
Multi-Dimensional Image Segmentation Using Seed-
Invariant Region Growing

��������	
��
������

Shu-Yen Wan (���),1,2 Cherng-Min Ma (���),2 and Eric Nung (��	)2

1Graduate Institute of Computer Science and Information Engineering (��������	
�)
2Department of Information Management, Chang Gung University (�������
�)

sywan@mail.cgu.edu.tw; minma@mail.cgu.edu.tw; m8944002@stmail.cgu.edu.tw

Abstract

The goal of image segmentation is to partition a
digital image into disjoint regions of interest. Of
the many proposed image-segmentation methods,
region growing has been one of the most popular.
Research on region growing, however, has
focused primarily on the design of feature
measures and on growing and merging criteria.
Most of these methods have an inherent
dependence on the order in which the points and
regions are examined. This weakness implies
that a desired segmented result is sensitive to the
selection of the initial growing points. We
define a set of theoretical criteria for a subclass
of region-growing algorithms that are insensitive
to the selection of the initial growing points.
This class of algorithms, referred to as
Symmetric Region Growing, leads to a single-
pass region-growing approach applicable to any
dimensionality of images. Furthermore, they
lead to region-growing algorithms that are both
memory- and computation-efficient. Finally,
by-products of this general paradigm are
algorithms for fast connected-component
labeling and cavity deletion. The paper gives
complete theoretical results and 3-D image
examples.

Keywords: image segmentation, region growing,
three-dimensional image analysis, connected-
component analysis, region-based segmentation

I. Introduction

The goal of image segmentation is to partition a
digital image into disjoint regions of interest. Of
the many proposed image-segmentation methods,
region growing has been one of the most popular
[1,6,8,10,11,20]. Region growing methods
generally require the desired regions to be
homogeneous with respect to certain pre-
specified features. An example is the well--
known split-and-merge approach [9,13]. This
approach iteratively applies region splitting and
merging operations to form a segmented image.
The intermediate decisions on splitting and

merging are governed by the homogeneity of the
regions being constructed.

Research on region-based segmentation
methods has focused on either: (a) the design of
feature measures and growing/merging criteria
[1,2,3,7,8,14,16,20] or (b) algorithm efficiency
and accuracy [4,13,19]. Most of these methods,
however, have an inherent dependence on the
order in which the points and regions are
examined [1,6]. This weakness implies that a
segmented result is sensitive to the selection of
the initial growing points (or seeds). A region-
based segmentation method can have this
problem because its measured feature
information adaptively changes as the
segmentation process progresses. For example,
most seeded region-growing processes only add
a new point to a region if its corresponding
feature measures are similar to those of an
adjacent existing region; after this new point is
added to the region, the region's feature
measures change. Therefore, different initial
growing point assignments lead to different
values for evolving region information.

Region-based methods often are also
computation and memory intensive. For
example, the three-dimensional (3D) algorithms
of [7,16,17] operate as if they are x-, y-, and z-
inseparable (hence requiring significant
computation) and demand considerable memory
(e.g., the entire image, plus another copy of an
image buffer for storing region labels).

We propose the concept of Symmetric
Region Growing (SymRG). Region-growing
algorithms that abide by the theoretical criteria
defining SymRG are insensitive to the initial
growing points and initial conditions set forth
for segmentation. These criteria, defined in
Section III, lead to fast single--pass growing
algorithms. Such algorithms can be built for any
image dimensionality, as discussed in Section IV.
Furthermore, as indicated in Section V, the
SymRG paradigm leads to efficient algorithms
for 3D connected--component labeling and 3D
cavity deletion. Also, as shown in Section V,



SymRG algorithms are both memory- and
computation-efficient.

II. Notation And Problem Statement

Consider a digital image I defined on an n-
dimensional discrete (digital) space nZ ; i.e.,

nZI ∈ . The goal of image segmentation is to
partition the digital image I into M disjoint
regions of interest Ri, Mi ,,1K= , where the
final segmented image S takes the form [10]:
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Assume region RM is reserved for the
background (generally set to “0” in the final
segmented image). Also, assume without loss of
generality that each region of interest Ri,

Mi ,,1K= , consists of one connected
component. (In practice the individual regions in
S are distinguished by region labels [5,15].) In
the theory of relations, the segmentation S is
formally called a partition of set I and each of
the disjoint regions Ri constitute blocks of the
partition [12].

Let lower-case quantities, such as a, b, p, and q,
represent image points I∈ . An image point is
called a pixel in two-dimensional (2D) images
and a voxel in 3D images [15,17]. Let upper-
case quantities, such as Ri, I, S, A, and B denote
sets of points in nZ . The quantity )( pf gives
the intensity, or gray-level, value of image point

Ip ∈ .

If two image points a and b are connected, then
at least one path (or ordered sequence of
connected points) exists between them [5]. Let
the notation

abP represent such a path.

