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Abstract-  Although identity-based (ID-based)
cryptography has a number of advantages over
conventional public key methods; the computational
cost is significantly greater. The dominant part of
this cost is the Weil pairing. In this paper, we
propose an efficient algorithm for computing the
Weil pairing using point halving.
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1. Introduction

In 1984, Shamir [9] first invented the concept of
identity-based (ID-based) cryptography, which
addresses the authenticity problem of public keys in
a different way. His central idea is that the public
key of a user is simply their identity and hence
implicitly known to all other users. More precisely,
the public key of a user can be derived from public
information that uniquely identifies the user.
Alice@hotmail.com, for instance, could be treated as
Alice’s identity (ID) and used as her public key. The
advantage of an ID-based cryptosystem is that no
certificate is needed to bind user names and their
public keys. Some practical ID-based signature
schemes (IBS) have been devised since 1984, but a
fully satisfying ID-based encryption scheme (IBE)
was first proposed by Boneh and Franklin [4] in
2001. They use a bilinear map (the Weil pairing)
over supersingular elliptic curve to construct the
encryption/decryption scheme.  After that, the
bilinear pairings have been used to design numerous
identity based schemes, such as key exchange [7],
short signature [5], and many others. Compared
with other arithmetic in public key
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cryptography, the pairing computing has significant
overhead. Barreto, Kim, Lynn, and Scott [1] and
Galbraith, Harrison and Soldera [6] focus on another
bilinear pairing, called the Tate pairing, and they
propose methods for speeding up the computation.
In this paper, we extend the idea of the point halving,
which was proposed by Knudsen [8], to speed up the
computation of the Weil pairing.

This paper is organized as follows. Section 2
provides the background about divisors and Weil
pairing on elliptic curves. The Miller’s algorithm for
computing Weil pairing is also described. Section 3
presents a detailed version of our algorithm for
computation of Weil pairing using the point halving
skill.  The performance analysis compared with
original Miller’s algorithm is provided in section 4,
and section 5 concludes the paper.

2. Background

2.1. Divisors

Given an elliptic curve E over finite field K, a
divisor D is a formal sum of points on E(K)

D=>n,(P)

PeE

The group of divisors of E, denoted Div(E), is
the free abelian group generated by the points of E,
where addition is given by

ZnP(P) +sz(P) = Z(np + mP)(P)'

PeE PeE PeE

The support of a divisor p = $"n_(P) € Div(E) is
PeE

given by the set of points
supp(D) ={P € E | n, = 0}.
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Further, its degree deg(D) is defined by
deg(D) = > 'n,

PeE

It is easily verified that the divisors of degree 0,
denoted Div’(E), form a subgroup of Div(E). Since
the number of zeros and poles of a non-zero rational
function f e K(E)* is finite, we can define the

divisor of a function f, denoted div(f), as

div(f) = ZOrdP(f)(P)
PeE
A divisor DeDiv(E) is called principal if
D=div(f) for some ration function f. Further, two
divisors D;, D, €Div(E) are said to be equivalent,
denoted D; ~ D, if D; - D, is principal. A
characterization of principal divisors is:
D = >'n,(P) € Div’(E) is principal
PeE
iff anp =0 Where O is the point at infinity.
PeE
We next describe how to evaluate a rational
function f € K(E) in a divisor p = znp(p) that
PeE
satisfies supp(div(f)) m supp(D) = ¢. The evaluation
offinDisgivenby f(p)= H f(P)"
Pesup(D)
Recall that for any degree zero divisor
DeDiV®(E), there is a unique point P e E such that

D ~ (P) — (O). In other words, D can be written in
what we call canonical form:

D = (P) - (O) + div(f),

where f is a rational function. Now we give a
formula for adding two divisors in canonical form,
such that the result is in canonical form as well. The
formula provides a method of finding a rational
function f such that div(f) = D for a given divisor D.

Let D;, D, € Div°(E) be given by

D1 = (P1) - (O) +div(fy),

D2 = (P2) - (O) + div(f).
Let P, + P, = Py, and let | : Ly +1,x+1,=0 be
the equation of the line through P; and P,,

VIX+Vv, = 0 be the vertical line through P5. If P,
= P, then | is the line tangent to Py, and if P; = O
thentakev=1. Then
div(l) = (P1) + (P2) + (-P3) - 3(0),
div(v) = (P3) + (-P3) - 2(0)
Now we can write the sum of divisors D; + D, as:
D; + Dy = (P1) + (P2) — 2(0O) + div(f; f,)
= (P3) — (O) + div(l) — div(v) + div(fy f,)
= (P3) = (0) + div(f, f, f3)

ipei, Taiwan.

where f = I/v. .

