
Fuzzy Robust Clustering and C Spherical Shells Algorithms

Tai-Ning, Yang Sheng-De, Wang
Department of Computer Science Department of Electrical Engineering

Chinese Culture University National Taiwan University
tnyang@faculty.pccu.edu.tw sdwang@cc.ee.ntu.edu.tw

Abstract

Clustering algorithms play an important role in
the field of pattern recognition. Most of the tra-
ditional clustering algorithms are hard clustering.
Some algorithms based on fuzzy set theorem have
been proposed recently. Some algorithms based
on the fuzzy clustering theory have been proposed
recently. They modify not only the winner but
also other prototypes for each input. Many fuzzy
clustering algorithms including GLVQ-F use the
membership from fuzzy c-means (FCM). Since the
objective function in FCM is constrained by a
probability premise, the total sum of the member-
ship shared by all classes for an input data must
be one. If the number of classes is large, the fuzzy
membership may be minute. It has been shown
that if the number of classes is large, the tradi-
tional clustering algorithms may be better than
the fuzzy ones. Moreover, the outliers that may
appear are not considered in FCM. We propose
a new family of clustering algorithms called fuzzy
robust clustering (FRC) without the above disad-
vantages. The size of updating prototype is in-
dependent of the number of prototypes and the
influence of outliers is reduced. We modify the
objective function and propose a robust algorithm
for the extraction of spherical shells. Artificially
generated data are used to test FRC.
1 Introduction

Clustering algorithms try to partition a set of
unlabeled input vectors into a number of sub-
sets(clusters) such that data in the same sub-
set are more similar to each other than to data
in other subsets. There are two kinds of unsu-
pervised clustering algorithms: hierarchical ver-
sus partitional. Hierarchical clustering generates
a sequence of nested partitions from the prox-
imity matrix. In social, biological, and behav-
ioral sciences, hierarchical clustering techniques
are popular because of the necessity to produce
taxonomies. Partitional clustering is used fre-
quently in the engineering applications such as
data compression and image segmentation. A sin-
gle partition of the data is generated in partitional
clustering. Clustering algorithms can also be di-
vided into two types: hard versus fuzzy. Hard

(crisp or conventional) clustering assigns each in-
put vector to exactly one cluster. In fuzzy cluster-
ing, a given pattern does not necessarily belong to
only one cluster but can have varying degrees of
memberships to several clusters. Many clustering
algorithms could be found in the related books
[1], [2], [3].

Recently the on-line competitive learning in
neural networks is often associated with the se-
quential partitional clustering [4]. The searching
and updating process for an appropriate proto-
type is considered as the competition between the
hidden neurons. It was pointed out that the basic
form of the competitive learning is the same as
the sequential version of hard c-means. Kohonen
[5], [6] proposed a competitive algorithm called
learning vector quantization (LVQ). LVQ attracts
a lot of attentions because of its simplicity and
efficiency. There are many variants of LVQ. For
example, Kohonen proposed two refinements, call
LVQ2 and LVQ3. Unfortunately LVQ suffers se-
rious prototype under-utilization problem.

The other parts of this paper are organized
as follows. In section 2, we review general-
ized learning vector quantization-fixed (GLVQ-F),
fuzzy algorithms for learning vector quantization
(FALVQ) and fuzzy c means (FCM). The follow-
ing section introduces our algorithm called fuzzy
robust clustering (FRC). Fuzzy robust c spherical
shells (FCSS) is propoesd in section 4. Section 5
contains the simulations. Section 6 is the sum-
mary.

2 Fuzzy clustering algorithms

Let X = {x1, x2, ..., xn} ⊂ Rm denote the input
sample set and c denote the number of nodes in
the output layer.

The prototypes V = {v1, v2, ..., vc} are cluster
centers, where vi ∈ Rm for 1 ≤ i ≤ c.

