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Abstract 

In the circuit simulation subject, 

Relaxation-based algorithms have been proven 

to be faster and more flexible than the standard 

direct approach used in SPICE. Signal flow of 

the simulated circuit is very important in using 

Relaxation-based algorithm. However, there is 

no specific research undertaken for it. This paper 

gives a formal definition for the strength of 

signal flow (SSF), discusses how to calculate 

SSF, and devises techniques to utilize SSF in one 

of the Relaxation-base algorithms, ITA (Iterated 

Timing Analysis). Experimental results are given 

to prove the value of exploiting SSF in circuit 

simulation. 
摘要 

在線路模擬領域裏，基於鬆弛演算法已被

證明較傳統的 SPICE 所使用的直接法要有效

率，使用基於鬆弛法時，線路的信號流分析是

很重要的，但是到目前為止，尚未有專門針對

此而做的研究。本論文對信號流強度做了數學

上的詳細的定義，討論如何計算信號流強度，

以及提出在基於鬆弛演算法中使用信號流強

度的方法，所有提出的方法都加以實做，對於

數位和類比線路的測試結果，證明了使用信號

流強度於線路模擬器的價值。 

1This work was supported by National Science Concil of 
R.O.C under contract 90-2215-E-034-001 
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I. Introduction 

Circuit simulation [1] produces detailed 

timing waveforms of electronic circuits, which 

is crucial useful in circuit design process. 

Traditionally, people use the direct approach, 

which is used in SPICE, to solve circuit 

simulation problem. But direct approach has a 

big time-complexity, therefore it becomes very 

time-consuming in dealing with large-scale 

circuits. There are many methods invented to 

reduce the time complexity of circuit simulation, 

some of which improve numerical techniques [2, 

3] and others trade off between accuracy and 

simplified computation models [4, 5]. In the 

former approach, various levels of numerical 

techniques have been improved thoroughly. To 

get further improvement in this approach, we 

have to introduce some new ideas. In this paper, 

we propose a new idea of using the �guidance 

information� to guide circuit simulation process. 

By using the guidance information, the circuit 

simulation problems have been solved with less 
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CPU time, while the same simulation accuracy 

is maintained. The guidance information used 

here is called the strength of signal flow (SSF).  

Relaxation-based algorithms [1-3], which 

use the same numerical models for circuit 

devices and also generate accuracy transient 

waveforms of simulated circuits, have been 

proven to be more capable in simulating 

large-scale circuits than the direct approach. 

These algorithms partition the simulated circuit 

into subcircuits, simulate each subcircuit 

individually, and then combine their 

sub-solutions to form the entire solution. 

Relaxation-based algorithms use the same 

circuit formulations used by direct approach, 

and they can be as accuracy as the direct 

approach. In this paper, Iterated Timing Analysis 

(ITA), one of the Relaxation-based algorithms, 

is discussed. We choose ITA is because that ITA 

is the most successful Relaxation-based 

algorithm. It shows good performance, 

efficiency and robustness, in dealing with 

large-scale MOSFET circuits. In fact, we can 

find some commercial tools based on ITA in the 

circuit design community. 

Signal Flow has been used for years [6]. 

Basically, a signal flow is just a flow of signal, 

similar as water current or electrical current. A 

signal flow coming from circuit variable x to y 

can be viewed as the influence on y caused by x. 

Signal flow has important impact in 

Relaxation-based circuit simulation algorithms. 

In these algorithms, signal flows are used to 

direct the circuit partitioning process (put 

strongly-coupled subcircuits together), and to 

decide subcircuit calculation orders (the 

scheduling of subcircuits), both which have 

crucial effects on simulation efficiency. 

However, most Relaxation-based algorithms 

only consider the �existence� of signal flow 

(such as that a Gate pin has signal flow to Drain 

pin of the same MOSFET, but not in the reverse 

direction). They don�t consider the strength of 

signal flow. In this paper, we try to exploit SSF 

in ITA to get better simulation performance. 

Following sections come in following 

orders. Section 2 describes the definition of SSF, 

and methods to calculate it. Section 3 illustrates 

how to use this information to enhance the 

simulation performance of ITA, which is 

followed by Section 4 describing experimental 

results of several MOSFET circuits, where some 

Relaxation-based algorithms are tested and 

compared. Finally, a conclusion remark is given. 

