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Abstract

The god of image segmentation is to partition a
digital imageinto digoint regions of interest. Of
the many proposed i mage-segmentation methods,
region growing has been one of the most popular.
Research on region growing, however, has
focused primarily on the design of feature
measures and on growing and merging criteria
Most of these methods have an inherent
dependence on the order in which the points and
regions are examined. This weakness implies
that a desired segmented result is sensitive to the
sdlection of the initiad growing points. We
define a set of theoretical criteria for a subclass
of region-growing algorithms that are insensitive
to the sdection of the initial growing points.
This class of agorithms, referred to as
Symmetric Region Growing, leads to a single-
pass region-growing approach applicable to any
dimensionality of images. Furthermore, they
lead to region-growing algorithms that are both
memory- and computation-efficient.  Finaly,
by-products of this general paradigm are
algorithms for fast connected-component
labeling and cavity deletion. The paper gives
complete theoretical results and 3-D image
examples.

K eywor ds: image segmentation, region growing,
three-dimensional image analysis, connected-
component analysis, region-based segmentation

. Introduction

The god of image segmentation is to partition a
digital imageinto digoint regions of interest. Of
the many proposed image-segmentation methods,
region growing has been one of the most popul ar
[1,6,8,10,11,20]. Region growing methods
generaly require the desired regions to be
homogeneous with respect to certain pre-
specified features. An example is the well--
known split-and-merge approach [9,13]. This
approach iteratively applies region splitting and
merging operations to form a segmented image.
The intermediate decisions on splitting and

merging are governed by the homogeneity of the
regions being constructed.

Research on region-based segmentation
methods has focused on either: (a) the design of
feature measures and growing/merging criteria
[1,2,3,7,8,14,16,20] or (b) algorithm efficiency
and accuracy [4,13,19]. Most of these methods,
however, have an inherent dependence on the
order in which the points and regions are
examined [1,6]. This weakness implies that a
segmented result is sensitive to the selection of
the initial growing points (or seeds). A region-
based segmentation method can have this
problen because its measured feature
information  adaptively changes as the
segmentation process progresses. For example,
most seeded region-growing processes only add
a new point to a region if its corresponding
feature measures are Smilar to those of an
adjacent existing region; after this new paint is
added to the region, the region's feature
measures change. Therefore, different initid
growing point assignments lead to different
values for evolving region information.

Region-based methods often are also
computation and memory intensive. For
example, the three-dimensiona (3D) agorithms
of [7,16,17] operate as if they are x-, y-, and z
inseparable  (hence  requiring  Sgnificant
computation) and demand considerable memory
(e.g., the entire image, plus another copy of an
image buffer for storing region labels).

We propose the concept of Symmetric
Region Growing (SymRG). Region-growing
algorithms that abide by the theoretical criteria
defining SYymMRG are insensitive to the initial
growing points and initial conditions set forth
for segmentation. These criteria, defined in
Section |1l, lead to fast single--pass growing
algorithms. Such agorithms can be built for any
image dimensionality, as discussed in Section V.
Furthermore, as indicated in Section V, the
SYmMRG paradigm leads to efficient algorithms
for 3D connected--component labeling and 3D
cavity deletion. Also, as shown in Section V,



SYmRG agorithms are both memory- and
computation-efficient.

I1. Notation And Problem Statement

Consider a digital image | defined on an n-
dimensional discrete (digital) space Z"; i.e,
| e Z". The goal of image segmentation is to
partition the digital image | into M digoint
regions of interest R, i=1,...,M , where the
final segmented image Stakes the form [10]:

M
S=|JR,wheeR NR, =gfori= | 1)
i=1
Assume region Ry is reserved for the
background (generally set to “0” in the final
segmented image). Also, assume without |oss of
generdity that each region of interest R,
i=1...,M , conssts of one connected

component. (In practice the individual regionsin
S are distinguished by region labels [5,15].) In
the theory of relations, the segmentation S is
formally called a partition of set | and each of
the digoint regions R congtitute blocks of the
partition [12].

Let lower-case quantities, such asa, b, p, and g,
represent image pointse | . An image point is
caled a pixel in two-dimensional (2D) images
and a voxe in 3D images [15,17]. Let upper-
case gquantities, suchas R, |, S A, and B denote
sets of points in z". The quantity f(p)gives

the intensity, or gray-level, value of image point
pel .

If two image points a and b are connected, then
a least one path (or ordered sequence of
connected points) exigts between them [5]. Let
the notation p, represent such a path.

Alternately, let the notation (a, p,, p,,---, P,,b)

represent a particular path between a and b,
where point a is a neighbor of point p;, pyisa
neighbor of p,, etc. For this paper, al pointson a
path must lie in the same region of S i.e, if

aeR,then peR, p,eR, ..., beR . In
2D images, connectivity and neighbors are
defined using ether 4-connectivity or 8-
connectivity [5]. Analogoudy, for 3D images,
6-connectivity or 26-connectivity define such
concepts [17].