Alternately, let the notation ),,,,,( 21 bpppa nK

represent a particular path between a and b,
where point a is a neighbor of point p1, p1 is a
neighbor of p2, etc. For this paper, all points on a
path must lie in the same region of S; i.e., if

iRa ∈ , then
iRp ∈1 ,

iRp ∈2
, …,

iRb ∈ . In

2D images, connectivity and neighbors are
defined using either 4-connectivity or 8-
connectivity [5]. Analogously, for 3D images,
6-connectivity or 26-connectivity define such
concepts [17].

Focusing the segmentation process to region
growing, the segmented image (Equation 1) can
be represented as
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where I is the image under consideration,

)(ψRG denotes a region-growing algorithm

governed by measure and growing criteria ψ ,
and � represents criteria for defining the initial
growing points, or seeds, for regions. A seed is
an image point that is known to belong to a
particular region and begins the construction of
the region. The collection of measure and
growing criteria ψ can be viewed as consisting

of two components: >=< �� ,ψ . � specifies
properties that non-seed points must have to be
included in evolving segmented regions. �
specifies criteria for excluding certain image
points from all regions of interest.

In general each set of criteria � , � and �

consists of a predicate composed of Boolean
operations of feature measures. Without loss of
generality, the pair )),(( �ψRG constitutes a
complete image-segmentation algorithm based
on region growing. The operations or feature
measures are combined to form a complete
predicate for � , � and � , using the standard
algebraic operators ~},,{ ∧∨ , where “ ∨ ” is
logical OR, “ ∧ ” is logical AND, and “~” is
complementation. Thus, valid predicates for ψ

and � are defined over a Boolean algebra. The
exclusion criteria � can, of course, be easily
translated into additional criteria for � . But, as
shown in the example below, the use of � leads
to more intuitive segmentation algorithms.

(a) (b)

Figure 1. Processing flow for region growing: (a)
general region-growing algorithm; (b) alternate flow
possible for a symmetric region-growing algorithm. I
is the input image, � specifies the seed criteria,

>=< �� ,ψ specifies the region growing criteria, and

)),(,( �ψRGIS is the final segmented image.

Figure 1a illustrates the flow for segmenting
image I using the segmentation algorithm

)),(( �ψRG . Seeds are first defined for the

regions Ri, Mi ,,1K= . Next, the region-
growing criteria >=< �� ,ψ are iteratively
applied to construct the evolving regions. The
growing process terminates when application of
the region-growing algorithm produces no
further changes to the evolving segmented
image. The final result is )),(,( �ψRGIS . The
following simple example illustrates a
segmentation algorithm.

Example: Consider the problem of segmenting



two regions of interests from an 8-bit digital
image I. Suppose region R1 contains points
centered about gray-level value 100, R2 contains
points centered about gray-level value 200, and
all remaining points are assigned to the
background R3. Then, a possible segmentation
algorithm )),(( �ψRG is as follows:

1. Seed criteria },{
��

��� = , where

�
� ≡ “q is the first point in I such that f(q) =

100”

�
� ≡ “q is the first point in I such that f(q) =

200”

2. Growing Criteria >=< �� ,ψ :

(a) Inclusion criteria },,,{
��������

����� = ,
where

"20|100)(|" ≤−≡ qf
��
� ,

"existspathA"
1qa�≡

��
�

"20|200)(|" ≤−≡ qf
��

� ,
"existspathA"

2qa�≡
��

�

(b) Exclusion criteria "10)(" ≤≡ qf� .

3. )(ψRG :

(a) Find seed points Iq ∈1
satisfying

�
�

and Iq ∈2
satisfying

�
� . Assign q1

to R1 and q2 to R2 in )),(,( �ψRGIS .
(b) For each point Iq ∈ ,

If TRUE≡∧
����
�� , assign q to R1 in

)),(,( �ψRGIS .

Else if TRUE≡∧
����

�� , assign q to R2 in

)),(,( �ψRGIS .

Else if TRUE≡� , assign q to R3 in
)),(,( �ψRGIS .

(c) Iterate (b) on points in I until no
further changes occur to the
evolving )),(,( �ψRGIS .

(Many other algorithms, of course, are possible
for the example above.)

Since we are currently leaving open the
algorithm flow for the region-growing algorithm

)(•RG , the pair )),(( �ψRG does indeed
represent a general region-growing algorithm.
Some region-based algorithms may not seem to
fit the framework of )),(( �ψRG at first glance,

but they can be transformed into )),(( �ψRG .
For example, the split-and-merge algorithm
actually performs the process of iteratively
searching the entire image for initial growing
points or seeds (splitting) and then growing back
regions of interest (merging) [9].

The seed criteria � can consist of a set of

criteria that implicitly specify seed points for
regions. Equivalently, � can also be specified as
an explicit set of seed points, such as:

IaaA M ⊂= − },,{ 11 K (3)

where, in general, set A contains one seed point
per region of interest. Point a1 acts as the initial
growing point, or seed, for R1, a2 is the seed for
R2,K , and

1−Ma is the seed for
1−MR . No seed is

needed for the background region RM, as all
points not assigned to a ”true” region of interest

1,,2,1, −= MiRi K

, are assumed to be “relegated”

to the background. Each point of an explicitly
defined seed set, such as A in (Equation 3), is
known a priori to belong to a particular region.
If A contains additional points beyond (Equation
3), then it is assumed that these points are
already assigned to one of the evolving regions

1,,2,1, −= MiRi K

. Using the seed criteria

(Equation 3), the segmentation (Equation 2) can
be stated equivalently as
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For the remainder of this paper, we will assume
that seed criteria � are converted to an
equivalent seed set such as A.

