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Abstract- Although identity-based (ID-based) 
cryptography has a number of advantages over 
conventional public key methods; the computational 
cost is significantly greater.  The dominant part of 
this cost is the Weil pairing.  In this paper, we 
propose an efficient algorithm for computing the 
Weil pairing using point halving. 
 
Keywords: Weil pairing, ID-based cryptosystem, 

Elliptic curve. 
 
1. Introduction 
 

In 1984, Shamir [9] first invented the concept of 
identity-based (ID-based) cryptography, which 
addresses the authenticity problem of public keys in 
a different way.  His central idea is that the public 
key of a user is simply their identity and hence 
implicitly known to all other users.  More precisely, 
the public key of a user can be derived from public 
information that uniquely identifies the user.  
Alice@hotmail.com, for instance, could be treated as 
Alice’s identity (ID) and used as her public key.  The 
advantage of an ID-based cryptosystem is that no 
certificate is needed to bind user names and their 
public keys.  Some practical ID-based signature 
schemes (IBS) have been devised since 1984, but a 
fully satisfying ID-based encryption scheme (IBE) 
was first proposed by Boneh and Franklin [4] in 
2001.  They use a bilinear map (the Weil pairing) 
over supersingular elliptic curve to construct the 
encryption/decryption scheme.  After that, the 
bilinear pairings have been used to design numerous 
identity based schemes, such as key exchange [7], 
short signature [5], and many others.  Compared 
with other arithmetic in public key 1
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cryptography, the pairing computing has significant 
overhead.  Barreto, Kim, Lynn, and Scott [1] and 
Galbraith, Harrison and Soldera [6] focus on another 
bilinear pairing, called the Tate pairing, and they 
propose methods for speeding up the computation.  
In this paper, we extend the idea of the point halving, 
which was proposed by Knudsen [8], to speed up the 
computation of the Weil pairing. 

This paper is organized as follows.  Section 2 
provides the background about divisors and Weil 
pairing on elliptic curves. The Miller’s algorithm for 
computing Weil pairing is also described.  Section 3 
presents a detailed version of our algorithm for 
computation of Weil pairing using the point halving 
skill.  The performance analysis compared with 
original Miller’s algorithm is provided in section 4, 
and section 5 concludes the paper. 
 
2. Background 
 
2.1. Divisors 
 

Given an elliptic curve E over finite field K, a 
divisor D is a formal sum of points on E(K) 

∑
∈

=
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p PnD )(  

The group of divisors of E, denoted Div(E), is 
the free abelian group generated by the points of E, 
where addition is given by  
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The support of a divisor  is 

given by the set of points 
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Further, its degree deg(D) is defined by 

∑
∈

=
EP

pnD)deg(  

It is easily verified that the divisors of degree 0, 
denoted Div0(E), form a subgroup of Div(E).  Since 
the number of zeros and poles of a non-zero rational 
function *)(EKf ∈  is finite, we can define the 
divisor of a function f, denoted div(f), as 

∑
∈

=
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P Pfordfdiv ))(()(  

A divisor D∈Div(E) is called principal if 
D=div(f) for some ration function f.  Further, two 
divisors D1, D2 ∈Div(E) are said to be equivalent, 
denoted D1 ~ D2, if D1 - D2 is principal.  A 
characterization of principal divisors is:  

)()( 0 EDivPnD
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 is principal  

iff  where O is the point at infinity. ∑
∈
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We next describe how to evaluate a rational 
function f ∈ K(E) in a divisor  that 

satisfies supp(div(f)) ∩ supp(D) = φ.  The evaluation 
of f in D is given by  

∑
∈
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Recall that for any degree zero divisor 
D∈Div0(E), there is a unique point P ∈ E such that 
D ~ (P) – (O).  In other words, D can be written in 
what we call canonical form: 

D = (P) – (O) + div(f), 

where f is a rational function.  Now we give a 
formula for adding two divisors in canonical form, 
such that the result is in canonical form as well.  The 
formula provides a method of finding a rational 
function f such that div(f) = D for a given divisor D. 

Let D1, D2 ∈ Div0(E) be given by 

D1 = (P1) – (O) + div(f1), 

D2 = (P2) – (O) + div(f2). 

Let P1 + P2 = P3, and let 0: 321 =++ lxlyll  be 
the equation of the line through P1 and P2, 

 be the vertical line through P0: 1 =+ vxv 3.  If P1 
= P2 then l is the line tangent to P1, and if P3 = O 
then take v = 1.  Then 

div(l) = (P1) + (P2) + (-P3) – 3(O), 

div(v) = (P3) + (-P3) – 2(O) 

Now we can write the sum of divisors D1 + D2 as: 
D1 + D2 = (P1) + (P2) – 2(O) + div(f1 f2) 
    = (P3) – (O) + div(l) – div(v) + div(f1 f2) 
    = (P3) – (O) + div(f1 f2 f3) 

where f3 = l/v.  . 
 