Focusing the segmentation process to region
growing, the segmented image (Equation 1) can
be represented as

S(I,RG(y),S) ZDR )

where | is the image under consideration,

RG(y) denotes a region-growing algorithm
governed by measure and growing criteria i,
and S represents criteria for defining the initial
growing points, or seeds, for regions. A seed is
an image point that is known to beong to a
particular region and begins the construction of
the region. The collection of measure and
growing criteria ¥ can be viewed as consisting
of two components. y </ x> . / Specifies
properties that non-seed points must have to be
included in evolving segmented regions. X
specifies criteria for excluding certain image
pointsfrom all regions of interest.

In general each sat of criteria /, X and &
consists of a predicate composed of Boolean
operations of feature measures. Without loss of
generality, the pair (RG(y),S) conditutes a
complete image-segmentation algorithm based
on region growing. The operations or feature
measures are combined to form a complete
predicate for /, X and &, using the standard
algebraic operators {v,A,~} , where “ v " is
logical OR, “ A" is logical AND, and “~" is
complementation. Thus, valid predicates for ¥
and & are defined over a Boolean algebra. The
excluson criteria X can, of course, be easly
trandated into additiond criteria for /. But, as
shown in the example below, the use of / leads
to more intuitive segmentation agorithms.

evolve regions evolve regions

1—»[SandX] ¢—|I|—‘—> SU,RG(Y),S) | —>|E|—> SURG(Y).S)
@ (b)

Figure 1. Processing flow for region growing: (a)
genera region-growing algorithm; (b) aternate flow
possible for a symmetric region-growing algorithm. |
is the input image, s specifies the seed criterig,
w=<1,x > Specifies the region growing criteria, and
S(1, RG(y), S) isthefina segmented image.

Figure la illustrates the flow for segmenting
image | using the segmentation agorithm
(RG(y),S) - Seeds are first defined for the
regions R, i=1...,M . Next, the region-
growing criteria y =</, X > ae iteratively
applied to construct the evolving regions. The
growing process terminates when application of
the region-growing agorithm produces no
further changes to the evolving segmented
image. The final result is s(1,RG(y),S) . The
following simple example illusrates a
segmentation agorithm.

Example: Condder the problem of segmenting



two regions of interests from an 8-bit digita
image |. Suppose region Ry contains points
centered about gray-level value 100, R, contains
points centered about gray-level value 200, and
all remaining points are assigned to the
background Rs. Then, a possible segmentation
agorithm (RG(y),S) isasfollows:

1. Seed criteria §={5,,8,} , where
s, = “qisthefirst point in | such that f(q) =

100"

SZ
200"

2. Growing Criteria y =</, X >:

“qgisthe firgt point in | such that f(q) =

(8 Inclusion criteria 7={/
where

/,,="| f(q)—-100k 20" :

1y, ="Apath P, exists”

/,,="| f(q)—200[ 20" ,

/5, ="Apath P, exists”

(b) Exclusion criteria x =" f(q) <10".

11v/12v/21v/22} !

3. RG(w):

(@ Find seed points g, € | satisfying s,
and g, e | satisfying s, . Assign ¢,
toR;and p to Ry in S(1,RG(y),S) -

(b) For eachpoint ge I,

If 1, A1, =TRUE, @SgNqtO Ry in
S(I,RG(y),S) -
Elseif /,, A1,,=TRUE, 880N qtOR in
S(I,RG(y),S) -
Elseif x =TRUE, assignqto Rz in
S(I,RG(w),S) -
() Iterate (b) on points in | until no

further changes occur to the
evolving s(1,RG(y),S) -

(Many other agorithms, of course, are possible
for the example above.)

Since we are currently leaving open the
algorithm flow for the region-growing algorithm
RG(s) , the par (RG(y)S) does indeed
represent a genera region-growing agorithm.
Some region-based a gorithms may not seem to
fit the framework of (RG(y),S) @ first glance,
but they can be transformed into (RG(y),S) -
For example, the split-and-merge agorithm
actualy performs the process of iteratively
searching the entire image for initid growing
points or seeds (splitting) and then growing back
regions of interest (merging) [9].

The seed criteria & can consist of a st of

criteria that implicitly specify seed points for
regions. Equivalently, & can aso be specified as
an explicit set of seed points, such as.

A={a,...,a,,} | (3

where, in general, set A contains one seed point
per region of interest. Point a; acts as the initial
growing point, or seed, for Ry, &, is the seed for
Re, ...,and a, , istheseed for R, .. Noseedis
needed for the background region Ry, as all
points not assigned to a "true’ region of interest
R.,i=12,...,M -1, are assumed to be “relegated”
to the background. Each point of an explicitly
defined seed set, such as A in (Equation 3), is
known a priori to belong to a particular region.
If A contains additional points beyond (Equation
3), then it is assumed that these points are
already assigned to one of the evolving regions
R,i=12...M-1 . Using the seed criteria
(Equation 3), the segmentation (Equation 2) can
be stated equivaently as

s0.R6(),4 =R @)

For the remainder of this paper, we will assume
that seed criteria & are converted to an
equivalent seed set such asA.