Consider now a different set of initial growing
points given by

IbbB M ⊂= − },,{ 11 K
(5)

where b1 acts as a possible seed for R1, b2 acts as
a possible seed for R2, etc. Suppose this set
produces the segmented image
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R'1 is the region grown from b1, R'2 is the region
grown from b2, etc. In general, for

1,,2,1 −= Mi K ii ba ≠ and
ii RR '≠ . In this

paper, the statement

)),(,()),(,( BRGISARGIS ψψ ≡ (7)

means that
ii RR '= for 1,,2,1 −= Mi K

, per

(Equation 4) and (Equation 6). If two different
segmentation algorithms, )),(( ARG ψ and

)),(( BRG ψ , satisfy Equation (7), then they
produce equivalent (identical) segmentations of
image I. Figure 2 schematically illustrates many
of the concepts defined thus far for a four-region
problem.



Figure 2. Depiction of the region-growing process for
a 4-region segmentation problem. R1, R2, and R3 are
the segmented regions of interest and R4 is the
background. The points a1 and b1 are possible seeds
for R1, a2 and b2 are possible seeds for R2, etc. The
dotted lines give examples of valid paths iiba� between

corresponding points ai and bi. This figure illustrates
the case where ai and bi lead to the “same” Ri; i.e.,
they produce equivalent segmentations S of I, per
Equation (7). But, this is not necessarily the case in
general.

The following important question arises. What
are the requirements on region-growing
algorithm )(ψRG so that

)),(,()),(,( BRGISARGIS ψψ ≡ ? That is, what
constraints are required on a region-growing
algorithm, so that the algorithm is guaranteed to
give identical segmentations when starting with
any valid seed set? Section III answers this
question and also provides the theoretical
motivation for devising an efficient
implementation of region growing.

III. Theoretical Development

Region-based algorithms build regions from the
seeds by following a certain evolving growing
sequence. If the seeds change, then the resulting
growing sequence changes. Our question is
whether different seed sets, Equation (3) and (5),
and growing sequences lead to the same
segmentation results. If not, what constraints can
be placed on an algorithm, so that it generates
the same segmentation regardless of the seed
sets? That is, what constraints must a region-
growing algorithm have to be invariant to
changes in the seed set? We assume that the
goal of image segmentation for image I is to
form the partition of M regions per (Equation 1).
We assume that any seed, such as A, used to
achieve (Equation 1) must have M distinct seed
points; such a set will be called a valid seed set.
This section describes the constraints necessary
to make a region-growing algorithm invariant to
the seed set. These constraints lead to the
concept of symmetric region growing (SymRG).

Subsection III-A introduces basic
definitions and theoretical constraints. These
constraints lead to the concept of symmetric
region growing. Additional theoretical results of
Section III-B give guidance on how to devise a
symmetric region-growing algorithm and
motivate the general n-dimensional memory-
and computation-efficient implementation of
symmetric region growing described in Section
IV.

A. General Definitions and Theorems

DEFINITION 1: ))(,( ψRGIab� is defined as the

set of all possible paths },,,{ 32
Kababab ��� between

points a and b, where Iba ∈, , point a is a seed

used to grow region IR ⊂ using )(ψRG and

Rb ∈ . �

If seed a in conjunction with region-
growing algorithm )(ψRG produces a region R

that does not contain point b, then
φψ =))(,( RGIab� . Also, by the assumption that R

consists of one connected component, if Rb ∈ ,
then at least one path

ab� $ must exist from seed

a to image point b. Within the context of
relation theory, if a path exists from a to b, then
a and b must be in the same block (region) of the
partition S of I.

DEFINITION 2: ))(,( ψRGIAB� is defined as the
set of all possible paths from points in seed set A
to points in set B:





 =∀=

−

=

otherwise,

))(,(,if)),(,(
))(,(

1

1

φ
φψψψ RGIiRGI

RGI iiii ba

M

i ba
AB

��
� U

where A and B are given by Equations (3) and
(5). �

The points of A and region-growing algorithm
)(ψRG define a segmentation )),(,( ARGIS ψ .

The set ))(,( ψRGIAB� enumerates all paths from
each point $ Aai ∈ to its corresponding point

Bbi ∈ , provided that at least one path exists to

each
ib . φψ =))(,( RGIAB� , if any point Aai ∈

(responsible for generating region
iR per

Equation (3)) does not have at least one path iiba�

to its corresponding point Bbi ∈ . If for some

point Aai ∈ , no path iiba� exists, then Bbi ∉ .

This immediately implies that
)),(,()),(,( BRGISARGIS ψψ ≠ , because, per

Equation (6), '
ii Rb ∈ and '

ii RR ≠ .

