
1

Calculation for Strength of Signal Flow and Its Application in
Circuit Simulation Algorithm1

信號流強度計算及其在線路模擬程式中的應用
Chun-Jung Chen

Department of Computer Science, Chinese Culture University
#55, Hwa-Gang Rd., Yang-Min Mountain, Taipei, Taiwan

email: chrischn@ms32.url.com.tw
陳俊榮

中國文化大學資訊科學系
臺北市陽明山華岡路 55號

電子郵件: chrischn@ms32.url.com.tw
Abstract

In the circuit simulation subject,

Relaxation-based algorithms have been proven

to be faster and more flexible than the standard

direct approach used in SPICE. Signal flow of

the simulated circuit is very important in using

Relaxation-based algorithm. However, there is

no specific research undertaken for it. This paper

gives a formal definition for the strength of

signal flow (SSF), discusses how to calculate

SSF, and devises techniques to utilize SSF in one

of the Relaxation-base algorithms, ITA (Iterated

Timing Analysis). Experimental results are given

to prove the value of exploiting SSF in circuit

simulation.
摘要

在線路模擬領域裏，基於鬆弛演算法已被

證明較傳統的 SPICE 所使用的直接法要有效

率，使用基於鬆弛法時，線路的信號流分析是

很重要的，但是到目前為止，尚未有專門針對

此而做的研究。本論文對信號流強度做了數學

上的詳細的定義，討論如何計算信號流強度，

以及提出在基於鬆弛演算法中使用信號流強

度的方法，所有提出的方法都加以實做，對於

數位和類比線路的測試結果，證明了使用信號

流強度於線路模擬器的價值。

1This work was supported by National Science Concil of
R.O.C under contract 90-2215-E-034-001

Keywords: Strength of signal flow,
circuit simulation, transient sensitivity,

Relaxation-based
關鍵詞: 信號流強度, 線路模擬, 暫

態敏感度, 基於鬆弛

I. Introduction

Circuit simulation [1] produces detailed

timing waveforms of electronic circuits, which

is crucial useful in circuit design process.

Traditionally, people use the direct approach,

which is used in SPICE, to solve circuit

simulation problem. But direct approach has a

big time-complexity, therefore it becomes very

time-consuming in dealing with large-scale

circuits. There are many methods invented to

reduce the time complexity of circuit simulation,

some of which improve numerical techniques [2,

3] and others trade off between accuracy and

simplified computation models [4, 5]. In the

former approach, various levels of numerical

techniques have been improved thoroughly. To

get further improvement in this approach, we

have to introduce some new ideas. In this paper,

we propose a new idea of using the �guidance

information� to guide circuit simulation process.

By using the guidance information, the circuit

simulation problems have been solved with less

2

CPU time, while the same simulation accuracy

is maintained. The guidance information used

here is called the strength of signal flow (SSF).

Relaxation-based algorithms [1-3], which

use the same numerical models for circuit

devices and also generate accuracy transient

waveforms of simulated circuits, have been

proven to be more capable in simulating

large-scale circuits than the direct approach.

These algorithms partition the simulated circuit

into subcircuits, simulate each subcircuit

individually, and then combine their

sub-solutions to form the entire solution.

Relaxation-based algorithms use the same

circuit formulations used by direct approach,

and they can be as accuracy as the direct

approach. In this paper, Iterated Timing Analysis

(ITA), one of the Relaxation-based algorithms,

is discussed. We choose ITA is because that ITA

is the most successful Relaxation-based

algorithm. It shows good performance,

efficiency and robustness, in dealing with

large-scale MOSFET circuits. In fact, we can

find some commercial tools based on ITA in the

circuit design community.

Signal Flow has been used for years [6].

Basically, a signal flow is just a flow of signal,

similar as water current or electrical current. A

signal flow coming from circuit variable x to y

can be viewed as the influence on y caused by x.

Signal flow has important impact in

Relaxation-based circuit simulation algorithms.