Consider now a different set of initial growing
points given by

B={b,,....b,} |1 ©)

where b, acts asa possible seed for Ry, b, acts as
a possible seed for R, etc. Suppose this set
produces the segmented image

s(1,RG(y).B) =R, (6)

i=1

R istheregion grown from by, R istheregion
grown from b, etc. In genera, for
i=12,...,M-1 a #b and R=R,. In this
paper, the gatement

S(I, RG(w), A) = S(I, RG(w), B) (7

means that R =R, for i=12....M -1, per
(Equation 4) and (Equation 6). If two different
segmentation  algorithms,  (RG(y),A) and
(RG(y),B) , satisfy Equation (7), then they
produce equivalent (identical) segmentations of
image |. Figure 2 schematicaly illustrates many

of the concepts defined thus far for a four-region
problem.



Figure 2. Depiction of the region-growing process for
a 4-region segmentation problem. R, R,, and R; are
the segmented regions of interet and R, is the
background. The points a; and b, are possible seeds
for Ry, & and b, are possble seeds for R,, etc. The
dotted lines give examples of valid paths 7, between

corresponding points g and by. This figure illustrates
the case where g, and b lead tothe “same’ R; i.e,
they produce equivdent segmentations S of |, per
Equation (7). But, thisis not necessarily the case in
generd.

The following important question arises. What
ae the requirements on region-growing
agorithm RG(y) S0 that
S(I,RG(y), A) = S(I,RG(y),B) ? That is, what
congtraints are required on a region-growing
algorithm, so that the algorithmis guaranteed to
give identical segmentations when starting with
any valid seed st? Section Il answers this
question and aso provides the theoretical
motivation  for  devisng an  efficient
implementation of region growing.

[I1.  Theoretical Development

Region-based agorithms build regions from the
seeds by following a certain evolving growing
sequence. |f the seeds change, then the resulting
growing sequence changes. Our question is
whether different seed sets, Equation (3) and (5),
and growing sequences lead to the same
segmentation results. If not, what constraints can
be placed on an agorithm, so that it generates
the same segmentation regardiess of the seed
sets? That is, what congraints must a region-
growing agorithm have to be invariant to
changes in the seed set? We assume that the
goa of image segmentation for image | is to
form the partition of M regions per (Equation 1).
We assume that any seed, such as A, used to
achieve (Equation 1) must have M digtinct seed
points, such a set will be called avalid seed st.
This section describes the congtraints necessary
to make a region-growing algorithm invariant to
the seed set. These constraints lead to the
concept of symmetric region growing (SymRG).

Subsection  I1I-A  introduces basic
definitions and theoretical condraints. These
constraints lead to the concept of symmetric
region growing. Additional theoretical results of
Section |11-B give guidance on how to devise a
symmetric  region-growing algorithm and
motivate the genera n-dimensional memory-
and computation-efficient implementation of
symmetric region growing described in Section
V.

A. General Definitions and Theorems

DEFINITION 1: Po(I.LRG(W)) is defined as the
set of all possible paths {Pw:Ps:Pu-} between
points a and b, where ga,be | , point ais a seed
used to grow region Rc | using RG(y) and
be R. []

If seed a in conjunction with region-
growing algorithm RG(y) produces a region R

that does not contan point b, then
P, (I,RG(y)) = ¢ - Als0, by the assumption that R

consists of one connected component, if be R,
then at least one path p, $ must exist from seed

a to image point b. Within the context of
relation theory, if a path exists from a to b, then
a and b must be in the same block (region) of the
partition Sof 1.

DEFINITION 2: p,_(1,RG(y)) IS defined asthe

set of all possible pathsfrom pointsin seed set A
to pointsin set B:

_IU"P,, (1L,RG(y)), if Vi,P,, (1,RG(y)) = ¢
P (1, RO(W) =1 it " )
AB(I R (1//)) { : @, 2thawise

where A and B are given by Equations (3) and
(5). []
The points of A and region-growing agorithm
RG(y) define a segmentation s(1,RG(y),A) -
The set p,_ (1, RG(y)) enumerates all paths from
each point $ a e A to its corresponding point
b e B, provided that at least one path exists to
each b . P, (I,RGw)) = ¢, If any point a ¢ A
(responsible for generating region R per
Equation (3)) does not have at least one path Fas
to its corresponding point b ¢ B . If for some
point 3 € A, no path Pu exists, then beB,

This immediately implies that
S(1,RG(y), A) = £(1,RG(y), B) because, per

Equation (6), b e R ad R #R'-
DEFINITION 3: Thenotation
A—FW _ BisequivalenttoP (I, RG(y)) = ¢



The quantity A—R® _, g is a binary relation
from sat A to set B over the region-growing
operation RG(y) [12]. ]

The relation A—®w_, g implies that there is a
way to form a least one path in s(1,RG(y), A)
between each initia growing point in A and its
corresponding  point in B. Otherwise,
A—Fw g is fadse Note that A—F®w ,pg
does not imply B—ReW)_; A,

LEMMA 1: The binary relation —=%) s
reflexive and transitive. That is, for any seed set
Acl,

A—Few) s A (Reflexivity). Also, for any seed
sets ABCcl, if A—FW ,B and B—FW ,C,
then A—feW _,c (trangtivity).