We found the inconsistent situation produced
by GLVQ for a certain scaling of input data and
proposed a modified algorithm called generalized
competitive clustering (GCC). This situation is
also analyzed by Gonzalez et al. [7] Another
modified algorithm called GLVQ-F is designed by
Nikhil [8] et al., where a new loss function is pro-

posed:

E(V,X) =
c∑

i=1

n∑

j=1

wij‖xj − vi‖2, (1)

where wij = (
∑c

r=1
‖xj−vi‖2/(m−1)

‖xj−vr‖2/(m−1))−1. wij is the
membership from fuzzy c-means (FCM). Using
the similar gradient descent approach as in GLVQ,
they derived the following algorithm. GLVQ-F
algorithm: the same as Competitive Learning ex-
cept(CL) the following updating formula.

Update each prototype:

vnew
i = vold

i (2)

+(
αt

m− 1
)(xk − vold

i)(m− 2)wij (3)

+(
c∑

r=1

‖xk − vi‖2/(m−1)

‖xk − vr‖2/(m−1)
)(2−m)w2

ij). (4)

The size of updating prototypes in GLVQ and
GLVQ-F is affected by c, the number of clusters.
According to the analysis by Gonzalez et al. [7],
the performance of GLVQ type algorithms may
considerably depend on the size of c. Initializa-
tion should be careful when using GLVQ-F. Since
the prototypes located at the same place updated
in the same way, different prototypes must be set
at different locations. From (2), the distance be-
tween the input and prototypes can’t be zero. So
it is better not to use a strategy to initialize the
prototypes with the input data. There are other
fuzzy clustering algorithms using the membership
from FCM, such as FLVQ [10], [11]. Karayiannis
and Pai [12] proposed another form of objective
function: They propose a new loss function:

E(V,X) =
c∑

i=1

n∑

j=1

wij‖xj − vi‖2, (5)

where wij = 1 if vi is the winner else wrj =
u(‖xj−vi‖2
‖xj−vr‖2). The derived algorithms are called

Fuzzy Algorithms for Learning Vector Quantiza-
tion (FALVQ) [12]. Different selections of weight-
ing function u lead to FALVQ1, FALVQ2, and
FALVQ3. Because the distance between current
input and its corresponding winner is a variable
of the weighting function for the losers, the ad-
justments are strongly affected by the distance
between the winner and current input. Moreover
the derived winner updating formula also includes
an influence term from the losers.

We will discuss the inappropriate influence of
the cluster number from the analysis of fuzzy c-
means [9]. Let us use U to denote the membership

Figure 1: Two clusters and one outlier.

matrix. The objective function in Fuzzy C-Means
(FCM) is:

E(V,X) =
c∑

i=1

n∑

j=1

uij
m‖xj − vi‖2. (6)

In the above equation, m ∈ [1,∞) is a weighting
called fuzzifier. The elements uij in the matrix U
satisfy the following constraints: :

constraint 1. uij ∈ [0, 1] for all i,j.

constraint 2. 0 <
∑n

j=1 uij < n for all i,j.

constraint 3.
∑c

i=1 uij = 1 for all j.

Bezdek [9] applied the technique of Lagrange
multiplier and derived the optimal membership
function,

uij = (
c∑

r=1

‖xj − vi‖2/(m−1)

‖xj − vr‖2/(m−1)
)−1. (7)

A simple example in Fig. 1 illustrates the prob-
lems caused by the probabilistic constraint. In the
FCM type algorithm, point A and point B may
have the same membership value. But apparently
point A is an outlier. Although point C and point
D are symmetric to the left cluster, their member-
ships are different. Probabilistic constraint forces
the total sum of the membership for each input
data must be one, so the outlier could not be dis-
tinguished. Since the total membership is shared
by all classes, this forces point D to transfer some
left class membership value to right class. If the
number of classes c is large, the fuzzy membership
may be minute. Moreover, this objective function
does not consider the situation when outliers ex-
ist.