In these algorithms, signal flows are used to

direct the circuit partitioning process (put

strongly-coupled subcircuits together), and to

decide subcircuit calculation orders (the

scheduling of subcircuits), both which have

crucial effects on simulation efficiency.

However, most Relaxation-based algorithms

only consider the �existence� of signal flow

(such as that a Gate pin has signal flow to Drain

pin of the same MOSFET, but not in the reverse

direction). They don�t consider the strength of

signal flow. In this paper, we try to exploit SSF

in ITA to get better simulation performance.

Following sections come in following

orders. Section 2 describes the definition of SSF,

and methods to calculate it. Section 3 illustrates

how to use this information to enhance the

simulation performance of ITA, which is

followed by Section 4 describing experimental

results of several MOSFET circuits, where some

Relaxation-based algorithms are tested and

compared. Finally, a conclusion remark is given.

II. Definition and Calculation for SSF

In this section we give SSF a formal

definition, and describe the method to compute

it. At the end of this section, the SSF waveform

of an example circuit is shown for

demonstration.

SSF is the degree of influence, caused by

another circuit variable, on a circuit variable,

and it is a time-varying value likes a timing

waveform. So, it's appropriate to use the concept

of sensitivity [6] to define it:

a

b

V
VbaSSF

∂
∂

=),((1)

SSF(a, b) is the strength of signal flow from

node/branch a to node/branch b, where Va and

Vb are circuit variables associated with a and b

respectively. We can call SSF(a, b) the SSF of a

with respect to b. If a circuit has n circuit

variables, SSF of the whole circuit can be

represented as a n×n matrix. SSF is a

time-varying value, and depends on input

3

signals. We want to see how it is calculated. The

simulated circuit is described as follows:

0)),(),((
.

=ttYtYF (2)

where Y is the vector of circuit variables, t is the

time, F is a continuous function and �.� means

the differentiation with respect to time. Since

Relaxation-based algorithms are used, (2) is

partitioned into subcircuits, one of which, say a,

is:

0)),(),(),(),((
..

=ttwtwtytyf (3)

where y (a subvector of Y) is vector of circuit

variables in a, w is the vector of circuit variables

not in a, and f is a continuous function. We want

to know all SSF of nodes in a with respect to an

�input� node m in w. Equation (3) is rewritten

as:

0),),(),(),,(),,((
..

=tmtwtwtmytmyf)) (4)

where w� is equal to the resulted vector of

removing m from w. Differentiating (4) with

respect to m, we have:

0
.

. =+
∂
∂+

∂
∂

m
y

y f
m
yf

m
yf (5)

If we use Trapezoidal integration method to

discretize (5), we have the following difference

equation:

0)2(
.

1 .. =−=−+=+ mnmn
y

n
y

ny fOfsfsf
h

sj (6)

where
m
ty

s n
n ∂

∂
= +

+
)(1

1
 is the SSF vector of all

nodes in a with respect to m (tn+1 is the current

time point),)2(. y
y

y ff
h

j += is the Jacobian of

subcircuit a, On is the vector collecting values at

previous time point tn, and fm is ith column of

)2(. w
w

w ff
hw

fj +=
∂
∂= (assume that m is the ith

(a)

(b)

(c)

Fig. 1 (a) Schematic. (b) Timing
waveforms. (c) SSF waveforms with
respect to V2.

element of w). Equation (6) is the calculating

equation used in algorithm to calculate SSF, in

which both jy and fm all depend on converged

timing waveforms (in fact, jy is also the Jacobian

for timing calculation at the same time point).

So, calculation for (6) has to wait for timing

calculation of the same time point. We note that

if m is the circuit variable of a node in one

preceding subcircuit of a, say p, s = SSF(m, y)

can be used to indicate whether a has been

influenced by p via m.