Proof: (Reflexivity) It istrivia that oA—Rew) 5 A,
because p,, (1, RG(y)) contains the trivia one-
point paths p,_,i=12,...,M -1

(Trangtivity) Given A—FeW g and
B—W yc. Then, foral j=12,...,M -1, there

XSS p —(a,..b)e

P, (I,RG(y) ad

Thus, p,_(1,RG(y)) = ¢, OF A—W 5. L]

Now, consider a general binary relation /£ on
domain

D, such that R : D — pD. The binary relation R
is said to be symmetric if /Rs < rRs, Vrc D
and s c D [12].

The concept of a symmetric binary relation can
be applied to region growing.

DEFINITION 4: Binary relation — =% s
symmetric if,

V valid seedsets A, B c |, A—2%)_; Bimplies B—W

If —FW) 5 is symmetric, we denote it as
ROW) o o ( SMRGW) B

In general, the binary relation — W) s of
course, not symmetric [12]. However, if RG(y)
satisfies A«few B for al valid seed sets
ABcl , then RG(y) is caled a symmetric
region-groning algorithm and denoted as
SYMRG () Furthermore, given
S(I,9YmRG(y),A) in the context of the

segmentation (Equation 4), DEFINITION 4
implies that we can arbitrarily choose sets

X ={Xseres Xy o} and Y={Y, Yy} where

A Proof:

X.y,€ R < S(I,9mRG(y),A\R, and form a
bijection (or oneto-one and onto) relation
between X and Y. Also, by LEMMA 1 and

DEFINITION 4, « ™0 5 s an
equivalence relation and the segmented regions
R,i=12...,M, $ induced by smRG(y). ae
equivalence classes [12].

LEMMA 2: Let p and g be any pair of pointsin
the same region R c s(1,RG(y),A) for some
i=12,...,M -1 per Equations (3) and (4). If
RG(w) is symmetric  (i.e, RG(y) can be
replaced by gSmRGy) In (4), then
Poo (1, SYmRG(y)) = ¢ -

Proof: Suppose p,qe R c S(I,RG(y),A) for
some i =12....M —1. Then, for seed & € A (see
3), P, (1, SMRG(y)) # ¢ and
P, 9MRG(y)) # ¢ - BecAUSe SMRG(y) IS
symmetric, P, (ILYMRG(W) # ¢ - Thus, by
LEMMA L, p_ (1, 9mRG(W)) # ¢ - L
LEMMA 2 implies that if a symmetric region
growing algorithm is used, then any point pin a
region can be used to reach (grow) any other

point $ g $in the sameregion. Thisleadsto the
following important result.

THEOREM 1: Consder a symmetric region
growing algorithm smRG(y) . such that

S(L,SYMRG(Y), A= 'R in the context of
Equations (3) and (4). Suppose a e A IS
replaced by an arbitrary point P€ R to form an

aternate seed set A . Then, in the resulting
segmentation R < S(I, SymMRG(y), A) » the region
grown frompis R .

Replace a with
pe R c S(I,SymRGEw),A) in A This gives the
new seed set A={a,a. pa..a.}, Generate
a segmentation with this new seed set:
s(1, ymRG(y),A) = ULR , where a; produces
R, s---» &-1 produces R, P produces R , etc.

Consider a point reRr Then,
P, (I, SMRG(y)) # ¢ By LEMMA 2,
Further,

P (1, SYyMRG () # ¢

P (1,YMRG () = ¢ -
(Trangtivity), P, (I, YMRG(y)) # ¢ - Hence, at
least one path exists from point 3 e R t0r e |§

So, by LEMMA 1



Therefore, |§ =R- []

THEOREM 1 states that if a symmetric region-
growing algorithm is used, then any point p in
region R can be used as a seed to grow the
region R and that the resulting grown region is
always the same one. In fact, any and all seed
points a e A, i=12,...,M -1, can be replaced
by any point p e R < S(I,9mMRG(y),A) tO
foom a new seed set X and the resulting
segmentation  S(I,ymRG(y),X) Will  be

equivalent to S(I, SymRG(w), A) -

THEOREM 2: Given symRG(y) and seed sets
A.Bc |, asinEquations (3) and (5).