2.2. Weil Pairing

Let m be an integer which is prime to p =
char(K). The Weil pairing is a function:

e, E[mIxE[m]— u,.

where E[m]={P e E(K):mP =0} called the m-
torsion group, z is the group of m™ roots of unity in
K.
Given P, QeE[m], there exist Dp, DoeDiVY(E)
such that
De ~ (P) - (0) and Do ~ (Q) - (O)

As divisors mDp and mDq are principal, there exist
rational functions fp , fg such that div(fs) = mDp ,
div(fo) = mDgq. Suppose that Dp and Dqg have
disjoint supports, and then the Weil pairing of P and
Q can be computed by:

f2(Dy)

en(P.Q) = (D.)
Q P

Algorithm 1 Weil pairing

(Miller’s probabilistic algorithm)
INPUT: P, QeE[m], m is prime to char(K)
OUTPUT: ey(P, Q)

1 Pick random point T, UeE(K)
suchthat P+ T, T, Q+U, U are distinct

2. Compute fp, fq such that
div(fp) = m(P+T) — m(T),
div(fo) = m(Q+U) — m(U)

3. Evaluate M
fo(P+T)f(U)

An important part of computing the Weil
pairing is the evaluation of f(R) for each point R in
the support of Do. Recall that Dp = (P + T) — (T).
Then for each integer k, there is a rational function f,
such that

div(f,)=k(P+T)-k(T)—(kP)+(O)-
Letk=m,

div(f,)

=m(P+T)-m(T)-(mP)+(0)"

=m(P+T)-m(T)
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we have fp = f,. For any points R, S, let hgs and hg
be linear functions, where hgs = 0 is the line passing
through R, S, and hg = 0 is the vertical line passing
through R. Then we have

diV( fkl+k2) = (k1 + kz)(P +T) - (k1 + kz)(T) _((kl + kz)P) + (O)

=k, (P +T)—k(T)-(kP)+(0)
+k,(P+T)—k,(T) - (k,P) +(O)
+(k,P) + (k,P) + (=(k, +k,)P) - 3(0)
= [((k, +k,)P) + (=(k, +k,)P) - 2(0)]

= div(f, ) +div(f, ) +div(h ) - div(he.i0)

.and hence f LAY
11K

(ki +kz)P
This is a recursive equation with initial conditions f,

=1and f = hP+T
Yoh
PT

Algorithm 2 Evaluation of f; on a point S [3]
INPUT: ‘zq o with bi{0,1}
i=0
and b,=1, and a point S
OUTPUT: f,(S) = p(S)
f«fi(S); Z < P;
Forj<«t-1,t-2,...,0do
f2 hZ,Z(S) : Z <« ZZ'
hZZ (S)
If b; =1 then
fefilze® iz zep,
hZ+P(S)

Endif
Endfor
Return f

This is a conventional double-and-add method
for evaluation of rational function fr on a given point
S. In the next section, we will propose a halve-and-
add method to speed up the evaluation and hence
have an efficient computation of the Weil pairing.

3. The Algorithm

We restrict our attention to elliptic curves E
over Galois field F,. defined by the equation:
y?+xy=x"+ax*+b, where a,beF,,b=0. Let

P = (x, y) be a point on E with P # —P. The
coordinate of Q = 2P = (u, v) can be computed as
follows:

1299

A=X+Yylx (1)
u=A+1+a 2)
v=x+u(l+1) (3)

Point halving was first proposed by Knudsen [8]
with the following operation: given Q = (u, V),
compute P = (X, y) such that Q = 2P. It provides a
fast method for scalar multiplication on elliptic curve.
The basic idea for halving is to solve (2) for A, (3)
for x, and finally (1) for y. When G is a subgroup of
odd order m in E, point doubling and point halving
are automorphisms in G (see [8]). Therefore, given
a point QeG, there is a unique point PeG such that
Q = 2P. To uniquely find P, the trace function plays
a central role in the algorithm for point halving.

The trace function Tr: F.—>F, is defined by

Tr(c)=c+c*+c* +..+c* . Given Q = (u, V),
point halving seeks the unique point P = (X, y) such
that Q = 2P. The first step is to find 1 by solving
the equation

A+l=u+a

(4)

It is easily verified that Ae{1, 1+1} and A=1 if
and only if Tr(v + ui) = 0. Hence A can be
identified, and then (3) is solved for the unique root
X. Finally, if needed, y = x(x+A) can be recovered
with one field multiplication.