Fig. 1 demonstrates a circuit and SSF

waveforms. Fig. 1(a) is the circuit schematic,

Fig. 1(b) is the timing waveforms, and Fig. 1(c)

4

Fig. 2 (a) Schematic. (b) Counts of
calculation of subcircuit.

contains waveforms of all SSF with respect to

V2. We can find SSF of V3 and V4 with respect

to V2 are 1 when capacitors have been fully

charged. The SSF of V5 with respect to V2

depends on operation states of transistors, in

which SSF exists only when MOSFETs are in

active region. Due to the NAND gate's turning

off function, SSF of V6 with respect to V2 is

zero.

III. Exploiting SSF in ITA
In this section, we will show the method

to utilize SSF to enhance the performance of

ITA. Section 1 has mentioned that signal flow is

used in partitioning and simulation processes of

Relaxation-based algorithms. We explain how

strength of signal flow affects the simulation

process of ITA at first. ITA (GVT-ITA [3] here)

is a robust, efficient and flexible algorithm for

circuit simulation. It uses a selective-trace

scheme [3] to dynamically trace subcircuits in

the nonlinear equation solving process. This

software scheme schedules succeeding

subcircuits (which is defined by signal flow

graph) of a subcircuit no matter how big the

degree of influence is. So, ITA suffers from the

lack of ability of using multirate behaviors and

latency (ITA can utilize latency, but not well) [3]

(Fig. 2 demonstrates this phenomena, in which

the subcircuit calculation count of ITA increases

as the position of subcircuit approaches the rear

end.). ITA always calculates too many time

points for subcircuits near primary outputs.

Since this is the major drawback of ITA (called

over-scheduling problem in this paper), we try

to use SSF to solve it. Our idea is to utilize SSF

in selective-trace scheme, and to make it more

�intelligent�. Let�s investigate ITA algorithm at

first. Following codes represent ITA algorithm.
Algorithm 1 (ITA Algorithm for Circuit

Simulation):
/* Simulation duration is Tbegin ∼ Tend */
// E() is an priority queue, whose elements are queues of
subcircuits
Put subcircuits connected to primary input into E(Tbegin);
while(E is not empty) {
 tn+1 = the smallest event-time in E;
 for(k = 1; E(tn+1) is not empty; k++) {
 // k is the relaxation index
 Clear TMP; // TMP is a queue
 for(each subcircuit a in E(tn+1)) {
 // E(tn+1) is a queue
 Solve a at tn+1 for transient responses;
 if(a has been converged) { // converged
 Estimate next solving time tnext and
 add a into E(tnext);
 }
 else { // not converged
 Add a into TMP;
LB: Add fnext_subcircuit(a) into E(tn+1);
 }
 }
 E(tn+1) = TMP;
 }
}

We can find that ITA is composed of three

major loops, which are designated to treat (from

outer to inner) time points, nonlinear relaxation

iterations and subcircuits respectively. In the

line labeled with LB, the function fnext_subcircuit(a)

is the activating function of ITA. We find that

fnext_subcircuit(a) maintains the selective-tracing [3]

ability of ITA, and can be represented as

follows:

{})(_ =af subcircuitnext
,if a converges (7a)

)()(__ afaf subcircuitsucceedingsubcircuitnext = , otherwise(7b)

where fsucceeding_subcircuit(a) is the set of all fan-out

gnd
100ff

200ff
400ff

800ff
1.6uf

1 2 3 4 5 6

(a)

5

subcircuits of a (the fan-out relationships are

determined in partitioning process that uses

static signal flow). To solve the over-scheduling

problem, this activating function is modified.

Our idea is to supply Equation (7) additional

information to help it to �bypass� unnecessary

scheduling. Of course, the guidance information,

SSF, is used to do such work. Consider that

there exist p subcircuits si, 1 ≤ i ≤ p, which are

all fan-out subcircuits of subcircuit a. Assume

that node nj (with circuit variable v(j)) of a is the

node affecting subcircuit sj, Nj is the set of all

nodes in sj, and vita_tol is the convergence voltage

tolerance for ITA's nonlinear relaxation to

converge. We have the new activating function:

{})(_ =ag subcircuitnext
,if a converges (8a)

}1),()(|{)(min_ pjjvjvsag chgjsubcircuitnext ≤≤>= ,

otherwise (8b)

Other equations follow:

|)()(|)(
1

k
ttchg nn

jvjvjv
+

−= (9)

where k is the index for ITA's nonlinear

relaxation.