3 Fuzzy robust clustering algorithms

If we simply relax the constraint 3 without mod-
ifying (6), a trivial solution in which all member-

ships are zero will be produced. A simple modifi-
cation may be like this

E(V, X) =
c∑

i=1

n∑

j=1

uij
m‖xj − vi‖2 + (8)

c∑

i=1

n∑

j=1

(1− uij)
m‖xj − vi‖2. (9)

Again, another trivial solution in which all mem-
berships are 1

2 is derived.
Now, we propose our objective function. As-

sume that there is a noise cluster outside each
data cluster. The fuzzy complement of uij , f(uij)
may be interpreted as the degree to which xj does
not belong to the j-th data cluster. Thus the fuzzy
complement is the membership of xj in the noise
cluster with the constant distance ηi. The general
form of the proposed objective function is:

FE(V, X) =
c∑

i=1

n∑

j=1

uij
md2(xj , vi) (10)

+
c∑

i=1

n∑

j=1

(f(uij))mηi. (11)

d(xj , vi) is the distance measure from the data
point xj to the prototype vi. For the simplic-
ity of the following discussion, we set m = 1 and
f(uij) = 1+uij ∗ log(uij)−uij . It is easy to prove
that the equation, 1 + uij ∗ log(uij) − uij , satis-
fies the axioms of fuzzy complements, boundary
conditions and monotonicity [14]. Other fuzzy
complements may also be used. The following is
the proposed fuzzy objective function:

FE(V, X) =
c∑

i=1

n∑

j=1

uijd
2(xj , vi) (12)

+
c∑

i=1

n∑

j=1

(1 + uij ∗ log(uij)− uij)ηi. (13)

In the clustering, the distance is usually set
as the Euclidean distance, that is d(xj , vi) =
‖xj − vi‖. First, we compute the gradient of FE

with respect to uij . By setting ∂FE(V,X)
∂uij

= 0, we
get

uij = exp(−‖xj − vi‖2
ηi

). (14)

Substitute this membership back and after sim-
plification, we get

FE(V, X) =
c∑

i=1

ηi −
c∑

i=1

n∑

j=1

exp(−‖xj − vi‖2
ηi

)ηi.

(15)

Following the multidimensional chain rule, when
xj is the current input data the gradient of FE
with respect to vi is

n∂FE(V, X)
∂vi

(16)

=
(n∂FE

∂‖xj − vi‖2
)(∂‖xj − vi‖2

∂vi

)
(17)

= uij

(∂‖xj − vi‖2
∂vi

)
(18)

= −2uij(xj − vi). (19)

In (14), ηi plays the role of a normalization pa-
rameter for the distance ‖xj − vi‖2 in the mem-
bership uij . In Fig. 2, we show the membership
relative to ηi = 1, 2, ..10, respectively. Note that
exp(−‖xj − vi‖2 /1) < exp(−‖xj − vi‖2 /2) <

... < exp(−‖xj − vi‖2 /10).
Fuzzy Robust Clustering (FRC) algorithm:

Input: all of the training feature vector set X =
{x1, x2, ..., xn} and the number of clusters c.

Output: the final prototypes of clusters V =
{v1, v2, ..., vc} .

Procedure:

step 1. Initially set the iteration count t = 1,
iteration bound T , learning coefficient α0 ∈
(0, 1].

step 2. Set the initial prototype set V =
{v1, v2, ..., vc} with a strategy.

step 3. Compute αt = α0(1− t/T) and adjust ηi

with a strategy.

step 4. Sequentially take every sample xj from
X and update each prototype with vnew

i =
vold

i + αt(xj − vold
i)(exp(−‖xj−vi‖2

ηi
)).

step 5. Add 1 to t and repeat step 3 through step
5, until t is equal to T .

ηi plays an important role in (14) and deter-
mines the mobility of the corresponding proto-
type. There are many strategies for the adjusting
of ηi. We propose two strategies. One is initial-
izing ηi with the result of another clustering al-
gorithm. The other is initializing the prototypes
at different places with larger distances between
each other and setting a smaller α0 ∈ (0, 1] and
a larger T . In step 5, ηi is adjusted by the rule:
ηi = minj

{
‖vj − vi‖2

}
, j 6= i. The concept is to

set ηi with the minimum influence on the other
prototype.

Following the similar approach, we have devel-
oped a neural network for the extraction of prin-
cipal components in the noisy data set. [15]

Figure 2: Plot of the membership generated with
different η.