II. Definition and Calculation for SSF 

In this section we give SSF a formal 

definition, and describe the method to compute 

it. At the end of this section, the SSF waveform 

of an example circuit is shown for 

demonstration. 

SSF is the degree of influence, caused by 

another circuit variable, on a circuit variable, 

and it is a time-varying value likes a timing 

waveform. So, it's appropriate to use the concept 

of sensitivity [6] to define it: 
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SSF(a, b) is the strength of signal flow from 

node/branch a to node/branch b, where Va and 

Vb are circuit variables associated with a and b 

respectively. We can call SSF(a, b) the SSF of a 

with respect to b. If a circuit has n circuit 

variables, SSF of the whole circuit can be 

represented as a n×n matrix. SSF is a 

time-varying value, and depends on input 



3 

signals. We want to see how it is calculated. The 

simulated circuit is described as follows: 

0)),(),((
.

=ttYtYF                       (2) 

where Y is the vector of circuit variables, t is the 

time, F is a continuous function and �.� means 

the differentiation with respect to time. Since 

Relaxation-based algorithms are used, (2) is 

partitioned into subcircuits, one of which, say a, 

is: 

0)),(),(),(),((
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=ttwtwtytyf               (3) 

where y (a subvector of Y) is vector of circuit 

variables in a, w is the vector of circuit variables 

not in a, and f is a continuous function. We want 

to know all SSF of nodes in a with respect to an 

�input� node m in w. Equation (3) is rewritten 

as: 

0),),(),(),,(),,((
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where w�  is equal to the resulted vector of 

removing m from w. Differentiating (4) with 

respect to m, we have: 
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If we use Trapezoidal integration method to 

discretize (5), we have the following difference 

equation: 
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subcircuit a, On is the vector collecting values at 

previous time point tn, and fm is ith column of 
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Fig. 1 (a) Schematic. (b) Timing 
waveforms. (c) SSF waveforms with 
respect to V2. 

element of w). Equation (6) is the calculating 

equation used in algorithm to calculate SSF, in 

which both jy and fm all depend on converged 

timing waveforms (in fact, jy is also the Jacobian 

for timing calculation at the same time point). 

So, calculation for (6) has to wait for timing 

calculation of the same time point. We note that 

if m is the circuit variable of a node in one 

preceding subcircuit of a, say p, s = SSF(m, y) 

can be used to indicate whether a has been 

influenced by p via m. 

Fig. 1 demonstrates a circuit and SSF 

waveforms. Fig. 1(a) is the circuit schematic, 

Fig. 1(b) is the timing waveforms, and Fig. 1(c)  
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Fig. 2 (a) Schematic. (b) Counts of 
calculation of subcircuit. 

contains waveforms of all SSF with respect to 

V2. We can find SSF of V3 and V4 with respect 

to V2 are 1 when capacitors have been fully 

charged. The SSF of V5 with respect to V2 

depends on operation states of transistors, in 

which SSF exists only when MOSFETs are in 

active region. Due to the NAND gate's turning 

off function, SSF of V6 with respect to V2 is 

zero. 

III. Exploiting SSF in ITA 
In this section, we will show the method 

to utilize SSF to enhance the performance of 

ITA. Section 1 has mentioned that signal flow is 

used in partitioning and simulation processes of 

Relaxation-based algorithms. We explain how 

strength of signal flow affects the simulation 

process of ITA at first. ITA (GVT-ITA [3] here) 

is a robust, efficient and flexible algorithm for 

circuit simulation. It uses a selective-trace 

scheme [3] to dynamically trace subcircuits in 

the nonlinear equation solving process. This 

software scheme schedules succeeding 

subcircuits (which is defined by signal flow 

graph) of a subcircuit no matter how big the 

degree of influence is. So, ITA suffers from the 

lack of ability of using multirate behaviors and 

latency (ITA can utilize latency, but not well) [3] 

(Fig. 2 demonstrates this phenomena, in which 

the subcircuit calculation count of ITA increases 

as the position of subcircuit approaches the rear 

end.). ITA always calculates too many time 

points for subcircuits near primary outputs. 