Pe (L SYMRG(y)) ¢ <
S(I, YMRG(w), A) = S(I, SYMRG (), B) - 8
Proof: We use the definitions of A, B,
S(I,YMRG(y),A) . and S(1,mRG(y),B) .
given in (3-6), with RG(y) replaced by
SYMRG(y) in (4,6).
( = ) Given

S(I, YmRG(y), A) = S(I, YMRG(y), B) » Which is
(). From (4), (6), and (7), R=R .

i=12,...,M -1. By LEMMA 2, for any pair of
seed points (a,b), i =12,...,M -1, drawn from
A and B, a least one P, exists. Therefore,

P (I, YMRG () # ¢, OF A—YTEW) 5B

(=) Given p, (I, 9ymRGy)) #¢ - Consider an
arbitrary point pe | . There are two cases to
consider: (1) foreground - for some
i=12,...,M -1, peR C S(I,9mMRG(y),A) ;
(2) background - pe R, < S(I,SyMRG(y),A) -
Case (1): foreground - Suppose for some
i=12,...,M -1, pe R C S(I,9mMRG(y),A) -
Then, P, (I, ymRG(y)) = ¢ . folowing the
definition of seed point & in (3). Also,
P (1LYMRG () % ¢ A P, (1, 9mRG(Y)) # ¢ -
By LEMMA 1, —Y™CW) 5 is transtive.
Hence, Py, (I, yMRG(y)) # ¢ - Therefore, pe R
of S(I,SymRG(y),B), per (6).

Case (2): background - Suppose pe R, <

S(1, SymMRG(w), A) Suppose for  some
i=12...,M -1, there exists b ¢ B, such that
Pyo(l,YMRG(y)) =¢ : 1€, peR c
S(1,9YmMRG(w),B) . As we  know,

P, (I, 9MRG(y)) #¢ - Thus by LEMMA 1

(trangtivity), Py (I, 9YMRG(y)) ¢ which
This contradicts the

Hmce! Vbl eB ’
P, , (I, SYMRG(y)) = ¢» Whichimplies pe R, .

implies that pe R .
assumption.

Thus, vpel, if pe R < S(I,9MRG(y),A)
then peR < S(I,YmMRG(y),B) , which
implies (7). []

THEOREM 2 states that if a symmetric region
growing agorithm produces a segmentation of

image | of the form s(1, RG(y), A) = USR , then,

for any of the M-1 regions of interest
i=12,..,M -1, ay point pe R can be used as

a seed point to produce the segmentation
S(I,RG(y), A) - In fact, THEOREM 2 eiminates

the importance of the set of initid growing
points the set A (or criteria &) has no influence
on whether a region-growing algorithm is
symmetric or not. Further, for a symmetric
region-growing agorithm, the order that points
are visited during the growing process does not
matter. The subsection below proposes
corollaries that assert these points and heps
bridge the gap from theory to practical
implementation.

B. Practical Conditions for Symmetric Region-
Growing

COROLLARY 1: Consider SymRG(y) and A
such that (1, ymRG(y),A) = UaR . Instead of

usng A to produce the segmentation
S(1, SymRG(w), A) , consider using
B={b,...,.b, } » where p e R and b, is the
first point of R encountered while scanning
image |.  Then, S(I,SmMRG(y),A) =
S(I, SymRG(y),B) -

Proof: Follows immediately from THEOREM 2.
]

COROLLARY 1 reveds that the fird
encountered point of a region (e.g., the extreme
upper left corner point of the region) can be used
to grow it with a symmetric region-growing
algorithm.  This concept helps in improving
algorithm efficiency. Yet, before segmentation
proceeds, no regions exist, and, thus, the firg
encountered point of each region is not
necessarily known. The following corollary
solves this problem.

COROLLARY 2: Consider (SymRG(w),S), a

complete segmentation algorithm based on
symmetric region growing. Scan the digita
image of interest, I, sequentialy. Grow regions



from each scanned point by applying criteria
=</ X> until dl image points have been

visited. Examine the resulting regions using S .
If any point p of aregion satisfies criteria S for
region R , then assign the region to R ;
otherwise, relegate it to the background R, . The
resulting segmented image is
S(I, YMRG(y), S) -

Proof: Let B represent the sat of firg
encountered pointsh e R, i=12,...,M -1, of

the eventud regions of interest. From
COROLLARY 1, g(1,9mMRG(w),B) =

S(I, YMRG(y), A) = UR . We will now instead
segment | by applying SymRG (i) use the seed
criteria to do the fina region labeling. Assume

thls produces results in preliminary regions
. The seed criteria S (or A) is now

used. Denote thefirst point of each region R’ as
C,i=1...,.,N-1. From COROLLARY 1, no
pair of points in B are in the same region, so
N>M . Also, because the c 's are the first
points of the regions R, i=1,...,N-1, and by
THEOREM 1, we canre-label ¢, and R’ so that
¢ =b and R = R ’
Furthermore, Ry :UN R- R, does not contain

any seeds, so does any of theregions R, ,..., Ry
We can therefore form R, by gathering regions
R,,..R,ad R, =R,. L]