4 Fuzzy robust c spherical shells algo-
rithm

The fuzzy c spherical shells algorithm is designed
for the searching of the clusters belonging to the
spherical shells. Raghu Krishnapuram et al. [13]
derived fuzzy c spherical shells (FCSS) algorithm
with the membership of fuzzy c-means (7). We de-
fine the prototype vi = (oi, ri) and set d2(xj , vi) =
(‖xj − oi‖2 − r2

i)2, where oi is the center of the
i− th hypersphere and ri is the radius. Following
(14), the membership weighted loss function is:

FE(V,X) =
c∑

i=1

n∑

j=1

exp(− (‖xj − oi‖2 − r2
i)2

ηi
) (20)

(‖xj − oi‖2 − r2
i)2. (21)

We rewrite d2(xj , vi) = pt
iMjpi + yt

jpi + bj ,

where bj = (xt
jxj)2, yj = 2(xt

jxj)
(

xj

1

)
, pi =

(−2oi

ot
ioi − r2

i

)
, and Mj =

(
xj

1

)(
xj

1

)t

. It

has been shown in [13], the updating of pi in the
membership weighted form is

pi = −(
1
2
)(Hi)−1wi, (22)

where

Hi =
n∑

j=1

uijMj (23)

and

wi =
n∑

j=1

uijyj . (24)

Fuzzy Robust C Spherical Shells (FRCSS) al-
gorithm:

Input: all of the training data vector set X =
{x1, x2, ..., xn} and the number of clusters c.

Output: the final prototypes of clusters V =
{v1, v2, ..., vc} .

Procedure:

step 1. Initially set the iteration count t = 1,
iteration bound T .

step 2. Set the initial prototype set V =
{v1, v2, ..., vc} with a strategy.

step 3. Compute Hi and wi for each cluster with
(23) and (24). Compute pi for each cluster
with (22).

step 4. Compute uij with (14).

step 5. Add 1 to t and repeat step 3 through step
5, until t is equal to T .

5 Simulations

5.1 Comparison of CL and FRC

Input data: There are four clusters of samples,
and each cluster has 100 samples from four
Gaussian distributions marked by dot. There
are 100 outliers marked by ”+”.

Initialization: Initial positions of four proto-
types are at (0.2, 0.2), (0.2, -0.2), (-0.2, 0.2)
and (-0.2, -0.2). We set T = 40, c = 4 and
α0 = 0.2. Both strategies for adjusting ηi

produce the same results.

Results: As shown in Fig. 3, the final positions
of prototypes in CL are greatly affected by
the outliers. The final prototypes of FRC are
near the actual centroids as shown in Fig. 4.

5.2 Extraction of 2-D circles

Input data: There are three 2-D circles and each
circle has 100 boundary points marked by
dot. There are 100 outliers marked by ”+”.

Initialization: Initial positions of prototypes in
FCSS [13] are randomly set and the final
prototypes are initial prototypes of FRCSS.
We set T = 40, c = 4 and α0 = 0.2.

Results: As shown in Fig. 5, the extracted cir-
cles with FCSS are greatly affected by the
outliers. The extracted circles with FRCSS
are near the actual circles as shown in Fig. 6.

5.3 Extraction of 3-D spherical shells

Input data: There are three 3-D spheres and
each sphere has 100 boundary points marked
by dot. There are 100 outliers marked by
”+”.

Figure 3: Final positions of CL prototypes when
outliers exist. Actual centroids: ’*’. CL proto-
types: ’o’.

Figure 4: Final positions of FRC prototypes when
outliers exist.

Initialization: Initial positions of prototypes in
FCSS are randomly set and the final proto-
types are initial prototypes of FRCSS. We set
T = 40, c = 4 and α0 = 0.2.

Results: As shown in Fig. 7, the extracted
spherical shells with FCSS are greatly af-
fected by the outliers. The extracted spher-
ical shells with FRCSS are near the actual
circles as shown in Fig. 8.