DEFINITION 3: The notation

φψψ = → ))(,(toequivalentis)( RGIBA AB
RG

�



The quantity BA RG → )(ψ is a binary relation
from set A to set B over the region-growing
operation )(ψRG [12]. �

The relation BA RG → )(ψ implies that there is a
way to form at least one path in )),(,( ARGIS ψ
between each initial growing point in A and its
corresponding point in B. Otherwise,

BA RG → )(ψ is false. Note that BA RG → )(ψ

does not imply AB RG → )(ψ .

LEMMA 1: The binary relation  → )(ψRG is
reflexive and transitive. That is, for any seed set

IA ⊂ ,

AA RG → )(ψ (Reflexivity). Also, for any seed
sets ICBA ⊂,, , if BA RG → )(ψ and CB RG  → )(ψ ,

then CA RG  → )(ψ (transitivity).

Proof: (Reflexivity) It is trivial that AA RG → )(ψ ,
because ))(,( ψRGIAA� contains the trivial one-

point paths 1,,2,1, −= Mi
iiaa K� .

(Transitivity) Given BA RG → )(ψ and
CB RG  → )(ψ . Then, for all 1,,2,1 −= Mi K

, there

exists ∈= ),,( iiba ba
ii

K� ))(,( ψRGI
ii ba�

and

∈= ),,( iicb cb
ii

K� ))(,( ψRGI
iicb�

. By concatenating

paths
iiba�

and
iicb�

, we have ),,( iica ca
ii

K=� .

Thus, φψ =))(,( RGIAC� , or CA RG  → )(ψ . �

Now, consider a general binary relation � on
domain

� , such that ���� → . The binary relation �
is said to be symmetric if ������ ⇔ , �� ⊂∀
and �� ⊂ [12].

The concept of a symmetric binary relation can
be applied to region growing.

DEFINITION 4: Binary relation  → )(ψRG is
symmetric if,

.implies,,setsseedvalid )()( ABBAIBA RGRG  → →⊂∀ ψψ

If  → )(ψRG is symmetric, we denote it as

 →← )(ψRG or  →← )(ψSymRG . �

In general, the binary relation  → )(ψRG is, of
course, not symmetric [12]. However, if )(ψRG

satisfies BA RG  →← )(ψ for all valid seed sets
IBA ⊂, , then )(ψRG is called a symmetric

region-growing algorithm and denoted as
)(ψSymRG . Furthermore, given

)),(,( ASymRGIS ψ in the context of the

segmentation (Equation 4), DEFINITION 4
implies that we can arbitrarily choose sets

},,{ 11 −= MxxX K

and },,{ 11 −= MyyY K

, where

iii Ryx ∈, ⊂
MRASymRGIS \)),(,( ψ and form a

bijection (or one-to-one and onto) relation
between X and Y. Also, by LEMMA 1 and

DEFINITION 4,  →← )(ψSymRG is an
equivalence relation and the segmented regions

MiRi ,,2,1, K= , $ induced by )(ψSymRG , are

equivalence classes [12].

LEMMA 2: Let p and q be any pair of points in
the same region )),(,( ARGISRi ψ⊂ for some

1,,2,1 −= Mi K
per Equations (3) and (4). If

)(ψRG is symmetric (i.e., )(ψRG can be

replaced by )(ψSymRG in (4)), then

φψ ≠))(,( SymRGIpq� .

Proof: Suppose )),(,(, ARGISRqp i ψ⊂∈ for

some 1,,2,1 −= Mi K
. Then, for seed Aai ∈ (see

(3)), φψ ≠))(,( SymRGIpai
� and

φψ ≠))(,( SymRGIqai
� . Because )(ψSymRG is

symmetric, φψ ≠))(,( SymRGI
ipa� . Thus, by

LEMMA 1, φψ ≠))(,( SymRGIpq� . �

LEMMA 2 implies that if a symmetric region
growing algorithm is used, then any point p in a
region can be used to reach (grow) any other
point $ q $ in the same region. This leads to the
following important result.

THEOREM 1: Consider a symmetric region
growing algorithm )(ψSymRG , such that

=)),(,( ASymRGIS ψ U
M

i iR
1=

in the context of

Equations (3) and (4). Suppose Aai ∈ is

replaced by an arbitrary point iRp ∈ to form an

alternate seed set Â . Then, in the resulting
segmentation )ˆ),(,( ASymRGISRi ψ⊂ , the region

grown from p is
iR .

Proof: Replace
ia with

)),(,( ASymRGISRp i ψ⊂∈ in A. This gives the

new seed set },,,,,,{ˆ
1111 −+−= Mii aapaaA KK . Generate

a segmentation with this new seed set:

)ˆ),(,( ASymRGIS ψ = U
M

i iR
1= , where a1 produces

1R̂ ,…, ai-1 produces
1

ˆ
−iR , p produces

iR̂ , etc.