Since this is the major drawback of ITA (called 

over-scheduling problem in this paper), we try 

to use SSF to solve it. Our idea is to utilize SSF 

in selective-trace scheme, and to make it more 

�intelligent�. Let�s investigate ITA algorithm at 

first. Following codes represent ITA algorithm. 
Algorithm 1 (ITA Algorithm for Circuit 

Simulation): 
/* Simulation duration is Tbegin ∼ Tend */ 
// E() is an priority queue, whose elements are queues of 
subcircuits 
Put subcircuits connected to primary input into E(Tbegin); 
while(E is not empty) { 
 tn+1 = the smallest event-time in E; 
 for(k = 1; E(tn+1) is not empty; k++) { 
  // k is the relaxation index 
  Clear TMP; // TMP is a queue 
  for(each subcircuit a in E(tn+1)) { 
   // E(tn+1) is a queue 
   Solve a at tn+1 for transient responses; 
   if(a has been converged) { // converged 
    Estimate next solving time tnext and 
     add a into E(tnext); 
   } 
   else { // not converged 
    Add a into TMP; 
LB:   Add fnext_subcircuit(a) into E(tn+1); 
   } 
  } 
  E(tn+1) = TMP; 
 } 
} 

We can find that ITA is composed of three 

major loops, which are designated to treat (from 

outer to inner) time points, nonlinear relaxation 

iterations and subcircuits respectively. In the 

line labeled with LB, the function fnext_subcircuit(a) 

is the activating function of ITA. We find that 

fnext_subcircuit(a) maintains the selective-tracing [3] 

ability of ITA, and can be represented as 

follows: 

{})(_ =af subcircuitnext
,if a converges         (7a) 

)()( __ afaf subcircuitsucceedingsubcircuitnext = , otherwise(7b) 

where fsucceeding_subcircuit(a) is the set of all fan-out 
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subcircuits of a (the fan-out relationships are 

determined in partitioning process that uses 

static signal flow). To solve the over-scheduling 

problem, this activating function is modified. 

Our idea is to supply Equation (7) additional 

information to help it to �bypass� unnecessary 

scheduling. Of course, the guidance information, 

SSF, is used to do such work. Consider that 

there exist p subcircuits si, 1 ≤ i ≤ p, which are 

all fan-out subcircuits of subcircuit a. Assume 

that node nj (with circuit variable v(j)) of a is the 

node affecting subcircuit sj, Nj is the set of all 

nodes in sj, and vita_tol is the convergence voltage 

tolerance for ITA's nonlinear relaxation to 

converge. We have the new activating function: 

{})(_ =ag subcircuitnext
,if a converges         (8a) 

}1),()(|{)( min_ pjjvjvsag chgjsubcircuitnext ≤≤>= , 

otherwise                            (8b) 

Other equations follow: 
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where k is the index for ITA's nonlinear 

relaxation. 
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Here, vchg(j) is the variation of circuit 

variable v(j) between last converged value at tn 

and current value (at tn+1, kth nonlinear 

relaxation iteration). Equation (10) shows that 

mssf(j) is the maximum SSF of sj with respect to 

nj of a. In Equation (11), vita_tol is the minimum 

voltage change that ITA's nonlinear relaxation 

cares. Dividing vita_tol by mssf(j) gives a 

threshold value vmin(j) for v(j). If the variation on 

v(j) exceeds vmin(j), a significant disturbance 

(larger then vita_tol) in sj might be happen, then sj 

can be scheduled. So, Equation (8) is derived. 

By the bypass ability of gnext_subcircuit( ), many 

unnecessary calculations for succeeding 

subcircuits of a can be saved, which will be 

illustrated by examples in next section. Now we 

have ITA algorithm that adopts SSF: 
Algorithm 2 (ITA Algorithm Adopting SSF): 

/* Simulation duration is Tbegin ∼ Tend */ 
// E() is an priority queue, whose elements are queues of 
subcircuits 
Put subcircuits connected to primary input into E(Tbegin); 
while(E is not empty) { 
 tn+1 = the smallest event-time in E; 
 for(k = 1; E(tn+1) is not empty; k++) {  
  // k is the relaxation index 
  Clear TMP; // TMP is a queue 
  for(each subcircuit a in E(tn+1)) { 
   Solve a at tn+1 for transient responses; 
   if(a has been converged) { // converged 
    Estimate next solving time tnext and 
     add a into E(tnext); 
    // if a has been converged, calculate its  
    // SSF with respect to all input variables 
MK:   for(each input variables m of a) { 
     if(u is not in any subcircuit) continue; 
     Use (6) to calculate SSF of all nodes 
      with respect to m; 
     Store sn+1; 
    } 
   } 
   else { // not converged 
    Add a into TMP; 
LB:   Add gnext_subcircuit(a) into E(tn+1); 
   } 
  } 
  E(tn+1) = TMP; 
 } 
} 

