idea by the fol-
lowing example in table 2 with n = 8 and
π = (03526741), i.e., π(7) = 0, π(6) = 3, π(5) =
5, π(4) = 2, π(3) = 6, π(2) = 7, π(1) = 4, π(0) =
1.

As we define above Sε = {0, 1, 2, 3, 4, 5, 6, 7}.
After the first round, we divide Sε into S0 =
{7, 4, 3, 1} and S1 = {6, 5, 2, 0}. This is done by
reading M(ei), where i is added to S0 if M(ei) =
0; S1 otherwise. In other words, address lines in-
dexed by S0 is permuted to even lines and to odd
lines if indexed by S1. The address lines labeled
by S0 can be permuted to 0 or 2 (mod 4) and
lines in S1 can be permuted to 1 or 3 (mod 4).
Thus the further splitting of S0 and S1 are inde-
pendent. To split S0 we can mask the address
lines in S1 as 1 and for the lines in S0 we allows
only one line with 1. In the second round, writer
and reader seemingly use different addresses for
writing and reading. But the permutation makes
the reader read exactly the locations that have
been set values by the writer.

After round 2, we have S00 = {7, 1} and S10 =
{4, 3} from S0, and S01 = {5, 0} and S11 = {6, 2}
from S1. Similarly, we obtain S000 = {7}, S100 =
{1}, S010 = {4}, S110 = {3}, S001 = {0}, S101 =
{5}, S011 = {6}, S111 = {2}. From the above
singletons, we recover the permutation. Note that
each location is written exactly once.

Table 2: The values and addresses used in write-once case.
Write-once
Example π =

(
76543210
03526741

)
(n = 8)
Writer Value Value Reader Set of
address set read address address line

Sε = {0, 1, 2, 3, 4, 5, 6, 7}
00000001 0 1 00000001
00000010 1 0 00000010
00000100 0 1 00000100
00001000 1 0 00001000
00010000 0 0 00010000
00100000 1 1 00100000
01000000 0 1 01000000
10000000 1 0 10000000

S0 = {1, 3, 4, 7}
10101011 0 0 01100111
10101110 1 1 01101101
10111010 0 1 01110101
11101010 1 0 11100101

S1 = {0, 2, 5, 6}
01010111 0 0 10011011
01011101 1 1 10011110
01110101 0 0 10111010
11010101 1 1 11011010

S00 = {1, 7}
11101111 0 1 01111111 S000 = {7} → π(7) = 0
11111110 1 0 11111101 S100 = {1} → π(1) = 4

S10 = {3, 4}
10111111 0 1 11101111 S010 = {4} → π(4) = 2
11111011 1 0 11110111 S110 = {3} → π(3) = 6

S01 = {0, 5}
11011111 0 0 11011111 S001 = {0} → π(0) = 1
11111101 1 1 11111110 S101 = {5} → π(5) = 5

S11 = {2, 6}
01111111 0 1 10111111 S011 = {6} → π(6) = 3
11110111 1 0 11111011 S111 = {2} → π(2) = 7

More specifically, let Sw be a subset of the ad-
dress lines. Then by fact 2.1, all i ∈ Sw has
π(i) mod 2|w| = w. Now we need to figure out
which addresses to write and to read in order to
split Sw into S0w and S1w. Let un−1 · · ·u1u0 and
rn−1 · · · r1r0 indicate the addresses for writer and
reader, respectively, where ui’s and ri’s can be 0
or 1. We are interested in the following sets of
addresses:

Definition3.1 First define Rε = Wε = {ei|i =
0, · · · , n − 1}. Given w and Sw, define Rw =
{rn−1 · · · r1r0| rj = 1 for j 6∈ Sw;

∑
j∈Sw

rj = 1};
Ww = {un−1 · · ·u1u0| uj = 1, for j mod 2|w| 6= w
and

∑
j mod 2|w|=w uj = 1}.

Both
∑

j∈Sw
rj = 1 and

∑
j mod 2|w|=w uj = 1

in the definition make sure that exactly one bit is
1 and the others are 0. Note that Ww has nothing
to do with the permutation π. Our writer will
set values at the addresses in Ww and reader will
probe the addresses in Rw and split Sw into S0w

and S1w with the returned values.