Consider a point
iRr ˆ∈ . Then,

φψ ≠))(,( SymRGIpr� . By LEMMA 2,

φψ ≠))(,( SymRGIrp�
. Further,

φψ ≠))(,( SymRGIpai
� . So, by LEMMA 1

(Transitivity), φψ ≠))(,( SymRGIrai
� . Hence, at

least one path exists from point
ii Ra ∈ to

iRr ˆ∈ .



Therefore,
ii RR =ˆ . �

THEOREM 1 states that if a symmetric region-
growing algorithm is used, then any point p in
region Ri can be used as a seed to grow the
region Ri and that the resulting grown region is
always the same one. In fact, any and all seed
points Aai ∈ , 1,,2,1 −= Mi K

, can be replaced

by any point
ii Rp ∈ ⊂ )),(,( ASymRGIS ψ to

form a new seed set X and the resulting
segmentation )),(,( XSymRGIS ψ will be

equivalent to )),(,( ASymRGIS ψ .

THEOREM 2: Given )(ψSymRG and seed sets

IBA ⊂, , as in Equations (3) and (5).

φψ ≠))(,( SymRGIPAB ⇔

)),(,()),(,( BSymRGISASymRGIS ψψ ≡ . (8)

Proof: We use the definitions of A, B,
)),(,( ASymRGIS ψ , and )),(,( BSymRGIS ψ ,

given in (3-6), with )(ψRG replaced by

)(ψSymRG in (4,6).

( ⇐ ) Given
)),(,()),(,( BSymRGISASymRGIS ψψ ≡ , which is

(7). From (4), (6), and (7), '
ii RR = ,

1,,2,1 −= Mi K
. By LEMMA 2, for any pair of

seed points ),( ii ba , 1,,2,1 −= Mi K
, drawn from

A and B, at least one
iiba�

exists. Therefore,

φψ ≠))(,( SymRGIPAB
, or BA SymRG  → )(ψ

( ⇒ ) Given φψ ≠))(,( SymRGIAB� . Consider an

arbitrary point Ip ∈ . There are two cases to

consider: (1) foreground - for some
1,,2,1 −= Mi K

,
iRp ∈ ⊂ )),(,( ASymRGIS ψ ;

(2) background -
MRp ∈ ⊂ )),(,( ASymRGIS ψ .

Case (1): foreground - Suppose for some
1,,2,1 −= Mi K

,
iRp ∈ ⊂ )),(,( ASymRGIS ψ .

Then, φψ ≠))(,( SymRGIpai
� , following the

definition of seed point ai in (3). Also,

φψ ≠))(,( SymRGI
iiba�

and φψ ≠))(,( SymRGI
iiab�

.

By LEMMA 1,  → )(ψSymRG is transitive.

Hence, φψ ≠))(,( SymRGIpbi
� . Therefore, '

iRp ∈
of )),(,( BSymRGIS ψ , per (6).

Case (2): background - Suppose
MRp ∈ ⊂

)),(,( ASymRGIS ψ . Suppose for some

1,,2,1 −= Mi K
, there exists Bbi ∈ , such that

φψ ≠))(,( SymRGIpbi
� ; i.e., '

iRp ∈ ⊂

)),(,( BSymRGIS ψ . As we know,

φψ ≠))(,( SymRGI
iiba�

. Thus, by LEMMA 1

(transitivity), φψ ≠))(,( SymRGI
iiba�

, which

implies that iRp ∈ . This contradicts the

assumption. Hence, Bbi ∈∀ ,

φψ ≠))(,( SymRGIpbi
� , which implies '

MRp ∈ .

Thus, Ip ∈∀ , if
iRp ∈ ⊂ )),(,( ASymRGIS ψ ,

then '
iRp ∈ ⊂ )),(,( BSymRGIS ψ , which

implies (7). �

THEOREM 2 states that if a symmetric region
growing algorithm produces a segmentation of
image I of the form )),(,( ARGIS ψ = U

M

i iR
1= , then,

for any of the M-1 regions of interest
1,,2,1 −= Mi K

, any point
iRp ∈ can be used as

a seed point to produce the segmentation
)),(,( ARGIS ψ . In fact, THEOREM 2 eliminates

the importance of the set of initial growing
points: the set A (or criteria � ) has no influence
on whether a region-growing algorithm is
symmetric or not. Further, for a symmetric
region-growing algorithm, the order that points
are visited during the growing process does not
matter. The subsection below proposes
corollaries that assert these points and helps
bridge the gap from theory to practical
implementation.

B. Practical Conditions for Symmetric Region-
Growing

COROLLARY 1: Consider )(ψSymRG and A

such that )),(,( ASymRGIS ψ = U
M

i iR
1= . Instead of

using A to produce the segmentation
)),(,( ASymRGIS ψ , consider using

},,{ 11 −= MbbB K
, where

ii Rb ∈ and
ib is the

first point of
iR encountered while scanning

image I. Then, )),(,( ASymRGIS ψ ≡
)),(,( BSymRGIS ψ .