2.2. Weil Pairing 
 

Let m be an integer which is prime to p = 
char(K).  The Weil pairing is a function: 

mm mEmEe µ→× ][][: , 

where }:)({][ OmPKEPmE =∈=  called the m-
torsion group, µm is the group of mth roots of unity in 
K . 

Given P, Q∈E[m], there exist DP, DQ∈Div0(E) 
such that  

DP ~ (P) – (O) and DQ ~ (Q) – (O) 

As divisors mDP and mDQ are principal, there exist 
rational functions fP , fQ such that div(fP) = mDP , 
div(fQ) = mDQ.  Suppose that DP and DQ have 
disjoint supports, and then the Weil pairing of P and 
Q can be computed by: 

)(
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Algorithm 1  Weil pairing  

(Miller’s probabilistic algorithm)

INPUT: P, Q∈E[m], m is prime to char(K) 

OUTPUT: em(P, Q) 

1 Pick random point T, U∈E(K)  
such that P + T, T, Q+U, U are distinct 

2. Compute fP, fQ such that  
div(fP) = m(P+T) – m(T), 
div(fQ) = m(Q+U) – m(U) 

3. Evaluate 
)()(
)()(

UfTPf
TfUQf

PQ

QP

+
+  

An important part of computing the Weil 
pairing is the evaluation of fP(R) for each point R in 
the support of DQ.  Recall that DP = (P + T) – (T).  
Then for each integer k, there is a rational function fk 
such that  

)()()()()( OkPTkTPkfdiv k +−−+= . 

Let k = m,  
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we have fP = fm.  For any points R, S, let hR,S and hR 
be linear functions, where hR,S = 0 is the line passing 
through R, S, and hR = 0 is the vertical line passing 
through R.  Then we have  
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This is a recursive equation with initial conditions f0 
= 1 and 

TP

TP
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This is a conventional double-and-add method 
for evaluation of rational function fP on a given point 
S.  In the next section, we will propose a halve-and-
add method to speed up the evaluation and hence 
have an efficient computation of the Weil pairing. 
 
3. The Algorithm 
 

We restrict our attention to elliptic curves E 
over Galois field  defined by the equation: 

, where 
nF

2

baxxxyy ++=+ 232 0,,
2

≠∈ bFba n .  Let 

P = (x, y) be a point on E with P ≠ −P.  The 
coordinate of Q = 2P = (u, v) can be computed as 
follows: 

xyx /+=λ    (1) 
   (2) 

  (3) 
au ++= λλ2

)1(2 ++= λuxv

Point halving was first proposed by Knudsen [8] 
with the following operation: given Q = (u, v), 
compute P = (x, y) such that Q = 2P.  It provides a 
fast method for scalar multiplication on elliptic curve.  
The basic idea for halving is to solve (2) for λ, (3) 
for x, and finally (1) for y.  When G is a subgroup of 
odd order m in E, point doubling and point halving 
are automorphisms in G (see [8]).  Therefore, given 
a point Q∈G, there is a unique point P∈G such that 
Q = 2P.  To uniquely find P, the trace function plays 
a central role in the algorithm for point halving.   

The trace function  is defined by 

.  Given Q = (u, v), 
point halving seeks the unique point P = (x, y) such 
that Q = 2P.  The first step is to find  by solving 
the equation 

nn FFTr
22

: →
12 222 ...)(
−

++++=
n

cccccTr

λ̂Algorithm 2  Evaluation of fP on a point S [3]

INPUT: m with b∑
=

=
t

i

i
ib

0

2 i∈{0,1}  

and bt = 1 , and a point S 

OUTPUT: fm(S) = fP(S) 

f ← f1(S); Z ← P; 

For j ← t-1, t-2, …, 0 do 

)(
)(

2

,2

Sh
Sh

ff
Z

ZZ←  ; Z ← 2Z; 

 If bj = 1 then 

 
)(
)(,

1 Sh
Sh

fff
PZ

PZ

+

←  ; Z ← Z + P; 

 Endif 
Endfor 
Return f 

 

au +=+ λλ2    (4) 

It is easily verified that λ∈{ , +1} and λ=   if 
and only if Tr(v + u ) = 0.  Hence λ can be 
identified, and then (3) is solved for the unique root 
x.  Finally, if needed, y = x(x+λ) can be recovered 
with one field multiplication. 

λ̂ λ̂ λ̂
λ̂

Let the λ-representation of a point Q = (u, v) be 
(u, λQ), where λQ = u + v/u.  Given the λ-
representation of Q as the input to point halving, we 
may compute t = v + u  = u(u + λλ̂ Q + ) without 
converting to affine coordinate.  So in the point 
multiplication, repeated halving can be performed 
directly on the λ-representation of a point.  Only 
when a point addition is required, a conversion to 
affine coordinate is needed. 