}�|))�,((max{)(jkkj NnnnSSFABSjmssf ∈= (10)

)(
)(_

min jmssf
v

jv tolita= (11)

Here, vchg(j) is the variation of circuit

variable v(j) between last converged value at tn

and current value (at tn+1, kth nonlinear

relaxation iteration). Equation (10) shows that

mssf(j) is the maximum SSF of sj with respect to

nj of a. In Equation (11), vita_tol is the minimum

voltage change that ITA's nonlinear relaxation

cares. Dividing vita_tol by mssf(j) gives a

threshold value vmin(j) for v(j). If the variation on

v(j) exceeds vmin(j), a significant disturbance

(larger then vita_tol) in sj might be happen, then sj

can be scheduled. So, Equation (8) is derived.

By the bypass ability of gnext_subcircuit(), many

unnecessary calculations for succeeding

subcircuits of a can be saved, which will be

illustrated by examples in next section. Now we

have ITA algorithm that adopts SSF:
Algorithm 2 (ITA Algorithm Adopting SSF):

/* Simulation duration is Tbegin ∼ Tend */
// E() is an priority queue, whose elements are queues of
subcircuits
Put subcircuits connected to primary input into E(Tbegin);
while(E is not empty) {
 tn+1 = the smallest event-time in E;
 for(k = 1; E(tn+1) is not empty; k++) {
 // k is the relaxation index
 Clear TMP; // TMP is a queue
 for(each subcircuit a in E(tn+1)) {
 Solve a at tn+1 for transient responses;
 if(a has been converged) { // converged
 Estimate next solving time tnext and
 add a into E(tnext);
 // if a has been converged, calculate its
 // SSF with respect to all input variables
MK: for(each input variables m of a) {
 if(u is not in any subcircuit) continue;
 Use (6) to calculate SSF of all nodes
 with respect to m;
 Store sn+1;
 }
 }
 else { // not converged
 Add a into TMP;
LB: Add gnext_subcircuit(a) into E(tn+1);
 }
 }
 E(tn+1) = TMP;
 }
}

At the position of label MK is the loop to

calculate SSF of all nodes in a with respect to

each input node m (which comes from other

subcircuits). This loop calculates all SSF of

subcircuit a with respect to all input circuit

variables inside other subcircuits, and store

these SSF for the purpose of reference by

gnext_subcircuit(). The stored SSF information of a

subcircuit x is not used unless x's immediate

preceding subcircuit, says y, has called

gnext_subcircuit(y), which is not definitely happen.

However, due to the continuous-computing

property of SSF (SSF calculation has to use

�old� data, those data of previous time point),

every time points should be calculated and

stored. Finally, we note that in Algorithm 2, the

activating function has been replaced by

gnext_subcircuit(a).

6

IV. Experimental Results

The proposed methods have been implemented

in the circuit simulation program MOSTIME [6,

7], which contains several circuit simulation

algorithms, including Waveform Relaxation

(WR), ITA, Selective-tracing Waveform

Relaxation (STWR) [7], and the classical direct

method. So, we can compare simulation results

of various algorithms.

At first, let�s check the ability of the new

activation function gnext_subcircuit() that exploiting

SSF. The numbers of calculated time points of

result waveforms are counted. Fig. 2 is an

inverter-chain, where each node has a ground

capacitor of different values. The values of these

capacitors are assigned to create a multirate

behavior for this circuit, in which the subcircuit

closer to rear part has a lower transition rate.

This arrangement causes the last inverter to be

over-scheduled, since that each of its �faster�

preceding subcircuits schedules it. Fig. 2(b)

shows the counts of time points of timing

waveforms of all nodes. Results of WR are used

to represent essential time points

Fig. 3 (a) Schematic. (b) Counts of
calculation of subcircuit.