If the region growing agorithm is
symmetric, COROLLARY 2 dates that one can
scan and grow regions first; after the growing
process, one then applies S to label the “useful”
regions. All unlabelled regions are merged into
the background. This idea, an attribute of
symmetric region-growing agorithms, helps in
computation efficiency, as shown in Figure 1b.
Because of THEOREM 2, the seed criteria §
has no influence on whether a region-growing
algorithm is symmetric or not. It is sufficient to
focus on the properties of y =< /7, x > to define

a SYMRG. Recdll that Y isa composite of
Boolean operations. y can be represented as a
single predicate, per the definition bel ow.

DEFINITION 5: For P9€ ! 1t g(p,q) be a
predicate representing the growing criteria y .
Then,

g(p.g) =TRUE = p—=¥—q
Thus, for any point pe R < I , aneighbor qwill

beincludedin R iff g(p,q) = TRUE. []

THEOREM 3: (Symmetric Criteria) For g(e,e)
representing ¥ of region-growing agorithm
RG(y), if g(e,®) issymmetric—i.e, g(p,q) =
g(a, p)» Vp,ge | -then RG(y) issymmetric.

Proof: Consider sets A and B, per (3) and (5).
Suppose A«=¥ B ; i.e, g(a,b)=TRUE,
vacA ad heB ad p (Row)=s -
Assume g(e,e) IS Symmetric. va e A, beB,

and g(b,a)=TRUE . implying
Py, (1.RGW)) % ¢ - Thus, by THEOREM 2,
RG(y) iSsymmetric. []

THEOREM 3 shows that if i is a symmetric
function, the region-growing algorithm is
symmetric. Since iy canhbedenotedasy =/
X , then, by the properties of a Boolean algebra,
issymmetric if and only if both 7 and x are
symmetric [12]. Similarly, each individua
criterion of / and X must be symmetric.

Intuitively, for a symmetric region growing
algorithm, 7 and x should only consist of
symmetric operations. Also, the image features
employed by 7 and X should not depend on the
previous states of the features. Otherwise, the
function employing the feature cannot in genera
be symmetric. Thus, the growing process does
not depend on the order that points are scanned.

The region growing for a traditional RG(y)
implies an iterative or recursive process. It isnot
true for SymRG anymore, as the regions can
validly grow sequentidly as suggested by
COROLLARY 2 and the agorithm collects
region information incrementally therein for
fina region labeling in reference of the seed
criteria

Below are examples of common region-
growing functions. The labels indicate whether
or not they are symmetric.

g(p.a) =0, <[ f(p)-f(a) Ko, Symmetric

g(pe)=o0,<0, Symmetric
g(p.e) = f(p)_luN(p) Ko Symmetric
9(p.a) =| f(q) -,y Ko Not symmetric

p and g are neighboring image points. ¢, , o,,
o, ad g, ae parameters. #ne denotes the
average gray-level value of point p's neighbors,
and 7. denotes the average gray-level vaue

of the points condtituting p's member region.
Clearly, functions of the form g(p,s) = g(p) .

which only depend on one pixel, are symmetric.



Note that the region-growing algorithm given in
the earlier example, with
w=1y Ay Ay Ay A X 5 ISSYymmetric.

V.  General SYymRG Algorithm

THEOREM 3 states that a region-growing
algorithm is symmetric if and only if al criteria
condtituting y are symmetric functions. If the
region-growing agorithm is symmetric, then
COROLLARY 1land COROLLARY 2 suggest
that the implementation of the SymRG can grow
regions from the first region points scanned and
then apply the seed criteria S afterward to label
the final regions. This approach is invariant to
which region point is scanned first. It adso
motivates a general N-dimensonad SymRG
algorithm that is computation- and memory-
efficient. Thisalgorithm appears below.

Assume that an N-dimensiond image | has
image points (i, j,k,...w,...) , where i is the
index of a point long arow, j denotesrow index,
k denotes dice number (for 3D images), etc.
The gray-level value of paint (i, j,k,...w,...) iS

given by 1, j,k,...w,...). Growing criteria y
and seed criteria S are given. Two global data
structures are necessary:

Region Table: Each entry in the region table
contains region ID, region bounding box,
number of points, number of O-to-1 crossings,
number of seeds, etc., for aregion.

Equivalence Table: The equivalence table is
incrementally constructed after two
homogeneous regions merge. Each entry in the
table represents a growing region and maintains
alinked list of region ID of “equivalent” regions
and composite region information gathered from
the region table plus the status of this entry. The
status of a region may be growing, roi, or
undesired. The growing regions are pending for
final labeling. The roi regions are those finished
growing and contain seed points. The undesired
regions on the other hand contain no seeds. The
following functions are used:

Construct_1D_Regions(j, i)
Construct 1-D regions (actually 1-D line
segments) on the j" row by applying growing

criteria ¥ . The output is the updated
Region Table.