Proof: Follows immediately from THEOREM 2.
�

COROLLARY 1 reveals that the first
encountered point of a region (e.g., the extreme
upper left corner point of the region) can be used
to grow it with a symmetric region-growing
algorithm. This concept helps in improving
algorithm efficiency. Yet, before segmentation
proceeds, no regions exist, and, thus, the first
encountered point of each region is not
necessarily known. The following corollary
solves this problem.

COROLLARY 2: Consider )),(( �ψSymRG , a
complete segmentation algorithm based on
symmetric region growing. Scan the digital
image of interest, I, sequentially. Grow regions



from each scanned point by applying criteria
>=< �� ,ψ , until all image points have been

visited. Examine the resulting regions using � .
If any point p of a region satisfies criteria � for
region

iR , then assign the region to
iR ;

otherwise, relegate it to the background
MR . The

resulting segmented image is
)),(,( �ψSymRGIS .

Proof: Let B represent the set of first
encountered points

ii Rb ∈ , 1,,2,1 −= Mi K
, of

the eventual regions of interest. From
COROLLARY 1, )),(,( BSymRGIS ψ =

)),(,( ASymRGIS ψ = U
M

i iR
1= . We will now instead

segment I by applying )(ψSymRG use the seed
criteria to do the final region labeling. Assume
this produces results in preliminary regions

'
1

'
1 ,, −NRR K . The seed criteria � (or A) is now

used. Denote the first point of each region '
iR as

ic , 1,,1 −= Ni K
. From COROLLARY 1, no

pair of points in B are in the same region, so
MN ≥ . Also, because the ic 's are the first

points of the regions '
iR , 1,,1 −= Ni K

, and by

THEOREM 1, we can re-label ic and '
iR so that

ii bc = and '
ii RR = , 1,,2,1 −= Mi K

.

Furthermore, U
N

M iM RR '= .
MR does not contain

any seeds, so does any of the regions '' ,, NM RR K
.

We can therefore form '
MR by gathering regions

'' ,, NM RR K
, and '

MM RR = . �

If the region growing algorithm is
symmetric, COROLLARY 2 states that one can
scan and grow regions first; after the growing
process, one then applies � to label the “useful”
regions. All unlabelled regions are merged into
the background. This idea, an attribute of
symmetric region-growing algorithms, helps in
computation efficiency, as shown in Figure 1b.

Because of THEOREM 2, the seed criteria �
has no influence on whether a region-growing
algorithm is symmetric or not. It is sufficient to
focus on the properties of >=< �� ,ψ to define

a SymRG. Recall that ψ is a composite of

Boolean operations. ψ can be represented as a
single predicate, per the definition below.

DEFINITION 5: For Iqp ∈, , let ),( qpg be a

predicate representing the growing criteria ψ .
Then,

qpqpg RG →⇒= )(TRUE),( ψ

Thus, for any point IRp i ⊂∈ , a neighbor q will

be included in
iR iff ),( qpg = TRUE. �

THEOREM 3: (Symmetric Criteria) For ),( ••g
representing ψ of region-growing algorithm

)(ψRG , if ),( ••g is symmetric – i.e., ),( qpg =

),( pqg , Iqp ∈∀ , - then )(ψRG is symmetric.

Proof: Consider sets A and B, per (3) and (5).
Suppose BA RG →← )(ψ ; i.e., TRUE),( =ii bag ,

Aai ∈∀ and Bbi ∈ and φψ ≠))(,( RGI
ii ba�

.

Assume ),( ••g is symmetric. Aai ∈∀ , Bbi ∈ ,

and TRUE),( =ii abg , implying

φψ ≠))(,( RGI
ii ab�

. Thus, by THEOREM 2,

)(ψRG is symmetric. �

THEOREM 3 shows that if ψ is a symmetric
function, the region-growing algorithm is
symmetric. Since ψ can be denoted as ψ = � ^

� , then, by the properties of a Boolean algebra,ψ is symmetric if and only if both � and � are
symmetric [12]. Similarly, each individual
criterion of � and � must be symmetric.

Intuitively, for a symmetric region growing
algorithm, � and � should only consist of
symmetric operations. Also, the image features
employed by � and � should not depend on the
previous states of the features. Otherwise, the
function employing the feature cannot in general
be symmetric. Thus, the growing process does
not depend on the order that points are scanned.

The region growing for a traditional )(ψRG
implies an iterative or recursive process. It is not
true for SymRG anymore, as the regions can
validly grow sequentially as suggested by
COROLLARY 2 and the algorithm collects
region information incrementally therein for
final region labeling in reference of the seed
criteria.

Below are examples of common region-
growing functions. The labels indicate whether
or not they are symmetric.

21 |)()(|),( σσ ≤−≤≡ qfpfqpg Symmetric

43),( σσ ≤≡•pg Symmetric
σµ ≤−≡• |)(|),( )( pNpfpg Symmetric

σµ ≤−≡ |)(|),( )( pRqfqpg Not symmetric

p and q are neighboring image points.
1σ ,

2σ ,

3σ , and
4σ are parameters. )( pNµ denotes the

average gray-level value of point p's neighbors,
and

)( pRµ denotes the average gray-level value

of the points constituting p's member region.
Clearly, functions of the form ),( •pg = )( pg ,
which only depend on one pixel, are symmetric.