TABLE I
SPECIFICATIONS OF SIMULATED CIRCUITS

Name Node # MOSFET # Subcirc
uit #

Simulation
Duration

InvChain 10 20 10 200ns
ALU 50 100 28 100ns

SynCounter 22 44 11 400ns
RippleCounter 19 38 9 400ns

TABLE II
USED CPU TIME AND COUNTS OF CALCULATED

SUBCIRCUITS

Used CPU Time # Solved Subcircuits Circuit
ITA ITA+SSF ITA ITA+SSF

6-stage
InvChain 52.7 8.5 978,924 186,908

1-stage
ALU 3.9 3.75 156,587 87,809

2-stage
SynCounter 8.5 9.1 317,497 173,208

2-stage
RippleCounter 5.2 7.2 181,571 148,363

4-stage
ALU 18.2 10.9 379,058 138,676

CPU time is in Pentium III-550 seconds.

of each subcircuit, because that WR can exploit

multirate behaviors of subcircuits and simulates

each subcircuit at its own transition rate. It can

be seen that ITA has caused more counts, which

turns more serious at the node closer to the rear

end.

With the help of SSF, ITA reduces counts

of time points dramatically. This example proves

that SSF helps ITA solving multirate problems.

Another example is shown in Fig. 3, in which

the inverter chain is in latency due to the

constant output of the NAND gate. Fig. 3(b)

shows the counts of time points. We can find

that SSF reduces counts again. Latency

behaviors are not exploited well by ITA here.

This is due to that ITA�s activating function still

activates succeeding latent subcircuits. By using

SSF, this problem of ITA has been greatly

alleviated.

Next, we check the performance of new

methods in treating some larger MOSFET

circuits. Table 1 lists the specification of all

tested circuits (of one stage), and Table 2 lists

9 1
2

3 4 5 6 7 8

0v
(a)

7

the used CPU time and counts of subcircuit

calculation to compare the performance of

original ITA and ITA adopting SSF (in which

tested circuits are chained to form bigger circuit

size). Schematics of the four tested circuits can

be found in Fig. 4, where timing waveforms of

ALU and SynCounter (both are one-stage circuit)

are also presented. We can find that all

waveforms match others well. Investigating

Table 2, we find that SSF does certainly reduce

the counts of subcircuit calculation. The

reduction on counts of subcircuit calculation is

especially clear in the �deep� (where depth of

the signal flow graph [6] is big) circuit InvChain.

This can be explained easily, for a deep circuit

causes a more serious over-scheduling problem.

The middle three examples of Table 2

(example 2-4) shows that less counts of

subcircuit calculation doesn't cause less used

CPU time. We know that there exist overhead

for computing SSF, the reduction on used CPU

time is not so clear as that of counts of

subcircuit calculation. However, in dealing

with bigger circuit, exploiting SSF can always

earn benefit. We can compare the last example

with its smaller version, 1-stage ALU, to get

this observation.

Now we investigate the time complexity

of the new method. Circuits in Table 1 are

cascaded to form test circuits of different size,

which are simulated by ITA, ITA with SSF and

STWR (which can exploit multirate of simulated

circuits) respectively. The result used CPU time

is accumulated in Fig. 5. We observe that the

reduction on used CPU time turns more

significant as the circuit size turns bigger, which

justify that to exploit SSF in bigger circuit is

more efficient. These test circuits� sizes are

(a)

(b)

(c)

Fig. 4 (a) Schematics of circuits. (b)
Timing waveforms of the 1st bit of ALU.
(c) Timing waveforms of the 1st bit of
SynCounter.

8

linearly increased, so the resulted CPU time can

be used to see time complexities of algorithms.

Now we observe the curve composed of used

CPU time to check the time complexities of

algorithms. It can be found that time

complexities of both ITA adopting SSF and

STWR are nearly linear in four example circuits,

while that of ITA is not so good. Such a better

time complexity is very valuable for large-scale

circuit simulation algorithm. We find again that

new method works better in the deep circuit

InvChain. In the �shallow� circuit ALU it works

well only when the scale of simulated circuit

turns bigger. The later two example circuits are

tightly-coupled circuits, in which the new

method�s effect is not so clear, for the new

activation function can�t encounter much

unnecessary scheduling and then bypass them.