Region_Merge(n, w, )
Merge  contiguous  (n-1)--dimensional

regions between the w" and (w-1)"" (n-1)-

dimensional image, using . The output is

the updated Equivalence Table.
Label_Regions(S)

Assign final region labels to the regions that
contain seeds satisfying & . The remaining
regions are relegated to the background. The
output Equivalence Table contains the final
region labels.

AL, 2, B3,

row#1
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Figure 3. 2D SymRG. The region growing starts with
row#1 and record regarding information in the region
table. The dash arrow-headed lines represent 1D-
growing process. Intermediate regions enclosed by ‘<’
and ‘> satisfy the criteria for region#l, while those
by ‘[ and ‘] satisfy the criteria for region#2. The
solid-arrow-headed lines represent merging between
regions on consecutive rows. The merging updates the
equivalence table that associates equivalent regions.
(p,g) above or bdow a dashed line denctes the
intermediate region 1D (p) and equivalence region ID
(9). Please notethat intermediate region#1 and #4 can
merge because they have an overlapping segment
[X21,X12] and sdtisfy the criteria for region#l.
However, intermediate region#2 and #5 cannot merge
because they satisfy criteria for different regions,
although sharing overlapping segment [X23, X14].
The information of the final desired regions is stored
in the equivalence table.

The agorithm shows that SymRG segmentation
may sequentially scan through the image with
two passes. The firgd pass performs region
growing and merging, and the second pass
defines the final region labels. It also shows the
implementation of the agorithm can be X, v,
z, .., €tc, separable, and thus enables
paralelism and faster computation. The other
implementation issues have been addressed in
Ref. [19,18]. Besides, because the visited point
in the first pass won't be needed until the second
pass, SYymRG segmentation requires only a few
rows of the image available plus a small amount
of working buffer to maintain the region and
equivalence tables. Most portion of the image
can be stored in the disk media for later use,
without suffering significant disk input/output
overhead. We demonstrate SymRG efficiency in
Section V.



Function 208yeRG (1, B 6 5]
J* Perform SymRG on a 2-D image */
For row j =0 ta N, — L
S Step throngh rows of 2-1 image 1, */
Construct 1D Reg ions|(j,u7)
If j > 1 Region Mergel2, 3.4
EndFor
Label Regiona(&]
End
Figure 4. Genera 2-D Symmetric Region Growing
algorithm.

Function 3D8yeRG(L, A7 o .5)
/F Perform SymBG on a 3-D volwnetric image */
Far slice & =10 to N, 1.
SF Step throngh each 2-D alice of 3-D image 1 ¥/
Do 2D8yeRG(T(K) G 00,8
¥ Perform 2-D region growing on &' slice of T, %)
If & > 1 Region Merge(d. k. o)
EndFor
Label Regions(&)
End

Figure 5. Genera 3-D Symmetric Region Growing

algorithm.
Funetion NDSysRG({, G 4,5

¥ Perform SymRG on an (N-D)-dimensional image */
For [ N-1)-dimensional image w =0 to N, - L

¥ Step through each (NV-1) «limensional image of T.%/
Do (N-1)DSyeRG({(w) FG 4 .5)
/¥ Perform (N-1)-D region growing on w'h

If w > | Region Mexge(NV w 1)

Label Regions(5)

End

Figure 6. Generd N-dimensiond Symmetric Region

Growing algorithm.

V. Experimental Results And Other
Applications

We will also give an example of implementing a
previous region--growing agorithm in a SymRG
way [7,19,18].

SymRG proposes for various region-growing
algorithms a designing paradigm that facilitates
performance improvement. In this section, we
implement the algorithm shown in Ref. [7] by
means of SymRG approach, and demonstrate its
time and memory efficiency. We will also show
SYmMRG applications to the other image
processing modules. connected component
labeling and cavity deletion.

(V-1) —dimensional image of 1.%/

A. Experimental Results

The experiments were performed on both a
Sun™ machine (Solaris® 2.5.1, CPU: 250MHz)
and a PC (Windows®© NT 4.0, CPU: 400MHz).
The human-liver image (Figure 7(a)) is an 8-hit
3D image from an EBCT scanner. The rat-liver
images [19,18] are al 16--bit 3D Micro-CT
images.