6 Summary

Through a modification of the objective function
with the releasing of probabilistic constraints, we
derive a family of robust clustering algorithms and

Figure 5: Final positions of FCSS prototypes
when outliers exist and the 2-D testing data. ”+”
represents the outlier.

Figure 6: Final positions of FRCSS prototypes
when outliers exist and the 2-D testing data. ”+”
represents the outlier.

Figure 7: Final positions of FCSS prototypes
when outliers exist and the projection of the 3-
D testing data on the x-y and x-z plane. ”+”
represents the outlier.

Figure 8: Final positions of FRCSS prototypes
when outliers exist and the projection of the 3-D
testing data on the x-y and x-z plane.

the corresponding fuzzy c spherical shells algo-
rithms. Compared with the previous hard and
fuzzy clustering, FRC and FRCSS have the fol-
lowing distinctive features:

- the membership does not reduce with the
growth of the cluster number.

- it is not necessary to find the winner.

- alleviating the influence from the outlier.

The normalized distance between the current
input and each prototype decides the adjustment
of this prototype. As supported by the exper-
iments, FRC and FRCSS are effective and could
be used to improve results from another clustering
algorithm. There exists other form of FRC-like
algorithms. One simple modification is to change
the learning law to batch mode or using a mo-
mentum updating law. These alterations may be
better than the original algorithm if the input pre-
sentation order is biased. Other strategies to es-
timate the zone of influence may be possible for
better adjustment of the learning rate.

References

[1] P. Devijver and J. Kittler, Pattern Recog-
nition: A Statistical Approach. Englewood
Cliffs, NJ: Prentice-Hall, 1982.

[2] A. K. Jain and R. C. Dubes, Algorithms
for Clustering Data. Eaglewood Cliffs, NJ:
Prentice-Hall. 1988.

[3] J. C. Bezdek and S. K. Pal, Eds., Fuzzy Mod-
els for Pattern Recognition. New York: IEEE
Press. 1992.

[4] J. Buhmann and H. Kuhnel, “Complexity op-
timized data clustering by competitive neural
networks,” Neural Computation, vol. 5, pp.
75–88, 1993.

[5] T. Kohonen, Self-organization and associa-
tive memory. Berlin, Germany : Springer-
Verlag, 3rd ed. 1989.

[6] T. Kohonen, “The self-organizing map,” in
Proc. IEEE, vol. 78, 1990, pp. 1464–1480.

[7] A. I. Gonzalez, M. Grana, and A. D’Anjou,
“An analysis of the GLVQ algorithm,” IEEE
Trans. Neural Net., vol. 6, pp. 1012–1016,
1995.

[8] N. R. Pal, J. C. Bezdek, and E. C. Tsao,
“Repair to GLVQ: a new family of Competi-
tive Learning Schemes,” IEEE Trans. Neural
Net., vol. 7, pp. 1062–1070, 1996.

[9] J. C. Bezdek, Pattern Recognition with Fuzzy
Objective Function Algorithms. New York:
Plenum, 1981.

[10] F. L. Chung and T. Lee, “Fuzzy competitive
learning,” Neural Networks, vol. 7, no. 3, pp.
539–551, 1994.

[11] J. C. Bezdek and N. R. Pal, “Two soft rel-
atives of vector quantization,” Neural Net-
works, vol. 8, no. 5, pp. 729–743, 1995.

[12] N. B. Karayiannis and P. I. Pai, “Fuzzy al-
gorithms for learning vector quantization,”
IEEE Trans. Neural Net., vol. 7, pp. 1196–
1211, 1996.

[13] R. Krishnapuram, O. Nasraoui, and H.
Frigui, “The fuzzy c spherical shells algo-
rithm: a new approach,” IEEE Trans. Neural
Net., vol. 3, no. 5, pp. 663–671, 1992.

[14] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy
Logic. Prentice-Hall Inc, pp. 51–61, 1995.

[15] Tai-Ning, Yang and Sheng-De, Wang, “Fuzzy
Auto-associative Neural Network for Princi-
pal Component Extraction of Noisy Data,”
IEEE Trans. Neural Net., vol. 11, no. 3, pp.
808–810, 2000.