Let the A-representation of a point Q = (u, v) be
(u, Ag), where Ag = u + v/iu. Given the A-
representation of Q as the input to point halving, we
may compute t = v + UA = u(u + Ao +.4) without
converting to affine coordinate. So in the point
multiplication, repeated halving can be performed
directly on the A-representation of a point. Only
when a point addition is required, a conversion to
affine coordinate is needed.

Algorithm 3 Point halving
INPUT: A-representation (u, Aq) of QeG

OUTPUT: A-representation (X, Ap) of P = (X, y)
€G, where Q = 2P

1 Findasolution 1 of 2+ A=u+a.

2 Computet=u(u+Aig+A4).

3 IfTr(t)=0,thendp <1, X < Jt+u
else Ap < 1 +1, X < At

4  Return (x, Ap).
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The point halving algorithm requires a field
multiplication and three main steps:

1. Solving the quadratic equation 2> + A =u +a

2. Computing the trace of t

3. Computing a square root

In a normal basis, a field element on F, is
represented in terms of a basis of the form
{ B.p%..57 ¥ Given a field element
c=>cp" =(C,y,...C) » the squaring is a left
rotation, i.e. ¢*=(c, ,,...,C,,C,,) - Therefore the

quadratic equation x*+x =c¢ can be solved bitwise.
The square root computation is a right rotation, i.e.
Ve =(c,.¢, ,....c;)- These operations are expected

to be inexpensive relative to field multiplication. A
detailed comparison will be given in the next section.

Let the A-representation of a point P = (X, y) be
(X, Ap), and the canonical form of a divisor Dp be
(P) — (O) + div(g), where g is a rational function.
We have

Dp + D = (2P) = (0) + div(91),
\'

Assume Q = 2P with A-representation (u, Aiq)
corresponding to a divisor Dg with canonical form
(Q) - (0) + div(f); then

=Y + A, X + X,
v=X+uU,

f:giI:ng+/1pX+x27
% X +u

X +u
g=[f—"—
Y + 4, X +X

Apply the halving operation to the evaluation of
f on a point S; we have an efficient algorithm for
Weil pairing computation.

and we have

Algorithm 4 Evaluation of f, on a point S
using halving

INPUT: 1 — ibiZi with bie{0,1} and b = 1,
i=0
and a point S = (Xg, Ys),
A-representation of P = (X, Ap)

OUTPUT: fn(S) = fp(S)
Translate m-1 to be the formzt:ﬁ i
=2
f<«f(S); Z«P;
Forj«t-1,t-2,...,0do

foe [f Xs +X; . ;Z(—lZ;
Yo + A, X + Xy 2
If 6,— =1 then
f« flfih”(s) L Z+P;
hZ+P(S)
Endif
Endfor
f flfm;2<—2+P;
hZ+P(S)
Return f

4. Performance Comparison

In this section we estimate the saved operations
in our algorithm compared with the original Miller’s
algorithm.  When we consider the arithmetic
operations in normal basis, the time saved by using
halving instead of doubling is significant. In affine
coordinates, both elliptic doubling and addition
require 1 inversion, 2 multiplications and 1 squaring.
While representing with A-representation, we can
save 1 inversion and 1 multiplication in point
halving. But one additional multiplication is needed
to recover the y-coordinate while performing
addition. If the order of the Weil pairing m is
represented by a bit string of length n with k non-
zero entries, the operations needed for the scalar
multiplication are:

Operation Double-and- | Halve-and-
Add Add
Inversions n+k k
Multiplications 2n + 2Kk n+ 3k
Squarings n+k n+Kk
Solving 0 n
A +i=u+a
Square roots 0 n
Trace computing 0 n
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and the operations needed for the evaluation of
rational functions in the given point are:

Operation Double-and- | Halve-and-
Add Add
Inversions 2n + 2k n+k
Multiplications 4n + 5k 3n + 4k
Squarings n 2n
Square roots 0 n

Thus, by using point halving, we can save 2n+k
inversions, 2n multiplications with additional cost in
solving n quadratic equation, n squaring, 2n square
roots and n trace computing. However, in a normal
basis, the time needed to calculate the quadratic
equation, squaring, square root, and the trace is
negligible compared to the time needed to compute a
multiplication or an inversion. As indicated in [2],
we have the following assumptions on equivalence
of timing:

1 inversion ~ 3 multiplications
1 multiplication ~ 10 squarings

Our method reduces a number of inversions and
multiplications which are expensive in computing
the Weil pairing and thus provide a significant
improvement.

5. Conclusion

We have proposed an efficient method for
computing the Weil pairing. With the A-
representation in a normal basis, a significant
improvement is presented while running point
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halving instead of doubling. The time saving is an
important merit in the implementation of many new
and interesting ID-based protocols that have been
developed using the Weil pairing.
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