(c) Surface rendering

(b) Segmented

(a) Origina image

Figure 7. Corond (x-z) maximum-intensity projection (MIP)
3D human liver images (24.4MB) with their bile ducts
selectively opacified with contrast agent. Dimensions:
302x 389 218. AX=Ay=Az=0.586mm

Figure 7(b) and (c) are the segmented result and
its corresponding surface rendering.  We
compare the segmentation time for SymRG
againgt previousy proposed method [7] and
demonstrate the quantitative resultsin Figure 8.

humliv |ctrO1| ctr02 ctr03
Past on Sun 63 86 127 147
SYmRG (1) 34 | 51 59 69
SYMRG (2) 4 8 8 9

Figure 8. Running time comparisons in seconds. The
past approach is an implementation proposed in Ref.
[7]. SYmMRG(1) is performed on a Sun™ machine that
has one 250MHz CPU running Solaris® 2.5.1, while

SYMRG(2) on a PC that has a 400MHz CPU running
Windows® NT 4.0.

One of the most significant strengths of SymRG
is that it alows efficient memory usage. If the
neighbors of the current voxel iswithin a 3x3x3
cube. The proposed algorithm requires 3 original
and 3 working dices of the image plus the
memory needed by the region and equivalence
tables.

Each entry of the region table requires 18 bytes
to store region-related information.  Each entry
of the equivalence table uses 24 bytes for storing
information plus 2 bytes for each of the
corresponding equivalent regions.  The number
of entries in the region and equivalence table
depends on the number of the intermediate
regions during the process. For an N-bit image,
we have set the upper bound as 2" regions. It
implies that the largest number of the equivalent
regions is 2" . Therefore, the approximate



memory usage for performing a SymRG method
on an N-bit image is 6 dices of the image plus
2N X (18+24) + 2X 2Nt =444 X 2Vt =21
X 2" bytes. On the contrary, the algorithm of
Ref. [7] requires memory for 2 copies of the
images plus the region table. Figure 9 depicts a
guantitative comparison between these two
approaches.

humliv | ctrO1 | ctr02 ctr03

Past on Sun| 49.36 |146.56 |160.96 | 229.36

SYMRG (1) | 27.06 | 75.21 | 82.49 | 11754

SYMRG (2) | 266 | 221 | 229 | 314

Figure 9. Memory usage comparisons in megabytes.
The past approach is an implementation as proposed
in Ref. [7]. SYmMRG (1) retains a copy of the image in
the memory to avoid 1/0 overhead, while SymRG (2)
keeps only six dlices of the image in the memory
when the memory resource is limited.

B. Other Applications

The immediate applications of SYyMRG ae
efficient N-dimensional connected component
labeling and 3D (or 2D) cavity deetion.
Connected component labeling is a module that
works on the binary image to form regions, and
is a specia case of the region--growing module.
We can, therefore, ater the behavior of a
SYymRG agorithm, by changing its parameter
settings, to yield an N-dimensiona connected
component labeling that performs single pass
along the image and requires only partial of the
image in the memory at atime.

The purpose of cavity deetion is to
remove holes in desired regions. Holes or
cavities are defined as background regions that
do not touch the image boundary. Ther
generation is virtualy inevitable unless the
original image presents perfect contrast between
foreground and background — in which case a
simple thresholding method would be just as
efficient. A 3D (or 2D) cavity deetion
algorithm can also be obtained by adapting the
connected-component labeling agorithm.  We
first compute 3D (or 2D) “background’
connected-components.  In this case, if the
foreground is defined as 26- (or 8-) connected,
the background is 6- (or 4-) connected, and vice
versa. The background components that do not
touch the boundary of the image are considered
to be cavities and are then converted to the
foreground. The fina resulting image then
contains solid regions.

VI.  Summary
The contribution of this paper isthat we define a

family of region-based methods as SymRG.
Their feature measures and growing criteria
yield a growing process that is insenstive to the
sdection of the initiad growing points. We
demonstrated the general design of a SymMRG
method and its single-pass implementation by
giving an example 3D seeded region-growing
algorithm. Because of, for examplein 3D, the x-,
y-, and z-separable implementation, SymRG can
gain more performance yields on pipelined or
paralel machines.

By applying more inclusion criteria (/) that
preserve the symmetric property, we can design
more sophisticated SymRG algorithms. When
coping with local discontinuity of a region
caused by imperfect image formation, we can
evaluate the neighborhood measure
(Nbr(p):quN(p),MV(Q) , Where p is current

point of concern and N(p) is the set of p's
neighbors defined by the a given window size)
such that neighboring points share similar
measures to fill the local breaking on a region.
We can aso specify spatial information for
exclusion criteria X, such that certain portion
of the image is ignored during the region--
growing process.

We have also shown the by-products of the
SYMRG design:  efficient 3D  connected
component labeling and 3D cavity deletion. By
adjusting the parameters, the proposed example
SymRG agorithm in Section V can even perform
as a threshol d-based method.

The limitation of the proposed implementation
of SymRG isthat we store the region label's back
to the original image. The maximum number of
regions of an M-bit image is thus 2"-1, the other
one for the background.

Our future research includes (1) more studies on
feature measures and growing criterig; (2) lift of
the upper-bound of the number of regions; an
inactive region's label could be assigned to a
newly constructed region - an advantage of the
single-pass implementation.
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