Lemma3.2 Given π,w, Sw and n, if r ∈ Rw, then
π(r) ∈Ww.
Proof: Let r = rn−1 · · · r1r0 ∈ Rw. Then π(r) =
an−1 · · · a1a0, where aπ(i) = ri . With w, we have
j ∈ Sw iff π(j) mod 2|w| = w. So∑

j mod 2|w|=w

aj =
∑

j mod 2|w|=w

rπ−1(j)

=
∑

π(j′) mod 2|w|=w

rπ−1(j),

where π(j′) = j

=
∑

π(j′) mod 2|w|=w

rj′ ,

since j′ = π−1(j)

=
∑

j′∈Sw

rj′

= 1

For j 6∈ Sw, we have π(j) mod 2|w| 6= w and so
aπ(j) = 1, since rj = 1. Thus π(r) ∈Ww. �

The above lemma is crucial for our approach.
Once the addresses are decided, for each u ∈ Ww

the writer sets the corresponding location with 1,
if there is a j such that j mod 2|w| = w, uj = 1
and j mod 2|w|+1 = w + 2|w|; 0 otherwise. Thus

Algorithm 3 (Writer2(n))

for i = 0 to n− 1 do M(ei)← δi mod 2=1;
for all binary string w with |w| = 1 to n− 1 do

WriteHelper(w);

—————————————

Algorithm 4 (WriteHelper(w))

for i = 0 to n− 1 do ui ← δi mod 2|w| 6=w;
/* u = un−1 · · ·u0: address to be used.*/
j ← w;
for i = 0 to n

2|w| − 1 do
uj ← 1;
M(u)← δi mod 2=1;
uj ← 0;/* reset the bit for next address */
j ← j + 2|w|;

—————————————————————

Algorithm 5 (Reader2(w,Sw))

if Sw has only one element then
print(“π(j) = w.”); /*Let j be the element in Sw*/

else
for i = 0 to n− 1 do ri ← δi 6∈Sw

;
for all j ∈ Sw do

rj ← 1;
if (M(r) == 1) then add j to S1w;
else add j to S0w;
rj ← 0; /* reset rj for next address. */

Reader2(0w,S0w);
Reader2(1w,S1w);

Figure 2: Writer and reader with write-once mem-
ory model.

for each j ∈ Sw the reader accesses the address
r ∈ Rw, where ri = 0 for all i ∈ (Sw − {j}) and
ri = 1 for i 6∈ (Sw −{j}) . Then it will return the
value at π(r) ∈ Ww and j will be put in S1w if
the value is 1; otherwise put in S0w. We list the
algorithms in figure 2.

It is worthy of mentioning that our method is
highly parallel in nature. Once a Sw is available
we can further split it into two sets without any in-
formation from the other sets. While the method
by Broder et al. needs information from another
set to split a set. For example, to split a set Sw

with their approach, it still needs the input Sw−1

in order to decide the addresses for reader [1].
Thus, it takes two sets to split a set with their
approach.

It is clear that line 2 of Writer2 dominates the
algorithm. Together with WriteHelper, the time
complexity is O(

∑
|w|≤log n n/2|w|) = O(n log n).

For Reader2, line 4 can be handled in a step with
bit manipulation instruction. Hence, the time
complexity T (n), starting with Sε can be writ-
ten with a recurrence relation: T (n) = 2T (n/2)+
O(n), which has the solution T (n) = O(n log n).
The correctness of our algorithm can be proved
formally by induction. We conclude with the fol-
lowing theorem.

Theorem 1 Writer2 and Reader2 probe
O(n log n) locations and correctly return the
permutation.

Based on the independence on splitting the sets
Sw’s, we can parallelize Reader2 (i.e., by allowing
parallel memory access) and achieve O(logn) time
complexity.

4 Conclusion

The original algorithm by Broder et al. [1] is se-
quential. With a closer analysis we improve and
obtain a parallelizable algorithm. For write-once
memory, the space we used is O(n log n). For
rewritable memory, we reduce the cost of space
to O(n) by reusing memory.

References

[1] Andrei Broder, Michael Mitzenmacher, Lau-
rent Mall, Unscrambling Address Lines,
SODA 1999: 870-871

[2] W. S. Carter & Al. , A user programmable re-
configurable logic array, in Proceedings of the
IEEE 1986 Custom Integrated Circuits Con-
ference., May 1986, pp. 238-235.

[3] The programmable logic data book 1998. Xilinx
Inc., San Jose, CA, 1998. Available on line via
http://www.xilinx.com/partinfo/databook.htm
.