Note that the region-growing algorithm given in
the earlier example, with

����� ∧∧∧∧= 22211211ψ , is symmetric.

IV. General SymRG Algorithm

THEOREM 3 states that a region-growing
algorithm is symmetric if and only if all criteria
constituting ψ are symmetric functions. If the
region-growing algorithm is symmetric, then
COROLLARY 1and COROLLARY 2 suggest
that the implementation of the SymRG can grow
regions from the first region points scanned and
then apply the seed criteria � afterward to label
the final regions. This approach is invariant to
which region point is scanned first. It also
motivates a general N-dimensional SymRG
algorithm that is computation- and memory-
efficient. This algorithm appears below.

Assume that an N-dimensional image I has
image points ),,,,( KKwkji , where i is the

index of a point along a row, j denotes row index,
k denotes slice number (for 3D images), etc.
The gray-level value of point ),,,,( KKwkji is

given by ),,,,( KKwkjiI . Growing criteria ψ
and seed criteria � are given. Two global data
structures are necessary:

Region Table: Each entry in the region table
contains region ID, region bounding box,
number of points, number of 0-to-1 crossings,
number of seeds, etc., for a region.
Equivalence Table: The equivalence table is
incrementally constructed after two
homogeneous regions merge. Each entry in the
table represents a growing region and maintains
a linked list of region ID of “equivalent” regions
and composite region information gathered from
the region table plus the status of this entry. The
status of a region may be growing, roi, or
undesired. The growing regions are pending for
final labeling. The roi regions are those finished
growing and contain seed points. The undesired
regions on the other hand contain no seeds. The
following functions are used:

Construct_1D_Regions(j, ψ )
Construct 1-D regions (actually 1-D line
segments) on the jth row by applying growing
criteria ψ . The output is the updated

Region Table.
Region_Merge(n, w, ψ )

Merge contiguous (n-1)--dimensional
regions between the wth and (w-1)th (n-1)-
dimensional image, using ψ . The output is

the updated Equivalence Table.
Label_Regions(� )

Assign final region labels to the regions that
contain seeds satisfying � . The remaining
regions are relegated to the background. The
output Equivalence Table contains the final
region labels.

Figure 3. 2D SymRG. The region growing starts with
row#1 and record regarding information in the region
table. The dash arrow-headed lines represent 1D-
growing process. Intermediate regions enclosed by ‘<’
and ‘>’ satisfy the criteria for region#1, while those
by ‘[’ and ‘]’ satisfy the criteria for region#2. The
solid-arrow-headed lines represent merging between
regions on consecutive rows. The merging updates the
equivalence table that associates equivalent regions.
(p,q) above or below a dashed line denotes the
intermediate region ID (p) and equivalence region ID
(q). Please note that intermediate region#1 and #4 can
merge because they have an overlapping segment
[X21,X12] and satisfy the criteria for region#1.
However, intermediate region#2 and #5 cannot merge
because they satisfy criteria for different regions,
although sharing overlapping segment [X23, X14].
The information of the final desired regions is stored
in the equivalence table.

The algorithm shows that SymRG segmentation
may sequentially scan through the image with
two passes. The first pass performs region
growing and merging, and the second pass
defines the final region labels. It also shows the
implementation of the algorithm can be x, y,
z, …, etc., separable, and thus enables
parallelism and faster computation. The other
implementation issues have been addressed in
Ref. [19,18]. Besides, because the visited point
in the first pass won't be needed until the second
pass, SymRG segmentation requires only a few
rows of the image available plus a small amount
of working buffer to maintain the region and
equivalence tables. Most portion of the image
can be stored in the disk media for later use,
without suffering significant disk input/output
overhead. We demonstrate SymRG efficiency in
Section V.



Figure 4. General 2-D Symmetric Region Growing
algorithm.

Figure 5. General 3-D Symmetric Region Growing
algorithm.

Figure 6. General N-dimensional Symmetric Region
Growing algorithm.

V. Experimental Results And Other
Applications

We will also give an example of implementing a
previous region--growing algorithm in a SymRG
way [7,19,18].

SymRG proposes for various region-growing
algorithms a designing paradigm that facilitates
performance improvement. In this section, we
implement the algorithm shown in Ref. [7] by
means of SymRG approach, and demonstrate its
time and memory efficiency. We will also show
SymRG applications to the other image-
processing modules: connected component
labeling and cavity deletion.

A. Experimental Results

The experiments were performed on both a
SunTM machine (Solaris© 2.5.1, CPU: 250MHz)
and a PC (Windows© NT 4.0, CPU: 400MHz).
The human-liver image (Figure 7(a)) is an 8-bit
3D image from an EBCT scanner. The rat-liver
images [19,18] are all 16--bit 3D Micro-CT
images.

(a) Original image (b) Segmented (c) Surface rendering

Figure 7. Coronal (x-z) maximum-intensity projection (MIP)
3D human liver images (24.4MB) with their bile ducts
selectively opacified with contrast agent. Dimensions:

218389302 ×× . mmzyx 586.0=∆=∆=∆ .