At the position of label MK is the loop to 

calculate SSF of all nodes in a with respect to 

each input node m (which comes from other 

subcircuits). This loop calculates all SSF of 

subcircuit a with respect to all input circuit 

variables inside other subcircuits, and store 

these SSF for the purpose of reference by 

gnext_subcircuit(). The stored SSF information of a 

subcircuit x is not used unless x's immediate 

preceding subcircuit, says y, has called 

gnext_subcircuit(y), which is not definitely happen. 

However, due to the continuous-computing 

property of SSF (SSF calculation has to use 

�old� data, those data of previous time point), 

every time points should be calculated and 

stored. Finally, we note that in Algorithm 2, the 

activating function has been replaced by 

gnext_subcircuit(a). 
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IV. Experimental Results 

The proposed methods have been implemented 

in the circuit simulation program MOSTIME [6, 

7], which contains several circuit simulation 

algorithms, including Waveform Relaxation 

(WR), ITA, Selective-tracing Waveform 

Relaxation (STWR) [7], and the classical direct 

method. So, we can compare simulation results 

of various algorithms. 

At first, let�s check the ability of the new 

activation function gnext_subcircuit() that exploiting 

SSF. The numbers of calculated time points of 

result waveforms are counted. Fig. 2 is an 

inverter-chain, where each node has a ground 

capacitor of different values. The values of these 

capacitors are assigned to create a multirate 

behavior for this circuit, in which the subcircuit 

closer to rear part has a lower transition rate. 

This arrangement causes the last inverter to be 

over-scheduled, since that each of its �faster� 

preceding subcircuits schedules it. Fig. 2(b) 

shows the counts of time points of timing 

waveforms of all nodes. Results of WR are used 

to represent essential time points 

 
Fig. 3 (a) Schematic. (b) Counts of 
calculation of subcircuit. 

TABLE I 
SPECIFICATIONS OF SIMULATED CIRCUITS 

Name Node # MOSFET # Subcirc
uit # 

Simulation 
Duration 

InvChain 10 20 10 200ns 
ALU 50 100 28 100ns 

SynCounter 22 44 11 400ns 
RippleCounter 19 38 9 400ns 

TABLE II 
USED CPU TIME AND COUNTS OF CALCULATED 

SUBCIRCUITS 

Used CPU Time # Solved Subcircuits Circuit 
ITA ITA+SSF ITA ITA+SSF

6-stage 
InvChain 52.7 8.5 978,924 186,908 

1-stage 
ALU 3.9 3.75 156,587 87,809 

2-stage 
SynCounter 8.5 9.1 317,497 173,208 

2-stage 
RippleCounter 5.2 7.2 181,571 148,363 

4-stage 
ALU 18.2 10.9 379,058 138,676 

CPU time is in Pentium III-550 seconds. 

of each subcircuit, because that WR can exploit 

multirate behaviors of subcircuits and simulates 

each subcircuit at its own transition rate. It can 

be seen that ITA has caused more counts, which 

turns more serious at the node closer to the rear 

end.  

With the help of SSF, ITA reduces counts 

of time points dramatically. This example proves 

that SSF helps ITA solving multirate problems. 

Another example is shown in Fig. 3, in which 

the inverter chain is in latency due to the 

constant output of the NAND gate. Fig. 3(b) 

shows the counts of time points. We can find 

that SSF reduces counts again. Latency 

behaviors are not exploited well by ITA here. 

This is due to that ITA�s activating function still 

activates succeeding latent subcircuits. By using 

SSF, this problem of ITA has been greatly 

alleviated. 

Next, we check the performance of new 

methods in treating some larger MOSFET 

circuits. Table 1 lists the specification of all 

tested circuits (of one stage), and Table 2 lists 

9 1 
2 

3 4 5 6 7 8 

0v 
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the used CPU time and counts of subcircuit 

calculation to compare the performance of 

original ITA and ITA adopting SSF (in which 

tested circuits are chained to form bigger circuit 

size). Schematics of the four tested circuits can 

be found in Fig. 4, where timing waveforms of 

ALU and SynCounter (both are one-stage circuit) 

are also presented. We can find that all 

waveforms match others well. Investigating 

Table 2, we find that SSF does certainly reduce 

the counts of subcircuit calculation. The 

reduction on counts of subcircuit calculation is 

especially clear in the �deep� (where depth of 

the signal flow graph [6] is big) circuit InvChain. 