λ̂

 

Algorithm 3  Point halving 

INPUT: λ-representation (u, λQ) of Q∈G 

OUTPUT: λ-representation (x, λP) of P = (x, y)
∈G, where Q = 2P 

1 Find a solution  of . λ̂ au +=+ λλ2

2 Compute t = u(u + λQ + ). λ̂

3 If Tr(t) = 0, then λP ← , x ← λ̂ ut +  
else λP ← +1, x ← λ̂ t  

4 Return (x, λP). 
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The point halving algorithm requires a field 
multiplication and three main steps: 

1. Solving the quadratic equation  au +=+ λλ2

2. Computing the trace of t 

3. Computing a square root 

In a normal basis, a field element on is 
represented in terms of a basis of the form 
{ }.  Given a field element 

, the squaring is a left 

rotation, i.e. .  Therefore the 
quadratic equation  can be solved bitwise.  
The square root computation is a right rotation, i.e. 

nF
2

122 ,...,,
−n

βββ

),...,( 01
2 cccc ni

i

−== ∑ β

),,...,( 102
2

−−= nn cccc
cxx =+2

)...,,( 110 cccc n−= .  These operations are expected 
to be inexpensive relative to field multiplication.  A 
detailed comparison will be given in the next section. 

Let the λ-representation of a point P = (x, y) be 
(x, λP), and the canonical form of a divisor DP be 
(P) – (O) + div(g), where g is a rational function.  
We have 

DP + DP = (2P) – (O) + div(
v

lg 2
). 

Assume Q = 2P with λ-representation (u, λQ) 
corresponding to a divisor DQ with canonical form 
(Q) – (O) + div(f); then 

2xXYl P ++= λ , 

uXv += , 

uX
xXYg

v
lgf P

+
++

==
2

2
2 λ , 

and we have 

2xXY
uXfg

P ++
+

=
λ

 

Apply the halving operation to the evaluation of 
f on a point S; we have an efficient algorithm for 
Weil pairing computation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4. Performance Comparison 
 

In this section we estimate the saved operations 
in our algorithm compared with the original Miller’s 
algorithm.  When we consider the arithmetic 
operations in normal basis, the time saved by using 
halving instead of doubling is significant.  In affine 
coordinates, both elliptic doubling and addition 
require 1 inversion, 2 multiplications and 1 squaring.  
While representing with λ-representation, we can 
save 1 inversion and 1 multiplication in point 
halving.  But one additional multiplication is needed 
to recover the y-coordinate while performing 
addition.  If the order of the Weil pairing m is 
represented by a bit string of length n with k non-
zero entries, the operations needed for the scalar 
multiplication are: 

 
Operation Double-and-

Add 
Halve-and-

Add 
Inversions n + k k 

Multiplications 2n + 2k n + 3k 
Squarings n + k n + k 
Solving 

 au +=+ λλ2
0 n 

Square roots 0 n 
Trace computing 0 n 

Algorithm 4  Evaluation of fP on a point S
 using halving 

INPUT: with b∑
=

=
t

i

i
ibm

0

2 i∈{0,1} and bt = 1 ,

 and a point S = (XS, YS), 
 λ-representation of P = (x, λP) 

OUTPUT: fm(S) = fP(S) 

Translate m-1 to be the form∑  
=

t

i
iib

0 2
1ˆ

f ← f1(S); Z ← P ; 

For j ← t-1, t-2, …, 0 do 

2
2/ZSZS

ZS

xXY
xXff
++

+
←

λ
 ; Z ← 

2
1 Z; 

 If b  = 1 then j
ˆ

 
)(
)(,

1 Sh
Sh

fff
PZ

PZ

+

← ; Z ← Z + P; 

 Endif 
Endfor 
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)(,

1 Sh
Sh

fff
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PZ

+

← ; Z ← Z + P; 

Return f 
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and the operations needed for the evaluation of 
rational functions in the given point are: 

 
Operation Double-and-

Add 
Halve-and-

Add 
Inversions 2n + 2k n + k 

Multiplications 4n + 5k 3n + 4k 
Squarings n  2n  

Square roots 0 n  

 

Thus, by using point halving, we can save 2n+k 
inversions, 2n multiplications with additional cost in 
solving n quadratic equation, n squaring, 2n square 
roots and n trace computing.  However, in a normal 
basis, the time needed to calculate the quadratic 
equation, squaring, square root, and the trace is 
negligible compared to the time needed to compute a 
multiplication or an inversion.  As indicated in [2], 
we have the following assumptions on equivalence 
of timing: 

1 inversion ~ 3 multiplications 

1 multiplication ~ 10 squarings 

Our method reduces a number of inversions and 
multiplications which are expensive in computing 
the Weil pairing and thus provide a significant 
improvement. 
 
5. Conclusion 
 

We have proposed an efficient method for 
computing the Weil pairing.  With the λ-
representation in a normal basis, a significant 
improvement is presented while running point 

halving instead of doubling.  The time saving is an 
important merit in the implementation of many new 
and interesting ID-based protocols that have been 
developed using the Weil pairing. 
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