Figure 7(b) and (c) are the segmented result and
its corresponding surface rendering. We
compare the segmentation time for SymRG
against previously proposed method [7] and
demonstrate the quantitative results in Figure 8.

humliv ctr01 ctr02 ctr03
Past on Sun 63 86 127 147
SymRG (1) 34 51 59 69
SymRG (2) 4 8 8 9

Figure 8. Running time comparisons in seconds. The
past approach is an implementation proposed in Ref.
[7]. SymRG(1) is performed on a SunTM machine that
has one 250MHz CPU running Solaris© 2.5.1, while
SymRG(2) on a PC that has a 400MHz CPU running
Windows© NT 4.0.

One of the most significant strengths of SymRG
is that it allows efficient memory usage. If the
neighbors of the current voxel is within a 333 ××
cube. The proposed algorithm requires 3 original
and 3 working slices of the image plus the
memory needed by the region and equivalence
tables.

Each entry of the region table requires 18 bytes
to store region-related information. Each entry
of the equivalence table uses 24 bytes for storing
information plus 2 bytes for each of the
corresponding equivalent regions. The number
of entries in the region and equivalence table
depends on the number of the intermediate
regions during the process. For an N-bit image,
we have set the upper bound as 12 −N regions. It
implies that the largest number of the equivalent
regions is 12 −N . Therefore, the approximate



memory usage for performing a SymRG method
on an N-bit image is 6 slices of the image plus

12 −N × (18+24) + 2× 12 −N = 44 × 12 −N = 21
× N2 bytes. On the contrary, the algorithm of
Ref. [7] requires memory for 2 copies of the
images plus the region table. Figure 9 depicts a
quantitative comparison between these two
approaches.

humliv ctr01 ctr02 ctr03
Past on Sun 49.36 146.56 160.96 229.36
SymRG (1) 27.06 75.21 82.49 117.54
SymRG (2) 2.66 2.21 2.29 3.14

Figure 9. Memory usage comparisons in megabytes.
The past approach is an implementation as proposed
in Ref. [7]. SymRG (1) retains a copy of the image in
the memory to avoid I/O overhead, while SymRG (2)
keeps only six slices of the image in the memory
when the memory resource is limited.

B. Other Applications

The immediate applications of SymRG are
efficient N-dimensional connected component
labeling and 3D (or 2D) cavity deletion.
Connected component labeling is a module that
works on the binary image to form regions, and
is a special case of the region--growing module.
We can, therefore, alter the behavior of a
SymRG algorithm, by changing its parameter
settings, to yield an N-dimensional connected
component labeling that performs single pass
along the image and requires only partial of the
image in the memory at a time.

The purpose of cavity deletion is to
remove holes in desired regions. Holes or
cavities are defined as background regions that
do not touch the image boundary. Their
generation is virtually inevitable unless the
original image presents perfect contrast between
foreground and background – in which case a
simple thresholding method would be just as
efficient. A 3D (or 2D) cavity deletion
algorithm can also be obtained by adapting the
connected-component labeling algorithm. We
first compute 3D (or 2D) “background”
connected-components. In this case, if the
foreground is defined as 26- (or 8-) connected,
the background is 6- (or 4-) connected, and vice
versa. The background components that do not
touch the boundary of the image are considered
to be cavities and are then converted to the
foreground. The final resulting image then
contains solid regions.

VI. Summary

The contribution of this paper is that we define a

family of region-based methods as SymRG.
Their feature measures and growing criteria
yield a growing process that is insensitive to the
selection of the initial growing points. We
demonstrated the general design of a SymRG
method and its single-pass implementation by
giving an example 3D seeded region-growing
algorithm. Because of, for example in 3D, the x-,
y-, and z-separable implementation, SymRG can
gain more performance yields on pipelined or
parallel machines.

By applying more inclusion criteria ( � ) that
preserve the symmetric property, we can design
more sophisticated SymRG algorithms. When
coping with local discontinuity of a region
caused by imperfect image formation, we can
evaluate the neighborhood measure
( ∑ ≠∈

=
qppNq

qvpNbr
),(

)()( , where p is current

point of concern and N(p) is the set of p's
neighbors defined by the a given window size)
such that neighboring points share similar
measures to fill the local breaking on a region.
We can also specify spatial information for
exclusion criteria � , such that certain portion
of the image is ignored during the region--
growing process.

We have also shown the by-products of the
SymRG design: efficient 3D connected
component labeling and 3D cavity deletion. By
adjusting the parameters, the proposed example
SymRG algorithm in Section V can even perform
as a threshold-based method.

The limitation of the proposed implementation
of SymRG is that we store the region labels back
to the original image. The maximum number of
regions of an M-bit image is thus 2M-1, the other
one for the background.

Our future research includes (1) more studies on
feature measures and growing criteria; (2) lift of
the upper-bound of the number of regions; an
inactive region's label could be assigned to a
newly constructed region - an advantage of the
single-pass implementation.
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