This can be explained easily, for a deep circuit 

causes a more serious over-scheduling problem.  

The middle three examples of Table 2 

(example 2-4) shows that less counts of 

subcircuit calculation doesn't cause less used 

CPU time. We know that there exist overhead 

for computing SSF, the reduction on used CPU 

time is not so clear as that of counts of 

subcircuit calculation. However, in dealing 

with bigger circuit, exploiting SSF can always 

earn benefit. We can compare the last example 

with its smaller version, 1-stage ALU, to get 

this observation. 

Now we investigate the time complexity 

of the new method. Circuits in Table 1 are 

cascaded  to form test circuits of different size, 

which are simulated by ITA, ITA with SSF and 

STWR (which can exploit multirate of simulated 

circuits) respectively. The result used CPU time 

is accumulated in Fig. 5. We observe that the 

reduction on used CPU time turns more 

significant as the circuit size turns bigger, which 

justify that to exploit SSF in bigger circuit is 

more efficient. These test circuits� sizes are  
 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 (a) Schematics of circuits. (b) 
Timing waveforms of the 1st bit of ALU. 
(c) Timing waveforms of the 1st bit of 
SynCounter. 
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linearly increased, so the resulted CPU time can 

be used to see time complexities of algorithms. 

Now we observe the curve composed of used 

CPU time to check the time complexities of 

algorithms. It can be found that time 

complexities of both ITA adopting SSF and 

STWR are nearly linear in four example circuits, 

while that of ITA is not so good. Such a better 

time complexity is very valuable for large-scale 

circuit simulation algorithm. We find again that 

new method works better in the deep circuit 

InvChain. In the �shallow� circuit ALU it works 

well only when the scale of simulated circuit 

turns bigger. The later two example circuits are 

tightly-coupled circuits, in which the new 

method�s effect is not so clear, for the new 

activation function can�t encounter much 

unnecessary scheduling and then bypass them. 

In a synchronous counter, all subcircuits transit 

at the same time, so it becomes a �deeper� 

circuit than the ripple counter (in which every 

flip flop transits at different time). Since 

synchronous counter is deeper than ripple 

counter, SSF works well in dealing with 

synchronous counter. If too few subcircuit 

calculations have been saved, ITA adopting SSF 

might use more CPU time than ITA, due to the 

overhead for SSF calculation. Note also that 

ITA-based algorithms solve these feedback 

circuits better than STWR. 

In Fig. 5, the time complexity of the 

proposed method is shown to be better than that 

of ITA. However, the performance of the new 

method is not good in all cases. We can consider 

two methods to enhance the performance. First 

one is to minimize the overhead of SSF 

calculation, such as to save SSF calculations on 

subcircuits near primary output. Second one is 

to consider other method to utilize SSF, such 

that simulated circuits other than the type of 

deep circuits can get the benefit of SSF. For 

example, we can merge two adjacent subcircuits 

as they are found to be strongly coupled. 

V. Conclusion 

The �modified� ITA proposed in this 

paper retains all advantages of the original ITA 

algorithm, while it further has more advantages, 

including the lower time complexity (more 

capable in simulating large circuits), better 

efficiency in dealing with deep circuits, and 

more capability to utilize multirate and latency 

behaviors of simulated circuits. The only 

drawback is the overhead for calculating SSF. 

Fig. 5. Comparisons for used CPU time. 
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However, the bigger the simulated circuit is, this 

drawback becomes less significant. In other       

word, the proposed method has time complexity 

which is closer to linear than that of the original 

ITA. This paper demonstrates the method to use 

guidance information to guide the circuit 

simulation process. We can call this new idea 

�simulation with intelligence�. Experimental 

examples have shown the success of this new 

idea. 

As the SSF is concerned, there exist more 

methods to enhance circuit simulation 

performance. For example, we can merge 

strongly coupled subcircuits (which will exhaust 

a lot of CPU time for Relaxation-based circuit 

simulation algorithms) which can be detected by 

inspecting SSF between them. More researches 

should be done to explore the usage of SSF in 

Relaxation-based circuit simulation. 
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