In a synchronous counter, all subcircuits transit

at the same time, so it becomes a �deeper�

circuit than the ripple counter (in which every

flip flop transits at different time). Since

synchronous counter is deeper than ripple

counter, SSF works well in dealing with

synchronous counter. If too few subcircuit

calculations have been saved, ITA adopting SSF

might use more CPU time than ITA, due to the

overhead for SSF calculation. Note also that

ITA-based algorithms solve these feedback

circuits better than STWR.

In Fig. 5, the time complexity of the

proposed method is shown to be better than that

of ITA. However, the performance of the new

method is not good in all cases. We can consider

two methods to enhance the performance. First

one is to minimize the overhead of SSF

calculation, such as to save SSF calculations on

subcircuits near primary output. Second one is

to consider other method to utilize SSF, such

that simulated circuits other than the type of

deep circuits can get the benefit of SSF. For

example, we can merge two adjacent subcircuits

as they are found to be strongly coupled.

V. Conclusion

The �modified� ITA proposed in this

paper retains all advantages of the original ITA

algorithm, while it further has more advantages,

including the lower time complexity (more

capable in simulating large circuits), better

efficiency in dealing with deep circuits, and

more capability to utilize multirate and latency

behaviors of simulated circuits. The only

drawback is the overhead for calculating SSF.

Fig. 5. Comparisons for used CPU time.

9

However, the bigger the simulated circuit is, this

drawback becomes less significant. In other

word, the proposed method has time complexity

which is closer to linear than that of the original

ITA. This paper demonstrates the method to use

guidance information to guide the circuit

simulation process. We can call this new idea

�simulation with intelligence�. Experimental

examples have shown the success of this new

idea.

As the SSF is concerned, there exist more

methods to enhance circuit simulation

performance. For example, we can merge

strongly coupled subcircuits (which will exhaust

a lot of CPU time for Relaxation-based circuit

simulation algorithms) which can be detected by

inspecting SSF between them. More researches

should be done to explore the usage of SSF in

Relaxation-based circuit simulation.

Reference
[1] A. R. Newton and A. L. Sangiovanni-Vincentelli,

"Relaxation-based electrical simulation, " IEEE
Trans, Computer-aided Design, Vol. CAD-3, pp.
308-311, Oct. 1984.

[2] E. Lelarasmee, A. E. Ruehli, and A. L.
Sangiovanni-Vincentelli, "The waveform
relaxation method for time-domain analysis of
large scale integrated circuits," IEEE Trans,
Computer-aided Design, vol. CAD-1, pp.
131-145, Aug. 1982.

[3] R. A. Saleh and A. R. Newton, "The exploitation
of latency and multirate behavior using
nonlinear relaxation for circuit simulation,"
IEEE Trans. Computer-Aided Design, vol. 8, pp.
1286-1298, Dec. 1989.

[4] T. V. Nguyen, A. Devgan, O. J. Nastov, and D.
W. Winston, "Transient sensitivity computation
in controlled explicit piecewise linear
simulation," IEEE Trans., Computer-aided
Design, Vol. 19, NO. 1, pp. 98-110, Jan. 2000.

[5] P. Penfield and J. Rubinstein, "Signal delay in rc
tree networks," Proceedings of the 2nd Caltech
VLSI Conference, pp. 269-283, March 1981.

[6] C. J. Chen, W.S. Feng, "Relaxation-based
transient sensitivity computations for MOSFET
circuits," IEEE Trans. on CAD., Vol. 14, No. 2,
pp. 173-185, Feb. 1995.

[7] C. J. Chen, and W.S. Feng, "Transient sensitivity
computations of MOSFET circuits using
Iterated Timing Analysis and Selective-tracing
Waveform Relaxation," Proceeding of 31st
Design Automation Conference, pp. 581-585,
San Diego CA, June 1994.

